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Drazin invertibility for sum and product of two elements in a ring

Xiaolan Qin?, Linzhang Lu®*

?School of Mathematical Science, Guizhou Normal University, P. R. China
Y School of Mathematical Science, Xiamen University, P. R. China

Abstract. In a ring, the expressions for the Drazin inverses of the sum a + b and the product ab have
been studied in some literature under the assumption that the two Drazin invertible elements a,b are
commutative. In this paper, we will extend the known research results under the weaker conditions.
Meanwhile, we characterize the relations of a + b, (a + b)bbP, I + aPb, aa®(a + b) and aaP(a + b)bb® and find
the expressions of (a + b)P, [(a + b)bbP1°, (I +aPb)P, etc.

1. Introduction

In this paper, R will denote an associative ring whose unity is 7. The commutant of an element a € R is

defined as comm(a) = {x € R : ax = xa}. Let us recall that an element a € R has a Drazin inverse [1] if there
exists b € R

bab=b, ab=ba, a*=d"b (1.1)
for some positive integer k. The element b satisfying (1.1) is unique if it exists and is denoted by aP. The
smallest integer k satisfying (1.1) is called the Drazin index of a, denoted by ind(a). If ind(a) = 1, then b is

called the group inverse of 2 and is denoted by a*. The subset of R composed of Drazin invertible elements
will be denote by RP.

The conditions in (1.1) are equivalent to
bab = b, ab = ba, a—a’bis nilpotent.

The notation a™ means 7 — aaP for any Drazin invertible element a € R. Observe that by the definition of
the Drazin inverse, aa”™ = a™a is nilpotent.

The research for Drazin invertibility of the sum of two elements g, b in a ring is attractive. Many authors
have studied such problems from different views, see, e.g. [1, 2, 6, 8, 9, 11-13]. In the articles of Wei
and Deng [9], Zhuang et al. [12] and Liu and Qin [2], the commutativity ab = ba was assumed. In [9],
they characterized the relationships of the Drazin inverse between A + B and 7 + APB by Jordan canonical
decomposition for complex matrices A and B. Zhuang et al. [12] extended the result in [9] to a ring R, and
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it was proved that if a,b € RP and ab = ba, then a + b € RP if and only if 7 + a”b € RP . In [2], Liu and Qin
deduced that a + b € RP if and only if aaP(a + b) € RP under the condition ab = ba for a,b € RP. In resent
years, several authors focused on the problem under some weaker conditions. Liu et al. [3] considered
the relations between the Drazin inverses of P + Q and 7 + PPQ, under the conditions P2Q = PQP and
Q?P = QPQ for complex matrices P and Q by using the method of splitting complex matrices into blocks.
In [11], Zhu and Chen generalized the results in [3] to a ring case. More results on the Drazin inverse can
also be found in [4, 5, 7, 10]. In this paper, we will further consider the results of [11] and [3] for the Drazin
inverse, which extend [9, Theorem 2], [12, Theorem 3] and [2, Theorem 2.1].

In section 2, we present some lemmas which are used in the proof of the main results.

In section 3, we characterize the relations of a + b, (a + b)bb®, I + aPb, aa®(a + b) and aa®(a + b)bbP. Also
we obtain some expressions for (a + b)P, (a + b)PbbP, (I + aPb)P, etc.

Finally, in the last section, we investigate Drazin invertibility of the product of a,b € RP which will be
used in the sequel. Then we introduce some new conditions and give the Drazin inverse of the sum a + b,
where a, b are Drazin invertible in R.

2. Preliminaries
We give some previous results which will be useful in proving our results.
Lemma 2.1. [11, Lemma 2.4] Let a,b € RP with a*b = aba and b*a = bab. Then
(1) {ab, a"b,ab®,aPbP} C comm(a). (2.1)
(2) {ba, bPa, baP, bPaP} C comm(b). (2.2)

Lemma 2.2. [11, Lemma 2.6] Let a,b € RP with a’b = aba and b*a = bab. Then for any positive integer i, the
following hold:

(1) @Pby*! = aPb(paP) = (@P) b, 2.3)

2) (baP)*! = baP @by = b+ (@P) . (2.4)
Lemma 2.3. [11, Theorem 3.1] Let a,b € RP with a®b = aba and b*a = bab. Then ab € RP and (ab)P = aPbP.
Lemma 2.4. Let a,b € RP with a*b = aba and b*a = bab. Ifci =aa™b™ and ¢y = aaPbb™, then ¢1 — ¢, is nilpotent.

