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Abstract. In this article we elaborately study certain characteristics of the set of allI-convergent sequences
over various topological spaces. Earlier results of different authors were concerned regarding the closeness
property of the sets: set of all bounded statistically convergent sequences, set of all bounded statistically
convergent sequences of orderα, set of all boundedI-convergent sequences over the space ℓ∞ (ℓ∞- endowed
with the sup-norm) only. On this context apart from this observation other properties (like connected and
dense) of all three above mentioned sets have not yet been discussed over any other spaces. Our approach
is to examine different behaviors of the set of all I-convergent sequences over different spaces. Finally we
are able to exhibit a condition over sequence spaces for which the set of all I-convergent sequences form a
closed set.

1. Introduction

In the year 1951, a subject was commenced as a generalization of usual convergence which is known as
statistical convergence. Interestingly Fast [8] and Steinhaus [19] (see also [17]) explored the same conception
independently in their own way. So many years later in 1980 and 1985 authors Šalát [15] and Fridy [9]
respectively portrayed such remarkable works in this aspect and since then, the topic has become the other
genre of domain of research. The definition of statistical convergence is expressed below as: If N denote
the set of all natural numbers and K ⊆ N then K(m,n) (where m,n ∈ N) denotes the cardinality of the set
K ∩ [m,n]. The upper and lower natural (or, asymptotic) densities of the set K are defined by

d(K) = lim sup
n→∞

K(1,n)
n

and d(K) = lim inf
n→∞

K(1,n)
n
.

If d(K) = d(K), then we say that the natural density of K exists and it is denoted by d(K) and clearly

d(K) = lim
n→∞

K(1,n)
n
.

A sequence x = {xn}n∈N of real numbers is said to be statistically convergent to a real number c if for
any ε > 0, the set Kx(ε) = {n ∈ N : |xn − c| ≥ ε} has natural density zero. According to the notion of Šalát
we denote by m0 the set of all bounded statistically convergent sequences (see [1, 12, 18, 20] where other
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references can found).

We state here some necessary results which play a relevant role in our work.

Theorem 1.1. [15, Theorem 2.1] The set m0 is a closed linear subspace of the linear normed space ℓ∞ (ℓ∞- endowed
with the sup-norm).

Theorem 1.2. [15, Theorem 2.2] The set m0 is a nowhere dense set in ℓ∞ (ℓ∞- endowed with the sup-norm).

There after a more generalized version of statistical convergence which is known as statistical con-
vergence of order α was improved by Çolak [5] and is defined as follows: Let 0 < α ≤ 1 be a real
number. The upper and lower natural (or, asymptotic) densities of order α of the set K(⊆N) are defined by

d
α
(K) = lim sup

n→∞

K(1,n)
nα

and dα(K) = lim inf
n→∞

K(1,n)
nα

. If d
α
(K) = dα(K), then we say that the natural density of

order α of K exists and it is denoted by dα(K) and clearly dα(K) = lim
n→∞

K(1,n)
nα

.

Contextually, a sequence x = {xn}n∈N of real numbers is said to be statistically convergent of order α to a

real number ℓ if for any ε > 0, lim
n→∞

1
nα
|{k ≤ n : |xk − ℓ| ≥ ε}| = 0.We follow the notation mα0 to denote the set

of all statistically convergent sequences of order α [2, 4].
Immediate after, following the line of work of Çolak [5], Bhunia et al. [4] established the following

theorem:

Theorem 1.3. [4, Theorem 3] For a fixed α, 0 < α ≤ 1, the set mα0 ∩ ℓ
∞ is a closed linear subspace of the linear

normed space ℓ∞ (ℓ∞- endowed with the sup-norm).

Further to this, in the beginning of the 21st century the creation of I-convergence marked an epoch
in this field. We remember Kostyrko et al. [11] for this significant direction of research. The concept of
I-convergence was formed on the structure of the ideal I of subsets of the set of natural numbers which
substantially grown up as a further generalization of statistical convergence and statistical convergence of
order α. Several works have been done on I-convergence in the last twenty years (see [3, 6, 10, 16]). We
now recall some relevant definitions and results.

