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Abstract. In a ring, the expressions for the Drazin inverses of the sum a + b and the product ab have
been studied in some literature under the assumption that the two Drazin invertible elements a, b are
commutative. In this paper, we will extend the known research results under the weaker conditions.
Meanwhile, we characterize the relations of a + b, (a + b)bbD, I + aDb, aaD(a + b) and aaD(a + b)bbD and find
the expressions of (a + b)D,

[
(a + b)bbD]D, (I + aDb)D, etc.

1. Introduction

In this paper, Rwill denote an associative ring whose unity is I. The commutant of an element a ∈ R is
defined as comm(a) = {x ∈ R : ax = xa}. Let us recall that an element a ∈ R has a Drazin inverse [1] if there
exists b ∈ R

bab = b, ab = ba, ak = ak+1b (1.1)

for some positive integer k. The element b satisfying (1.1) is unique if it exists and is denoted by aD. The
smallest integer k satisfying (1.1) is called the Drazin index of a, denoted by ind(a). If ind(a) = 1, then b is
called the group inverse of a and is denoted by a#. The subset of R composed of Drazin invertible elements
will be denote by RD.

The conditions in (1.1) are equivalent to

bab = b, ab = ba, a − a2b is nilpotent.

The notation aπ means I − aaD for any Drazin invertible element a ∈ R. Observe that by the definition of
the Drazin inverse, aaπ = aπa is nilpotent.

The research for Drazin invertibility of the sum of two elements a, b in a ring is attractive. Many authors
have studied such problems from different views, see, e.g. [1, 2, 6, 8, 9, 11–13]. In the articles of Wei
and Deng [9], Zhuang et al. [12] and Liu and Qin [2], the commutativity ab = ba was assumed. In [9],
they characterized the relationships of the Drazin inverse between A + B and I + ADB by Jordan canonical
decomposition for complex matrices A and B. Zhuang et al. [12] extended the result in [9] to a ring R, and
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it was proved that if a, b ∈ RD and ab = ba, then a + b ∈ RD if and only if I + aDb ∈ RD . In [2], Liu and Qin
deduced that a + b ∈ RD if and only if aaD(a + b) ∈ RD under the condition ab = ba for a, b ∈ RD. In resent
years, several authors focused on the problem under some weaker conditions. Liu et al. [3] considered
the relations between the Drazin inverses of P + Q and I + PDQ, under the conditions P2Q = PQP and
Q2P = QPQ for complex matrices P and Q by using the method of splitting complex matrices into blocks.
In [11], Zhu and Chen generalized the results in [3] to a ring case. More results on the Drazin inverse can
also be found in [4, 5, 7, 10]. In this paper, we will further consider the results of [11] and [3] for the Drazin
inverse, which extend [9, Theorem 2], [12, Theorem 3] and [2, Theorem 2.1].

In section 2, we present some lemmas which are used in the proof of the main results.
In section 3, we characterize the relations of a + b, (a + b)bbD, I + aDb, aaD(a + b) and aaD(a + b)bbD. Also

we obtain some expressions for (a + b)D, (a + b)DbbD, (I + aDb)D, etc.
Finally, in the last section, we investigate Drazin invertibility of the product of a, b ∈ RD which will be

used in the sequel. Then we introduce some new conditions and give the Drazin inverse of the sum a + b,
where a, b are Drazin invertible in R.

2. Preliminaries

We give some previous results which will be useful in proving our results.

Lemma 2.1. [11, Lemma 2.4] Let a, b ∈ RD with a2b = aba and b2a = bab. Then

(1) {ab, aDb, abD, aDbD
} ⊆ comm(a). (2.1)

(2) {ba, bDa, baD, bDaD
} ⊆ comm(b). (2.2)

Lemma 2.2. [11, Lemma 2.6] Let a, b ∈ RD with a2b = aba and b2a = bab. Then for any positive integer i, the
following hold:

(1) (aDb)i+1 = aDb(baD)i = (aD)i+1bi+1. (2.3)

(2) (baD)i+1 = baD(aDb)i = bi+1(aD)i+1. (2.4)

Lemma 2.3. [11, Theorem 3.1] Let a, b ∈ RD with a2b = aba and b2a = bab. Then ab ∈ RD and (ab)D = aDbD.

Lemma 2.4. Let a, b ∈ RD with a2b = aba and b2a = bab. If c1 = aaπbπ and c2 = aaDbbπ, then c1 − c2 is nilpotent.

Proof. Firstly, we prove that c1 = aaπbπ is nilpotent. According to Lemma 2.1, we have the following
equalities:

aaπbπa = a2aπbπ (2.5)

and

abπaπ = aaπbπ. (2.6)

Hence, we get

(aaπbπ)2 = (aaπbπa)aπbπ
(2.5)
= (a2aπbπ)aπbπ = aaπ(abπaπ)bπ

(2.6)
= aaπ(aaπbπ)bπ = (aaπ)2(bπ)2 = (aaπ)2bπ.