Proof. Firstly, we prove that c; = aa™b™ is nilpotent. According to Lemma 2.1, we have the following
equalities:

aa™b™a = a*a™b" (2.5)
and

ab™a™ = aa™b". (2.6)
Hence, we get

(@b = (@a b a)ab" =)

A i o (N (i e

(@*a™b™)a™b™ = aa™ (ab™a™)b™

By induction, (aa™b™)" = (aa™)"b™ for every integer n > 1. Since aa”™ is nilpotent, aa™b™ = c; is nilpotent.
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Secondly, we will show that ¢; = aaPbb™ is nilpotent. As
(aaPbb™)? = (aaPbb™)(aaPbb™) = aaPb(I — bbP)aaPb(I — bbP)
= aaP (T - bbP)baa®b(T — bbP)
@ 10Pba(T — bbP)aPb(T - bbP)
@D 2aPab(T - bbP)aPb(T — bbP)
= aaPa(I - bbP)baPb(I — bbP)
@2 2aPabaP (I — bbP)b(I — bbP)
@D 20PaaPb(T - bbP)(T - bbP)
= aaP (bb™)?.
By induction, (aaPbb™)" = aaP(bb™)" for every integer n > 1. Since bb"™ is nilpotent, aaPbb™ = c; is nilpotent.
Finally, we shall prove that c¢; — ¢ is nilpotent. Since a™aP =aPa™ =0, combining Lemma 2.1, we derive
c%cz = aa"b™aa"b"aaP bb™ @ aa"b"aa™aa®b"bb™ = 0
and
coc1 = aa’bb™aa™b"™ = aa®b(I — bb)aa™b"
= [aD (ab) — aP (ab)bbP ] aa™b"
@) [abaD — a(baP)bb® ] aa"™b"
@2 (abaP — abbPbaP)aa™b"
= abb™aPaa™b™ = 0.
Therefore, we can prove that c7c; = c1cyc1 = 0 and c3¢1 = cacrc2 = 0.
As ¢ and ¢, are nilpotent, aa™b™ — aaPbb™ = ¢; — ¢y is nilpotent by [11, Lemma 2.2 (2)]. O

Lemma 2.5. Let a,b € RP with a*b = aba and b*a = bab and ¢ = (a + b)bbP € RP. Suppose di = bb™ + cc™ and
dy = aa™b™ — aaPbb™. Then d; + dy is nilpotent.

Proof. First, we will give some useful equalities. From b™bP = 0 and a™a” = 0, we get

bbc = bb™(a + bYbbP = (bb7a)bPb + bbbk % bPbbab = 0 2.7)
and
aa™bb™aaP = a™ab(I — bbP)aPa = a™abaPa — a"abb(bPaP)a

@2 a™(ab)aPa — a™ (abP)aPbba

@D gD (ab)a — a™aP (abP)bba = 0.
Similarly
caa™b™ = caa®bb™ = ab™c = bb"c = 0 (2.8)

and

aa"b"aa® = aaPbb™aa™ = aaPb*b"aa™ = aa™bb"aa® = 0. (2.9)
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Next, we will show that d; is nilpotent. Let d; = x + y, where x = bb™, y = cc™. It is not difficult to
see that x2y = bb"(bbc)c” E 0. The equality cb”™ = (a + B)bbb™ = 0 implies yx = cc™bb" = ¢"(cb™)b = 0.
Consequently, x’y = xyx = 0 and y*x = yxy = 0.

Since bb™, cc™ are nilpotent, it follows from [11, Lemma 2.2 (2)] that d; = bb™ + cc™ is nilpotent. By virtue
of Lemma 2.4, dy = aa™b™ — aaPbb™ is nilpotent.

Finally, we will prove that d; + d, is nilpotent. Using the previous equations and combining cb™ = 0, we
obtain that

d2dy = (bb™ + cc™)*(aa"b™ — aa”bb™)
= (L?b™ + bb™cc™ + cc™bb™ + c*c™)(aa"b™ — aaPbb™)
= b2 aa"b™ + bb™cc™aa™b™ + 2c"aa"b"
— V0™ aaPbb™ — bb™ cc™aaPbb™ — c*c"aaPbb™
D e — o aaP b
and
didady = (bV™ + cc™)(aa™b™ — aa”bb™)(bb™ + cc™)
=bb™aa™bb™ + bb™aa"b™ cc™ + cc"aa"bb™ + cc™aa™b™ cc™
— bb™aaPb?b™ — bb™aaPbb cc™ — cc™aaPb*b™ — cc"aaPbb ™
= b”(baa”)bb” b (baa)o?b™ 2 b b(baa™ )b — b7 b(baaP)bb"
= b2 0" aa"b"™ — b*b"aaPbb™.

Hence, d?d, = dydpdy. And, similarly d2d; = dydid,.
By [11, Lemma 2.2 (2)], it follows that d; + d; is nilpotent. [

3. Main result 1

Now we will characterize the relations of a+b, (a+b)bb®, I +aPb, aa®(a+b) and aa®(a+b)bb" fora, b € RP.