Definition 1.4. [10, 11]. A family I ⊂ 2N is called an ideal if
(i) ∅ ∈ I,
(ii) A,B ∈ I implies A ∪ B ∈ I,
(iii) A ∈ I,B ⊂ A implies B ∈ I.
The ideal I is called non-trivial if I , {∅} andN < I.

Definition 1.5. [10, 11]. A non-empty family F ⊂ 2N is called a filter if
(i) ∅ < F,
(ii) A,B ∈ F implies A ∩ B ∈ F,
(iii) A ∈ F,A ⊂ B implies B ∈ F.
Clearly I ⊂ 2N is a non-trivial ideal of N iff F = F(I) = {K ⊂ N : N \ K ∈ I} is a filter on N, called the filter
associated with I. A non-trivial ideal I is called admissible if I contains all the singleton sets. Throughout in this
paper we take I as a nontrivial admissible ideal inN.

Definition 1.6. [10, 11]. Let I ⊂ 2N be a proper ideal in N. A sequence {xn}n∈N of real numbers is said to be
I-convergent to c ∈ R, if for each ε > 0, the set K(ε) = {n ∈N : |xn − c| ≥ ε} ∈ I.

If x = {xn}n∈N is I-convergent to c then we write I− lim x = c or I− lim xn = c.We introduce the set F(I)
as follows:

F(I) = {x = {xn}n∈N is a sequence of real numbers : I − lim x ∈ R}.



M. Banerjee, M. Mandal / Filomat 37:6 (2023), 1713–1721 1715

Definition 1.7. [7, 12]. A sequence x = {xn}n∈N of real numbers is said to be I-bounded if there exists a positive real
number G such that the set {n ∈N : |xn| ≥ G} ∈ I.

Theorem 1.8. [10, Theorem 2.3] Suppose that I is an admissible ideal in N. Then F(I) ∩ ℓ∞ is a closed linear
subspace of the linear normed space ℓ∞ (ℓ∞- endowed with the sup-norm).

Theorem 1.9. [6, Theorem 8] Let m2 denote the norm linear space of all bounded double sequences of real numbers
(with norm, ||x|| = sup

m,n∈N
|xmn| where {xmn}m,n∈N). The set of all bounded I2-convergent double sequence of real

numbers form a closed linear subspace of the linear normed space m2, when I2 is a non-trivial admissible ideal of
N ×N.

The demonstration of literature survey assures that all the three sets m0,mα0 ∩ ℓ
∞ and F(I)∩ ℓ∞ had have

been studied only over the space ℓ∞-endowed with the sup-norm. Our focus is to furnish the nature of the
set F(I) (irrespective of boundedness) over topological spaces which are may or may not be metrizable. In
this short note we improve the characteristic of the set of all I-convergent sequences on sort of topological
aspect. Further more, on a conclusion we could able to possess a condition over sequence spaces for which
the set of all I-convergent sequences form a closed set.

2. Main Results

In this section our first context of observation is product topological space.

Let RN denote the set of all real sequences and πm : RN → R be a projection mapping such that
πm(x1, x2, x3, ...xm−1, xm, xm+1, ...) = xm for all {xn}n∈N ∈ RN. Let us define the collection Sm = {π−1

m (U) :
U is open in R} and S =

⋃
m∈N

Sm. The topology generated by the subbasis S is called the product topology

over RN [14].

Example 2.1. The set F(I) is not a closed set in RN with product topology.

Proof. Let us consider Id = {A ⊂N : d(A) = 0}. Therefore Id forms an admissible ideal inN. Our intension
is to show, there exists a sequence {x(n)

}n∈N in F(Id) such that x(n)
→ x as n→∞where x ∈ RN with product

topology, but x does not belong to the set F(Id). Let x(n) = {x(n)
k }k∈N,

x(n)
k =

1, k ∈ {1, 3, 5, ..., 2n − 1},
0, otherwise.

Clearly each Id − lim x(n) = 0 where n ∈N. Setting x = {xk}k∈N where

xk =

1, k ∈ {2m − 1 : m ∈N},
0, otherwise.