By induction, (aaπbπ)n = (aaπ)nbπ for every integer n ≥ 1. Since aaπ is nilpotent, aaπbπ = c1 is nilpotent.
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Secondly, we will show that c2 = aaDbbπ is nilpotent. As

(aaDbbπ)2 = (aaDbbπ)(aaDbbπ) = aaDb(I − bbD)aaDb(I − bbD)

= aaD(I − bbD)baaDb(I − bbD)
(2.2)
= aaDba(I − bbD)aDb(I − bbD)

(2.1)
= aaDab(I − bbD)aDb(I − bbD)

= aaDa(I − bbD)baDb(I − bbD)
(2.2)
= aaDabaD(I − bbD)b(I − bbD)

(2.1)
= aaDaaDb(I − bbD)b(I − bbD)

= aaD(bbπ)2.

By induction, (aaDbbπ)n = aaD(bbπ)n for every integer n ≥ 1. Since bbπ is nilpotent, aaDbbπ = c2 is nilpotent.
Finally, we shall prove that c1 − c2 is nilpotent. Since aπaD = aDaπ = 0, combining Lemma 2.1, we derive

c2
1c2 = aaπbπaaπbπaaDbbπ

(2.1)
= aaπbπaaπaaDbπbbπ = 0

and

c2c1 = aaDbbπaaπbπ = aaDb(I − bbD)aaπbπ

=
[
aD(ab) − aD(ab)bbD

]
aaπbπ

(2.1)
=
[
abaD

− a(baD)bbD
]

aaπbπ

(2.2)
= (abaD

− abbDbaD)aaπbπ

= abbπaDaaπbπ = 0.

Therefore, we can prove that c2
1c2 = c1c2c1 = 0 and c2

2c1 = c2c1c2 = 0.
As c1 and c2 are nilpotent, aaπbπ − aaDbbπ = c1 − c2 is nilpotent by [11, Lemma 2.2 (2)].

Lemma 2.5. Let a, b ∈ RD with a2b = aba and b2a = bab and c = (a + b)bbD
∈ R

D. Suppose d1 = bbπ + ccπ and
d2 = aaπbπ − aaDbbπ. Then d1 + d2 is nilpotent.

Proof. First, we will give some useful equalities. From bπbD = 0 and aπaD = 0, we get

bbπc = bbπ(a + b)bbD = (bbπa)bDb + bbπbbbD (2.2)
= bDbbπab = 0 (2.7)

and

aaπbbπaaD = aπab(I − bbD)aDa = aπabaDa − aπabb(bDaD)a
(2.2)
= aπ(ab)aDa − aπ(abD)aDbba

(2.1)
= aπaD(ab)a − aπaD(abD)bba = 0.

Similarly

caaπbπ = caaDbbπ = abπc = bbπc = 0 (2.8)

and

aaπbπaaD = aaDbbπaaπ = aaDb2bπaaπ = aaπbbπaaD = 0. (2.9)
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Next, we will show that d1 is nilpotent. Let d1 = x + y, where x = bbπ, y = ccπ. It is not difficult to

see that x2y = bbπ(bbπc)cπ
(2.7)
= 0. The equality cbπ = (a + b)bbDbπ = 0 implies yx = ccπbbπ = cπ(cbπ)b = 0.

Consequently, x2y = xyx = 0 and y2x = yxy = 0.
Since bbπ, ccπ are nilpotent, it follows from [11, Lemma 2.2 (2)] that d1 = bbπ + ccπ is nilpotent. By virtue

of Lemma 2.4, d2 = aaπbπ − aaDbbπ is nilpotent.
Finally, we will prove that d1 + d2 is nilpotent. Using the previous equations and combining cbπ = 0, we

obtain that

d2
1d2 = (bbπ + ccπ)2(aaπbπ − aaDbbπ)

= (b2bπ + bbπccπ + ccπbbπ + c2cπ)(aaπbπ − aaDbbπ)

= b2bπaaπbπ + bbπccπaaπbπ + c2cπaaπbπ

− b2bπaaDbbπ − bbπccπaaDbbπ − c2cπaaDbbπ

(2.8)
= b2bπaaπbπ − b2bπaaDbbπ

and

d1d2d1 = (bbπ + ccπ)(aaπbπ − aaDbbπ)(bbπ + ccπ)
= bbπaaπbbπ + bbπaaπbπccπ + ccπaaπbbπ + ccπaaπbπccπ

− bbπaaDb2bπ − bbπaaDbbπccπ − ccπaaDb2bπ − ccπaaDbbπccπ

(2.8)
= bπ(baaπ)bbπ − bπ(baaD)b2bπ

(2.2)
= bπb(baaπ)bπ − bπb(baaD)bbπ

= b2bπaaπbπ − b2bπaaDbbπ.

Hence, d2
1d2 = d1d2d1. And, similarly d2

2d1 = d2d1d2.
By [11, Lemma 2.2 (2)], it follows that d1 + d2 is nilpotent.