D
Furthermore we deduce the expressions of (a + b)P, [uaD (a+ b)] , (I +aPb)P, etc. The results extend those
given in [9, Theorem 2], [12, Theorem 3] and [2, Theorem 2.1].

Theorem 3.1. Let a,b € RP be such that a®b = aba, b*a = bab and ind(a) = s, ind(b) = t. Then the following
conditions are equivalent:

(1)a+beRP;

(2) ¢ = (a + b)bb® € RP;

(3) & = T +aPb € R

(4) e = aaP(a + b) € RP;

(5) w = aaP(a + b)bb® € RP.

In this case,

t—1
@+b)P =cP + Z APy (=b) D" + a"b Z(z +1)(@P)*2(=b)'b™, 3.1)
i=0

s—1 s—2
@+b)P = e +a™b(eP)? + Z(bD)f“(—a)iaﬂ +b"a Z(i + 1)(BP)*2(=a)ia™
=0 =0
(3.2)

s—1 5—2
— ﬂDéD + a”b(aDED)z + Z(bD)Hl(_a)ian +b"a Z(l + 1)(bD)i+2(—ﬂ)iﬂT(

i=0 i=0
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where
® = @+ b)PubP, &P = a™ + a?aP(a + b)P = a™ + aeP (3.3)
and e® = aaP(a + b)P = aP&EP = EPaP, wP = aaP(a + b)PbLP.
Proof. (1) = (2) To show that ¢ € RP, we write ¢ = f; fo, where fi =a + b, fo = bbP. By Lemma 2.1, we have
fifr = (a+b)*bb® = a(ab)b® + abbb® + babb® + b*b°
@D 4(ba)b? + abbb® + (ba)bb® + B>b°
2 abPba + abbb® + bbPba + b*bP
=@+bbbP@a+b) = fipf,
and
f2fi = bbPbbP(a + b) = bbPb(bPa) + bbb bb
% pbPabPh + P b6 bb
=bbP(a + b)bb® = fofi fo.

Applying Lemma 2.3, we deduce that ¢ € RP and ¢ = [(a + b)bbP ]D = (a + b)PbbP.
) = (1) Let

t—1 -2
x=cP+ Z(aD)f“(—b)fb“ +a"b Z(i + 1)(@P)*2(=b)'b™ = x; + x2,
i=0 i=0

where x; = cP, x, = Y120 @P) 1 (=b)b™ + a™b ¥[23 (i + 1)(aP) 2 (=b)'b™.

Assume that c is Drazin invertible. We will prove that x is the Drazin inverse of a + b, i.e., we will prove
that x(a + b) = (a + b)x, x(a + b)x = x and (a + b) — (a + b)?x is nilpotent.

Step 1 First we prove that x(a + b) = (a + b)x. In view of Lemma 2.1, we have

(a + b)a™b@P)? = a™ab@")? + b*(aP)? — ba(aPb)(aP)?

(3.4)
& a7 aPabaP + p(@P)? - baPbaP E 0.
Hence
t—1 . 4 =2 4 4
@+bx =@+b)|+ Z(aD)’”(—b)’b” +a"b Z(i +1)(@P)*2(=b)b"
i=0 i=0 (3 5)

t-1
Y @+b) [cD + Y @) =y +
i=0
where y; = (a + b)cP, y» = (a + b) Y12 (aP) 1 (=b)'b™.
Second we show x1(a + b) = y; and x2(a + b) = y,. In light of Lemma 2.1, we get
c(a+b) = (a+b)bbP(a + b) = ab(Pa) + abbPb + bb" (ba) + H*bPb

@2 (abP)ab + abbPb + babb® + b2bPb

@D 256 4 abbPb + babbP + 2bPb

= (a® + ab + ba + b*)bbP
= (a+b)c.
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Then, by [1, Theorem 1], we get
P@a+b) = (a+b)P.

Thus, x1(a + b) = y1.
By mathematical induction, for every integer i > 1, a calculation yields

aaP (baP)' = (aaPbaP) @ (a"b)'.
From the equality b'b™ = 0 and

aPbv™a = aP(I — bbP)a = aa® — aPb(bPa) @2 aaP — (aPbP)ab
@ aaP — aaPbPb = aaPb".