Let U =
∏
i∈N

Ui be a basis element for the product topology that contains x = {xk}k∈N ∈ R
N. Then there

exists an integer p such that Ui = R for all i ≥ p. Hence x(n)
∈ U for all n ≥ p. This implies lim

n→∞
x(n) = x.

For each ε (where 0 < ε < 1), neither the set {k ∈ N : |xk − 0| ≥ ε} nor even the set {k ∈ N : |xk − 1| ≥ ε}
belong to Id. Hence we conclude that x does not belong to the set F(Id).
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From the construction of Example 2.1 it is clear that F(I) ∩ ℓ∞ is not a closed set over RN with product
topology.

Theorem 2.2. The set F(I) is dense in RN with product topology.

Proof. Let a = {a1, a2, ...} be a point of RN and U =
∏
i∈N

Ui be a basis element for the product topology that

contains a. Then there exists a positive integer m such that Ui = R for all i ≥ m. Setting the point x = {xk}k∈N
where

xk =

ak, k ∈ {1, 2, 3, ...,m − 1},
a1, otherwise.

Thus the point x of F(I) belongs to U since ai ∈ Ui for all i < m and a1 ∈ Ui for all i ≥ m.

Next we move to establish another result.

Theorem 2.3. The subset F(I) of RN forms a connected set with product topology.

Proof. Let R̃n denote the subspace ofRN consisting of all sequences x = {xk}k∈N such that xk = 0 for i > n. The
space R̃n is clearly homeomorphic to Rn and so it is connected. Let R∞ =

⋃
i∈N

R̃n. Since we know that R∞ is

connected and closure ofR∞ is equal toRN, so from the above Theorem 2.1 it is clear thatR∞ ⊂ F(I) ⊂ R∞.
Hence F(I) is connected in RN with respect to product topology.

If we replace F(I) by F(I) ∩ ℓ∞ in Theorem 2.2 and Theorem 2.3 then the results are remain unaltered.

We proceed further to discuss classification of the set F(I) over box topology.

Let us take a basis for a topology on the product space RN which is of the form
∏
m∈N

Um where eachUm

is an open set in R. The topology generated by this basis is called the box topology over RN [14].

Now we figure out some more results over box topology.

Theorem 2.4. The set F(I) is closed in RN with box topology.

Proof. Let x = {xk}k∈N ∈ F(I). Consider the basis element U =
∏
k∈N

(xk −
1
2k
, xk +

1
2k

) which contains x.

Then there exists an element y = {yk}k∈N ∈ F(I) such that y ∈ U ∩ F(I) and I − lim y = ξ. Let ε be a
positive real number, then there exists a natural number k0 such that 1

k0
< ε

2 . Therefore {k ∈ N : |yk − ξ| <
ε
2 } ∩ {k0, k0 + 1, k0 + 2, ...} ⊆ {k ∈N : |xk − ξ| < ε} ∈ F(I). Hence the result.

Example 2.5. The set F(I) is neither dense nor connected in RN with box topology.

Proof. Let x = {xk}k∈N ∈ R
N be defined as

xk =

1, k ∈ {2m − 1 : m ∈N},
0, otherwise.

Then the open setU = (1 − 1, 1 + 1) × (0 − 1
2 , 0 +

1
2 ) × (1 − 1

3 , 1 +
1
3 ) × (0 − 1

4 , 0 +
1
4 ) × ... contains the point x

but F(I) ∩U = ∅. So F(I) is not dense in RN.



M. Banerjee, M. Mandal / Filomat 37:6 (2023), 1713–1721 1717

Now we proceed to the second part of the example. We can express RN as the union of the set A
consisting of all bounded sequences of real numbers and the set B of all unbounded sequences of real
numbers. Both the sets are nonempty, disjoint and open in the box topology [14]. Hence the set F(I) can be
rewritten as F(I) = P ∪ Q, where P = F(I) ∩ A is the set of all bounded statistically convergent sequences
of real numbers and Q = F(I) ∩ B is the set of all unbounded statistically convergent sequences of real
numbers. These sets P and Q are nonempty, disjoint and open in the subspace topology. Thus, F(I) is not
connected.

After an extensive discussion regarding product topology and box topology we like to insight into Fort
space.

Let X be an arbitrary infinite set and p be an arbitrary but a fixed point in X. A topological space (X, τ)
is called the Fort space if τ consists of all those subsets of X which do not contain p and all those subsets of
X which are complements of finite subsets.

Example 2.6. The set F(I) may or may not be closed but neither connected nor dense in the Fort space overRN with
respect to a fixed point p of RN.

Proof. If p < F(I) then F(I) is neither closed nor connected infact it is an open set. So we assume p ∈ F(I).
Let us choose an element q ∈ F(I) such that p , q. Then the singleton set {q} is open as well as closed and
thus F(I) is a disconnected set. Next, let x be an element inRN \ F(I). Since p ∈ F(I) so the singleton set {x}
is open. So x is not a limit point of the set F(I). Thus, F(I) is a closed set. Also we draw conclusion that the
set F(I) is not dense in the Fort space over RN.

If we consider RN with discrete topology then on a very obvious note either F(I) or F(I) ∩ ℓ∞ are both
clopen sets but neither dense nor connected.

In this study we are also concerned about two notable topological spaces such as co-finite and co-
countable topologies over RN.We find F(I) is dense and connected but not closed under these topologies.

Apart from topological spaces we like to draw attention over some sequence spaces. First we count
Hilbert-Cube Space.

Let H∞ denote the set of all real sequences {xn}n∈N such that 0 ≤ xn ≤ 1 for all n ∈ N and the distance
function ρ be defined by

ρ(x, y) =
∞∑

k=1

1
2k
|xk − yk|,

where x = {xk}k∈N and y = {yk}k∈N belong to H∞. This distance function ρ along with the set H∞ forms a
metric space. The space is known as Hilbert-Cube Space and is denoted by the symbol H∞.

We now sketch an example that shows the above Theorems 1.3 & 1.8 do not follow the closeness char-
acter while replacing ℓ∞ by H∞.

Example 2.7. The set F(I) ∩H∞ is not a closed set in H∞.

Proof. Let Idα = {A ⊂ N : dα(A) = 0} in the range 1
2 < α ≤ 1. Then Idα forms an admissible ideal inN.We

consider x(n) = {x(n)
k }k∈N ∈ F(Idα ) ∩H∞ for n = 1, 2, 3, ... and x = {xk}k∈N in H∞.

Now we show that x(n)
→ x as n→∞ but x < F(Idα ) ∩H∞.



M. Banerjee, M. Mandal / Filomat 37:6 (2023), 1713–1721 1718

Let, x(1) = {x(1)
k }k∈N where

x(1)
k =

1, k ∈ {12, 22, 32, ...},

0, otherwise,

x(2) = {x(2)
k }k∈N where

x(2)
k =

1, k ∈ {12, 22, 32, ...} ∪ {3},
0, otherwise,

x(3) = {x(3)
k }k∈N where

x(3)
k =

1, k ∈ {12, 22, 32, ...} ∪ {3, 5},
0, otherwise,

. . .

x(n) = {x(n)
k }k∈N where

x(n)
k =

1, k ∈ {12, 22, 32, ...} ∪ {3, 5, ..., 2n − 1},
0, otherwise

and so on.

Clearly each Idα − lim x(n) = 0 where n ∈N. Setting the sequence x = {xk}k∈N where

xk =

1, k ∈ {12, 22, 32, ...} ∪ {2m − 1 : m ∈N},
0, otherwise.

Now,

lim
n→∞
ρ(x(n), x) = lim

n→∞

 ∞∑
k=1

1
2k
|x(n)

k − xk|


= lim

n→∞

( 1
22n+1 +

1
22n+3 +

1
22n+5 + ...

)
= lim

n→∞

( 1
22n+1 {1 +

1
22 +

1
24 + ...}

)
= lim

n→∞

1
22n+1 .

4
3
= 0.