So we have

t—1 t—1
.Xz(ﬂ + b) _ yZ - _ Z(QD)HI(_b)Hlbn + Z(QD)HI(_b)ibna
i=0 i=0

=2 =2
—a™b Y i+ 1)@ A(=by* 10" +a7b Y (i + 1)) A (=b)ba
i=0 i=0

t—1
_ (Cl + b) Z(aD)i+1(_b)ibn
i=0

-1 -1
@ _ Z(—an)”lb" + Z aP(-aPb)'b™a
i=0 i=0

t—2 -2

—a"baP ) (i +1)(=a"b) b + a"b(@”)* ) (i + 1)(-a"b)b"a

i=0 i=0

=1 -1
_ bZ(aD)Hl(_b)ibn _ aZ(aD)H-l(_b)ibn
i=0 i=0

=1 -1
- _ Z(_an)Hlbn + Z(_baD)Hle[
i=0 i=0

t=2 t—2
+a™ | Y+ 1)(=baPy 2T = Y (i + 1)(~ba”) b
i=0

i=0

=1 =1 =1
— _ Z(_an)Hlbn + Z(_baD)ian —a Z(_baD)ibn
i=0 i=0 i=1

t—1 -1
== ) (a1 + aa” ) (~baPyb"
i=0

i=1

-1 -1
@ _ Z(—an)i+1b” + Z(—aanaD)ib”
i=0 i=1

t—1 -1
(2:3) _ Z(_an)ich _ (_aD)tbtbn + Z(_an)ich
i=1 i=1

=0.

1756

(3.6)

(3.7)

(3.8)
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Hence, x3(a + b) = y». It follows that x(a + b) = (a + b)x.
Step 2 We give the proof of x(a + b)x = x. From the equality (3.5), we obtain

-1
L+ Z(QD)in(_b)ibn}

i=0

x(@+b)x =x(@+Db)

-1 -1

=(a+b) [CD + Z(aD)f“(—b)fb"} x [CD + ) @) (=byb
i=0 i=0

=my +myp +m3,

where
t—1 t—1 t—1
m = @+ b)), m = @+b)c” Y (@) (=b)'b",ms = (@+b) ) (@) (=b)b"™ ) (@) (-b)b".
i=0 i=0 i=0

Now we prove mj + mj, + m3 = x. Also, the following equalities will be useful:
a+b=c+(@+b)", (3.9

and

(@a+b)b"c=ab™c+bb"c = 0. (3.10)

Firstly, we have

mi = (a + b)(cP)? = [c + (a + b)b™] (P)?
=c(cP)? + (a + b)b™(cP)?
= c(cP)? + (a + b)b"c(cP)?
610 p

and
-1 -1
my = (@+b)c” Y @) (=b)b" = (@ +b)(cPe Y (@) (=b)b"
i=0 i=0

t—1
= (a + b)(cP)*(a + b)bb" Z bPbaP (aP) (-b)'b™
i=0
o4 t—1
24 —(a +b)P Z bP (=baP)i*1pm
i=0
25 t—1 .
E @+ b)Y (bl P
i=0
= 0.

Secondly, we prove that
t-1

=2
ms =Y @) (=b)b" +a"b ) (i + 1)@ (-b)b". (3.11)

i=0 i=0
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Then simple computations show that

=1 =1
mz = (11 + b) Z({ZD)i+l(—l’J)ibn Z(IZD)i+1(—b)ibn
i=0 i=0

-1 -1 t-1 t-1
=a Z(EID)i+1(—b)ibn Z(QD)Hl(—b)ibn +b Z(aD)i+1(_b)ibn Z(aD)Hl(_b)ibn
i=0 i=0 i=0 i=0

-1 t—1 =1 -1
— [aann + Z(_an)ibn] Z(aD)i+1(_b)ibn +b Z(aD)i+1(_b)ibn Z(aD)Hl(_b)ibn
i=1 i=0 i=0 i=0

=1 -1
= ad® Z(QD)iH(_b)ibn — adPbpP z(aD)iJrl(_b)ibn

i=0 i=0
t—1 -1 =1 -1
+ Z(_an)ibn Z(aD)i+1(_b)ibn +b Z(ﬂD)Hl(—b)ibn Z(aD)Hl(_b)ibTL
i=1 i=0 i=0 i=0
t—1 t—1 t—1 t—1
— Z(HD)Hl( b)zbn aanbD Z(HD)i+1(—b)ibn + Z(_an)ibn Z(QD)Hl(_b)ibn
i=0 i=0 i=1 i=0
t—1
+b (aD)Hl(_b)ibn Z(QD)Hl(—b)ibn
i=0 j
t—1
(:4 Z( D)1+1( b) bn +aa Z( baD)HlbDbT[ + Z( an) b Z(QD)Hl( b)zbn
i=0
t—1
( D)1+1( b) bn z(aD)Hl( b) bn
i=0

H

— Z( D)z+1( b)zbn+Z( an) b Z(aD)Hl( b)zbn+bZ(aD)z+l( b)zbn Z(aD)z+1 i i

W
=l

=Y @)U =b)V" + 21 + 2o,

i=0

where

=1 e } . -1 ‘ ool A }

z1 = Z(_an)zbn Z(aD)Hl(_b)zbn’ 2y = bZ(aD)Hl(_b)zbn Z(HD)Hl(_b)ibn

i=1 i=0 i=0 i=0

In view of the equality (3.11), it is enough to prove
Z1+2=a"b Z(i +1)(@P)*2(=b)'b".
i=0