This implies lim
n→∞

x(n) = x in H∞. For each 0 < ε < 1 and for x = {xk}k∈N,

Ax(ε) = {k ∈N : |xk − 0| ≥ ε} = {12, 22, 32, ...} ∪ {2k − 1 : k ∈N} < Idα ,

Bx(ε) = {k ∈N : |xk − 1| ≥ ε} =N \ ({12, 22, 32, ...} ∪ {2k − 1 : k ∈N}) < Idα .

Hence x < F(Idα ) ∩H∞ and our assertion is proved.

Remark 2.8. From the above example it comes out that the space mα0 ∩ H∞ or mα0 ∩ H∞ ∩ ℓ∞ is not closed in H∞.
[13, Example 2.1]
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We approach onwards to the Fréchet metric space and like to continue our discussion.

Let F denote the set of all real sequences. Also let the distance function σ be defined by

σ(x, y) =
∞∑

k=1

1
2k

|xk − yk|

1 + |xk − yk|
,

where x = {xk}k∈N and y = {yk}k∈N are elements of F. This distance function σ forms a metric over F and
hence F is called Fréchet sequence space or Fréchet metric space.

Example 2.9. The set F(I) does not form a closed set over F.

Proof. To prove this example we find out a sequence {x(n)
}n∈N in F(I) which converges to an element x in F

but that x does not belong to F(I).
Consider the sequence x(n) = {x(n)

k }k∈N for all n ∈ N, x = {xk}k∈N and the ideal Idα = {A ⊂ N : dα(A) = 0}
where 1

2 < α ≤ 1 as defined in Example 2.7.

Then

lim
n→∞
σ(x(n), x) = lim

n→∞

 ∞∑
k=1

1
2k

|x(n)
k − xk|

1 + |x(n)
k − xk|


= lim

n→∞


∞∑

k=2n+1

1
2k

k∈{2m−1:m∈N}∩(N\{12,22,...})

×
1
2


≤ lim

n→∞

( 1
22n+1 +

1
22n+3 +

1
22n+5 + ...

)
= lim

n→∞

1
22n+1 .

4
3
= 0.

This implies x(n)
→ x in F as n → ∞. But for each ε such that 0 < ε < 1 and x = {xk}k∈N the set

Ax(ε) = {k ∈N : |xk − 0| ≥ ε} = {12, 22, 32, ...} ∪ {2k − 1 : k ∈N} < Idα . Hence the result.

Remark 2.10. We could draw two conclusions from the above Example 2.9 as follows:
(i) the set of all statistically convergent sequences of order α is not closed in Fréchet sequence space [13, Example 2.2].
(ii) the set of all bounded statistically convergent sequences of order α is not closed in Fréchet sequence space [13,
Remark 2.3].

Suppose (X, ϱ) be any metric space. We introduce the set FX(I) as follows: FX(I) = {x = {xn}n∈N : each xn ∈

X and I − lim x ∈ X}.

Finally at this stage we would like to impose certain conditions over any arbitrary sequence space under
which the set FX(I) becomes closed.

Theorem 2.11. Let (X, ϱ) and (XN, σ) be two complete metric spaces where ϱ and σ be chosen in such a manner such
that ϱ(xk, yk) ≤ Mσ(x, y) for all k ∈ N,M is a fixed positive real number and x = {xk}k∈N, y = {yk}k∈N are elements
of XN. Then FX(I) forms a closed set in XN.

Proof. In the sequence space XN, we define the sequences as x(n) = {x(n)
k }k∈N ∈ FX(I) for all n ∈ N and

x(n)
→ x = {xk}k∈N in XN as n→∞. Therefore σ(x(n), x)→ 0 as n→∞.We establish that x ∈ FX(I).

Let I − lim x(n) = ξn ∈ X where n ∈N.We prove the theorem in two steps:
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Step (i): To show that {ξn}n∈N is a convergent sequence in X.
Step (ii): Finally I − lim x = ξ,where lim

n→∞
ξn = ξ.

Step (i): Since, σ(x(n), x)→ 0 as n→∞ so for each ε (0 < ε < 1) there exists a natural number n0 such that

σ(x(u), x(v)) <
ε

3M
for all u, v ≥ n0

⇒ ϱ(x(u)
k , x

(v)
k ) <

ε
3

for all u, v ≥ n0 and k ∈N.