Since

-2 -2
bZ(1+1)( Dyi*2(_p)ip™ = (I — aaP) bZ(z+1 (@P)*2(=b)'b"
i=0 i=0

) =2
=b ) (i +1)(@)2(=b)'b™ —aa®b Y (i + 1)(@”) 2 (=b)'b",
i=0

i=0
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we only need to show
=2 . ) -2 ) ]
2, = —aaPb Z(i +1)(@P)*2(=b)'b", 2, = bZ(i +1)(aP)*2(=b)b™.
i=0 i=0

From b'b™ = 0 and aaP commutes with aPb, we obtain

-1 t—1 t—1
Z Db) bn Z(QD)Hl( b) bn Z( an)lbn Z(QD)i+l(—b)ibn
i=1 i=0 i=0
t t—1 t t—1
Z —aaPaPb)ib™ Z( —aPb)aPp™ = aa Z(—a%)ib” Z(—an)ian”
i=1 i=0 i=1 i=0
t—1 t—1
= —aaP Z(—an)iflanb“Z( aPbyaP ) _aa Z( a®b)' Y (~aPb) (@Pbb™)alb"
i=1 i=0 =0 i=0

-1

t—1 t—1
= —aa Z( an)lZ( an)l D(anbn)b‘n (2_1) D(aD)ZbZ(_an)iZ(_an)ibn
i=0 i=0 i=0
-2

@ —aaPb(aP 2 —aPb i —aPh)b™ = —aaPbaP)? i+ 1)(=aPb)p™
(@) ( ) ( ) @) ) +1) )
i=0 i=0 i=0
23 = . .
2 2P Y (i + 1)@ A-b)b,
i=0

and similarly,

2 _bZ(aD)Hl( b) bT{ Z(QD)Hl( b)zbn (21)bZ( anz Dbrz Z( an)z Dbn

i=0 i=0

‘Zl’bZ( Db)lZ( —aPbYaPb P b (“’bZ( Db)lZ( —aPbYaPaP b b
_bZ( an)'Z( —aPpy @™ % ba D)2Z an)fZ(—an)fbﬂ

i=0 =0
-2
= b(aP)? Z(i +1)(=aPb)p"

i=0

@3)

b(aP)? Z(z +1)(@P) (=b) b

t-2
=b Z(i +1)(aP)*2(=b)'b".

i=0
Therefore

t—1 t-2
my = ;(aD)f+1(—b)fb” +a"b Zg(f + 1)(@P) 2 (=b)'b".

So, we get x(a + b)x = x.
Step 3 Now we will prove that a + b — (a + b)x is nilpotent.
According to the equality (3.5), we have

t—1
(@+b)?=cPa+b7+ Z(aD)i+1(—b)ib"(a +b)%

i=0

t—1
(@+b)x = [CD + Z(aD)”l(—b)ib”

i=0

1759

(3.12)
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By using (3.6), (3.9) and (3.10), we get
P(a+b)? = (a +b)*c? = (a + b)*c*(cP)®
= [(c + (@ + b)b™)c]* (cP)°

=P =c—cc™
By elementary computations, we obtain

t-1 t-1
Z(IZD)Hl(_b)ibn(a + b)Z (23) _ Z(_an)Hlbbn _ Z(_an)Hlbna
i=0 i=0 i=0
-1 -1
+ Z(—an)ianﬂab + Z P (~aPb) b a?
i=0 i=0
t-1 t—1
(3:8) _ Z(_an)Hlbbn _ Z(_an)i+lbna
i=0 i=0

t—1 t—1
+ Z(—an)iaanb” + Z P (~aPb)b™a?
=0 =0

t—1 t—1

= aaPbb™ — Z(—an)”lbna + Z aP (~aPb) b a?

i=0 i=0
t—1

-1
@D aPpp — Z(—an)i”b”a + Z(—an)ian”a2
i=0

i=0

t—1 t—1
(38)

i=0 i=0

t=1 -1

@D Py - Z(—an)”lb"a + Z aaP (—aPb)'b"a

i=0 i=0
= aaPbb™ + a(aPb™)a @ aaPbb™ + aaPab™.
Combining (3.9), (3.12), (3.13) and (3.14) gives

(a+b)—(a+b)’x

=[c+ @+ b)b™] - (c — cc™) — (aaPbb™ + aaPab™)
= bb™ + cc™ + aa™b"™ — aa”bb™

=di +d,.

It follows from Lemma 2.5, (a + b) — (a + b)*x = dy + d, is nilpotent.
(1) © (4) This is similar to (1) & (2).

aaPbb™ — Z(—an)”lb"a + Z(—an)iaan”a

1760

(3.13)

(3.14)

(3) = (4) In order to prove thate € RP, let e = aa®(a + b) = a?aP + aaPb = a*aP + aaPaaPb = a?aP (7 +aPb) =

9192, where g1 = a?aP, g, = T + aPb. Obviously (#*a")P = aP and

7192 = a*aP (I + aPb) = a?aP + aaPa(aPb) @ a?

by [12, Lemma 2], we have e € RP and

eP = (@aP)P(I +aPb)P = (I + aPb)P(@%aP)P = aP &P = £PaP.

aP + (aPb)aaPa = (I + aPb)a*a® = 9291,
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(4) = (3) We can write 7 + aPb = hy + hy, where hy = a™, hy = aP(a + b) = aPaaP(a + b) = aPe. It follows
from Lemma 2.1 that

aPe = aPaaP(a + b) = aaP(a + b)aP = ea®,

utilizing [12, Lemma 2] gets aP(a + b) = aPaaP(a + b) € RP and
D
[aD(a + b)] [a aaP(a + b)] = (aP)P |aaP(a + b)] = a?aP(a + b)P = aeP.

Applying again Lemma 2.1, we obtain that a®b commutes with aa”. Then aP(a + b) € comm(a™) and
hihy = hahy = 0. 1t follows from [1, corollary 1] that &P = a™ + a?aP(a + b)P = a™ + aeP.

(4) = (5) In order to verify that w € RP, we write aaP(a + b)bb" = I1,, where Iy = aaP(a + b), I, = bbP. In
view of Lemma 2.1, we deduce that

aaP(a + b) = (aa®)?*(a + b) = (aa®)*a + aaa(aPb) = aa®aaa® + aa"baa® = aa®(a + b)aa®
and abbPa % (abP)ab @ aabbP, it follows by [1, Theorem 1] that abb”aP = aPabbP. So, we get

Lol = aaP(a + b)aP (abbPa)aP(a + b)
= aa®(a + b)aPaaPabb® (a + b)
= aaP(a + b)aPaa (abbD a + abbP b)
= aaP(a + b)aPaaP (aabb® + abbPb)
)a

= aa®(a + b)aaP (a + b)bb® = 1212

In a similar way, l,h1, = I31. Thus, applying Lemma 2.3, we have w € R and
WP = [aa®(@ + 0)obP] = [aa(@ +1)]” (B6P)° = aa®(a + b) bEP.

(2) = (5) This is similar to (4) = (5).

(5) = (4) To check thate € RP, let p; = a?aP, p, = aaPb. Further, we can write aa®b = g,4,, where g; = aa®,
g2 = b. In view of Lemma 2.1, 1421 = 4342, 429192 = q591- Then aaPb € RP and (aa”b)P = (aa®)Pb" = aa®bP
by Lemma 2.3.

It is easy to verify that pipop1 = p2pa, popip2 = pip1 and (p1 + p2)papl = aaP(a + b)bbP € RP. Applying
(1) © (2) to p; and p,, we conclude that aa(a +b) = p1+p2 € RP  as required. [J

Remark 3.2. As mentioned in the introduction, in the papers of Zhuang et al. [12] and Liu and Qin [2], the
commutativity ab = ba was assumed. In [12, Theorem 3], they proved that ifa,b € RP and ab = ba, then a + b € RP
if and only if T + aPb € RP. Moreover, the expressions of (a + b)P and (I + aPb)P are presented. In [2, Theorem
2.1], Liu and Qin assumed that aa®(a + b) instead of I + aPb, they deduced another expression for (a + b)P. In
Theorem 3.1, we relax this hypothesis ab = ba by assuming two conditions a®b = aba and b*a = bab. It also can be
seen from Theorem 3.1 that the condition I + aPb € RP of [12, Theorem 3] and aaP(a + b) € RP of [2, Theorem 2.1]
are equivalent. Moreover, the expressions for (a + b)P in [12, Theorem 3] will be exactly the same as in [2, Theorem
2.1], we will prove them in Corollary 3.4.

First we show that ab = ba implies the conditions of Theorem 3.1. From ab = ba, we get a*b = a(ab) = aba.
Symmetrically, b*a = bab. To prove that our conditions are strictly weaker than ab = ba, we construct matrices a, b
satisfying the conditions of Theorem 3.1, but not ab = ba.

Example 3.3. Let R = M3(C), and take

0 0O 010
=0 0 1|,b=[0 0 1]|eRP.
010 010
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It is easy to check a®b = aba and b*a = bab. But ab # ba. Then, applying Theorem 3.1 and after simple
computations, we obtain

07 0
@+b)’={0 0 1|
010

The following corollary follows from Theorem 3.1. For the sake of clarity of presentation, the short proof
is given.
Corollary 3.4. Let a,b € RP be such that ab = ba. Then the following conditions are equivalent:

(1)a+beRp;

(2 E=T +aPbeRP;

(3) e = aaP(a + b) € RP.