Let U( ε3 ) = {k ∈ N : ϱ(x(u)
k , ξu) < ε3 } and V( ε3 ) = {k ∈ N : ϱ(x(v)

k , ξv) < ε3 }. Clearly U( ε3 ) and V( ε3 ) belong to
F(I) and U( ε3 ) ∩ V( ε3 ) , ∅ since ∅ < F(I).

Now we choose a natural number k such that k ∈ U( ε3 ) ∩ V( ε3 ) and hence

ϱ(ξu, ξv) ≤ ϱ(ξu, x
(u)
k ) + ϱ(x(u)

k , x
(v)
k ) + ϱ(x(v)

k , ξv) < ε for all u, v ≥ n0.

Therefore {ξn}n∈N is a Cauchy sequence in a complete metric space (X, ϱ). So there exists an element
ξ ∈ X such that lim

n→∞
ξn = ξ.

Step (ii): Since σ(x(n), x)→ 0 and ϱ(ξn, ξ)→ 0 as n→∞, then there exists m0 ∈N such that

σ(x(p), x) <
ε

3M
and ϱ(ξp, ξ) <

ε
3

for all p ≥ m0

⇒ ϱ(x(m0)
k , xk) <

ε
3

and ϱ(ξm0 , ξ) <
ε
3

for all k ∈N.

Now ϱ(xk, ξ) ≤ ϱ(x
(m0)
k , xk) + ϱ(x(m0)

k , ξm0 ) + ϱ(ξm0 , ξ) ≤ ϱ(x
(m0)
k , ξm0 ) + 2ε

3 for all k ∈ N. So we get {k ∈ N :
ϱ(xk, ξ) ≥ ε} ⊆ {k ∈N : ϱ(x(m0)

k , ξm0 ) ≥ ε3 } ∈ I.

Remark 2.12. If we replace XN by any complete subspace of YN of XN in the Theorem 2.4 and assume the inequality
holds over the space YN then FX(I) ∩ YN forms a closed set over YN.

As an immediate consequence of the above theorem an important question arises that ”Does there exist
such metric σ over XN such that the hypothesis of the Theorem 2.11 is satisfied?”

Our following remark is the definite answer to this question.

Remark 2.13. (i) Let us define a metric σ on RN by σ(x, y) = sup{d(xk, yk) : k ∈ N}, where d is the standard
bounded metric on R. Then the metric σ is called the uniform metric on RN [14]. For any positive real number ε in
(0, 1), |xk − yk| ≤ σ(x, y) < ε satisfies for all k ∈ N,M = 1 and x = {xk}k∈N, y = {yk}k∈N are in RN. Similarly F(I)
forms a closed set in RN.

(ii) The space ℓ∞ consists of all bounded sequences of real numbers with that metric σ(x, y) = sup
k∈N
|xk − yk|

where x = {xk}k∈N and y = {yk}k∈N belong to ℓ∞. If we choose any positive real number ε however small then
|xk − yk| ≤ σ(x, y) < ε, for all k ∈ N,M = 1, x = {xk}k∈N, y = {yk}k∈N are in XN. Then F(I) ∩ ℓ∞ is a closed set in
ℓ∞ [10, Theorem 2.3].

(iii) Let p ≥ 1 be a fixed positive real number. By definition, each element in the space ℓp is a sequence x = {xk}k∈N

of real numbers such that
∞∑

k=1

|xk|
p < ∞ and the metric is defined by σ(x, y) =

 ∞∑
k=1

|xk − yk|
p


1
p

where x = {xk}k∈N and

y = {yk}k∈N belong to ℓp. Choosing any positive real number ε however small, |xk − yk| ≤ σ(x, y) < ε, for all k ∈ N,
M = 1 and x = {xk}k∈N, y = {yk}k∈N are in ℓp. Therefore F(I) ∩ ℓp is a closed set in ℓp.
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[10] P. Kostyrko, M. Mačaj, T. Šalát, M. Sleziak, I-convergence and extremal limit points, Math. Slovaca 55 (4) (2005), 443-464.
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