In this case,

(a+b)P = EPaP + b° (I + aa™bP)1a"

ind(a)-1
=eP +a™(I + bPaa™) 1P = eP + a”[ Z (—bDa)f] b (3.15)
i=0

= aPEPBBP + 6™ (I + bb™aP) 'l + bP(I + aa™bP)a™,
where EP = a™ + a*aP(a + b)P, eP = aaP(a + b)P.
Proof. Since ab = ba, we get a’b = aba and b?a = bab. Using Theorem 3.1, the following are equivalent:

(1)a+beRP;

(2 E=T +aPbeRP;

(3) e = aaP(a + b) € RP.

Recall that aa™ is nilpotent and its index of nilpotency is the Drazin index of a. Let s=index(a). From
the assumption ab = ba, we have a, b, aP and bP commute with each other by [1, Theorem 1 ]. From this,
we conclude that a™b = ba™ and b™a = ab™. Applying again [1, Theorem 1 ], we get a™b” = bPa™. Hence
a"b(eP)? = a"b(aPEP)? = 0 and b"a Y125 (i + 1)(bP)*2(~a)'a™ = 0.

Since bPaa™ is nilpotent, I + bPaa™ is invertible and a™bP = bPa™, we get

(I +bPaa™) ™ = I + (-bPaa™) + (~bPaa™? + - - + (=bPaa™y!
s=1 s—1 s=1

- Z(—bf’aaﬂ)" = Z(—aﬂbf’a)i =" Z(—bf’a)f.
i=0 i=0 i=0

From (Z + bPaa™)bP = bP(I + aa™b"), we obtain

s=1
BP(T + aa™bP)'a™ = (T + bPaa™) P = o [a” Z(—b”a)i] b°
i=0

ind(a)-1
=a" [ Z (—bDa)’} WP,
=0
Note that e? = £PaP by Theorem 3.1, then we have
(a+b)P = EPaP + b° (I + aa™bP) 1™ = P + a™ (I + bPaa™)1bP
ind(a)-1
=el + a”[ Z (—bDa)i] bP.
i=0

The last equality (a + b)P = aP&PbbP + b™(Z + bb™aP)"1aP + bP(I + aa™bP)"1a™ appearing in (3.15) follows
from the one in [12, Theorem 3]. O



X. Qin, L. Lu / Filomat 37:6 (2023), 1751-1765 1763
4. Main result 2

In this section, we consider some results on the expressions of (ab)? and (a + b)", by using a,b,a" and
bP, where a,b € RP. We begin with

Lemma 4.1. Let a,b € RP with a®b = aba = ba?, then aaPb = baaP.
Proof. Since a®b = aba, by [1, Theorem 1], abaP® = aPab. Then baa® = ba?(aP)? = aba(aP)* = aba® = aPab. O
We come now to the demonstration of the main result of this section which extends [12, Lemma 2].
Theorem 4.2. Let a,b € RP with a’b = aba = ba? and b*a = bab, then ab € RP and (ab)P = bPaP = aPbP.
Proof. Let x = bPaP. Since aaPb = baa®, by [1, Theorem 1 |, aaPbP = bPaaP.
Step 1 We can verify that
xab = bPaPab = aP (ab)b” @ a(baP)bP @2 abbPaP = abx.
Step 2 It is easy to check that
xabx = bP(aPab)bPaP = bbP @PabP)aP = bPbbPaPaa® = vPaP = x.

Step 3 Take k = max{ind(a), ind(b)}. Since a?b = aba, by [11, Lemma 2.1(2)], (ab)* = a*b*. From the definition
of the Drazin inverse and (ab)* = a*b¥, we have

(ab)x = (@b)*1BPaP = d LB IBDYGD = gh+1pkgD
= a(a"b")aP = a(ab)kaP = aPa(ab)t
= (@Pd“ N = d'V* = (ab)~.
Hence, (ab)P = bPaP. Similarly, we can check that (ab)? = aPbP. 0O
Corollary 4.3. [12, Lemma 2] Let a,b € RP with ab = ba, then ab € RP and (ab)P = bPaP = aPpP.

Proof. From ab = ba, we have a*b = a(ab) = (ab)a = ba®> and b?a = b(ba) = bab. This completes the proof by
Theorem 4.2. [

Remark 4.4. In Theorem 4.2, the conditions a®b = aba = ba® and b*a = bab are weaker than ab = ba. Since ab = ba,
by the proof of Corollary 4.3 we get a*b = aba = ba® and b’a = bab. However, in general, the converse is false. The
following example can illustrate this fact.

Example 4.5. Let R = M3(C), and take

1 00 1 00
a=|0 0 1|,b=[00
00

1 | eRP.
0 0 O 1

It is clear that a®b = aba = ba* and b*a = bab. However, ab # ba. Therefore we can apply Theorem 4.2 and we
obtain

100
@)P=(0 0 0.
0 00
In the rest of the paper, we look for simplifying equation (3.2) for (a+b)P under some stronger hypotheses

than those of Theorem 3.1. First, we give a result which recovers a known result in [9, Theorem 3(2) ] for
matrices and [12, Corollary 5(2)] for elements of a ring.
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Theorem 4.6. Let a,b € RP be such that a?b = aba = ba?, b*a = bab and ind(a) = s. Then the following conditions
are equivalent:

(1)a+beRP;
() ¢ = a(Z +aPb) e RP.
In this case,
s—1 . .
@+b)P =P+ Y (OP) ! (—a)'a™ + b™a(b")?, 4.1)
i=0
where cP = aaP(a + b)P.
Proof. (1) = (2) Let ¢ have the following representation
c=a(T +a°b) =ad’@+b)+aa" =11 + 12,

where r; = aa”(a + b), r, = aa”™.
By Lemma 4.1, we have aaP(a+b) = (a+b)aaP. Then, in view of Corollary 4.3, it follows that aaP (a+b) € RP

D
and [aaD(a + b)] = aaP(a + b)P.
From aaP(a + b) = (a + b)aa® and aPa™ = 0, we have r7, = o711 = 0. Observe that aa™ is nilpotent. Hence,
we can apply [1, Corollary 1] to get an expression of cP obtaining

[aaD(a + b)] + (aa™)P [au (a+ b)] =aaP(a + b)P.

(2) = (1) Obviously, aaP(a + b) = a?aP(Z + aPb) = aaPa(I + aPb). By virtue of Lemma 4.1, aaPb = baaP,
and so aaPa(Z + aPb) = a(I + aPb)aa®. Tt follows from Corollary 4.3 that aa®a(I + aPb) € RP. Hence
aaP(a + b) € RP. This completes the proof by Theorem 3.1. In this case, (@ + b) is represented as in (3.2),
where cP = eP = aaP(a + b)P.

Now, let us calculate a™b(e appearing in (3.2). The hypothesis a*b = aba = ba® implies that a™b = ba™,
by Lemma 4.1. From this and a™a" = 0, we get a”b(eD Y2 = a"baaP (a + b)PeP = 0.

Finally, let us observe that the expression b™a )"~ (z +1)(bP)*2(—a)'a™ given in (3.2) can be simplified. By
using the condition a?b = ba?, [1, Theorem 1 ] leads to a?bP = bPa? and

D)2

bPa? = a(abP) @D 2pPy, (4.2)

Using the equation b™bP = 0, we have

s—2 s—2
b Z(z+1)(bD)l+2( a)a™ = b a(bP)2a™ + b"a Z(Hl)(bD)”z( a)a"
i=1

i=0

I\)

= VAP — P Pa)a® 170 Y G+ 1OPY T Pa)(—a) "

r.rN
I\)H

2 braP)? - b @bPa)bPa” — b Z(i+1)(abDa)(bD)f+1(—a)f—1aﬂ
i=1
=2
b"a (bD)2 ban ZbD D " Z(l + 1 bD Z(bD)z+1( a)z 1. m _ bna(bD)Z
i=1

(42)

then (3.2) becomes (4.1). O

Remark 4.7. In Theorem 4.6, the conditions a*b = aba = ba?, b’a = bab and a(I + aPb) € RP are weaker than
ab = ba and aPb = 0 which were used in the paper [12, Corollary 5(2)](or [9, Theorem 3(2) 1). In fact, Example 4.5
can also illustrate this fact.
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Adding a condition aPb = 0 in Theorem 4.6, we obtain the next result.
Corollary 4.8. Let a,b € RP be such that a*b = aba = ba?, b?a = bab, aPb = 0 and ind(a) = s. Thena+b € RP and
s—1
(@+b)P =aP + Z(bD)”l(—a)i + b a(bP)2. (4.3)
i=0

Proof. From aPb = 0, we get a(Z + aPb) = a € RP. Hence Theorem 4.6 is applicable. Since a*b = aba = ba®
and b?a = bab, we have aaPbP = bPaaP by Lemma 4.1 and [1, Theorem 1 ], combining aPb = 0, we derive

s—1 -1
Z(bD)Hl(_a)ian — Z(bD)Hl( ﬂ) (I aa )
i=0 i=0
s—1 s—1
— Z(bD)Hl( a)z _ Z(bD)Hl(_a)iaaD
i=0 i=0
s—1 s—1
— Z(bD)H—l( a)l Z aaD(bD)Hl(_a)i
i=0 i=0
s—1 s—1
— Z(bD)H-l( a)l _ Z ﬂ(ﬂDb)(bD)i+2(_ﬂ)i
i=0 i=0
s—1
— (bD)i+1(—€l)i.

I
o

i

According to the representation in (4.1), the equation (4.3) can be obtained. [
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