3. Main result 1

Now we will characterize the relations of a+b, (a+b)bbD, I+aDb, aaD(a+b) and aaD(a+b)bbD for a, b ∈ RD.

Furthermore we deduce the expressions of (a + b)D,
[
aaD(a + b)

]D
, (I + aDb)D, etc. The results extend those

given in [9, Theorem 2], [12, Theorem 3] and [2, Theorem 2.1].

Theorem 3.1. Let a, b ∈ RD be such that a2b = aba, b2a = bab and ind(a) = s, ind(b) = t. Then the following
conditions are equivalent:

(1) a + b ∈ RD;
(2) c = (a + b)bbD

∈ R
D;

(3) ξ = I + aDb ∈ RD;
(4) e = aaD(a + b) ∈ RD;
(5) w = aaD(a + b)bbD

∈ R
D.

In this case,

(a + b)D = cD +

t−1∑
i=0

(aD)i+1(−b)ibπ + aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ, (3.1)

(a + b)D = eD + aπb(eD)2 +

s−1∑
i=0

(bD)i+1(−a)iaπ + bπa
s−2∑
i=0

(i + 1)(bD)i+2(−a)iaπ

= aDξD + aπb(aDξD)2 +

s−1∑
i=0

(bD)i+1(−a)iaπ + bπa
s−2∑
i=0

(i + 1)(bD)i+2(−a)iaπ,

(3.2)
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where

cD = (a + b)DbbD, ξD = aπ + a2aD(a + b)D = aπ + aeD (3.3)

and eD = aaD(a + b)D = aDξD = ξDaD,wD = aaD(a + b)DbbD.

Proof. (1)⇒ (2) To show that c ∈ RD, we write c = f1 f2, where f1 = a + b, f2 = bbD. By Lemma 2.1, we have

f 2
1 f2 = (a + b)2bbD = a(ab)bD + abbbD + babbD + b3bD

(2.1)
= a(ba)bD + abbbD + (ba)bbD + b3bD

(2.2)
= abDba + abbbD + bbDba + b3bD

= (a + b)bbD(a + b) = f1 f2 f1,

and

f 2
2 f1 = bbDbbD(a + b) = bbDb(bDa) + bDbbDbb

(2.2)
= bbDabDb + bDbbDbb

= bbD(a + b)bbD = f2 f1 f2.

Applying Lemma 2.3, we deduce that c ∈ RD and cD =
[
(a + b)bbD

]D
= (a + b)DbbD.

(2)⇒ (1) Let

x = cD +

t−1∑
i=0

(aD)i+1(−b)ibπ + aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ = x1 + x2,

where x1 = cD, x2 =
∑t−1

i=0(aD)i+1(−b)ibπ + aπb
∑t−2

i=0(i + 1)(aD)i+2(−b)ibπ.
Assume that c is Drazin invertible. We will prove that x is the Drazin inverse of a+ b, i.e., we will prove

that x(a + b) = (a + b)x, x(a + b)x = x and (a + b) − (a + b)2x is nilpotent.
Step 1 First we prove that x(a + b) = (a + b)x. In view of Lemma 2.1, we have

(a + b)aπb(aD)2 = aπab(aD)2 + b2(aD)2
− ba(aDb)(aD)2

(2.1)
= aπaDabaD + b2(aD)2

− baDbaD (2.2)
= 0.

(3.4)

Hence

(a + b)x = (a + b)

cD +

t−1∑
i=0

(aD)i+1(−b)ibπ + aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ


(3.4)
= (a + b)

cD +

t−1∑
i=0

(aD)i+1(−b)ibπ
 = y1 + y2,

(3.5)

where y1 = (a + b)cD, y2 = (a + b)
∑t−1

i=0(aD)i+1(−b)ibπ.
Second we show x1(a + b) = y1 and x2(a + b) = y2. In light of Lemma 2.1, we get

c(a + b) = (a + b)bbD(a + b) = ab(bDa) + abbDb + bbD(ba) + b2bDb
(2.2)
= (abD)ab + abbDb + babbD + b2bDb

(2.1)
= a2bbD + abbDb + babbD + b2bDb

= (a2 + ab + ba + b2)bbD

= (a + b)c.
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Then, by [1, Theorem 1], we get

cD(a + b) = (a + b)cD. (3.6)

Thus, x1(a + b) = y1.
By mathematical induction, for every integer i ≥ 1, a calculation yields

aaD(baD)i = (aaDbaD)i (2.1)
= (aDb)i. (3.7)

From the equality btbπ = 0 and

aDbπa = aD(I − bbD)a = aaD
− aDb(bDa)

(2.2)
= aaD

− (aDbD)ab
(2.1)
= aaD

− aaDbDb = aaDbπ.
(3.8)

So we have

x2(a + b) − y2 = −

t−1∑
i=0

(aD)i+1(−b)i+1bπ +
t−1∑
i=0

(aD)i+1(−b)ibπa

− aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)i+1bπ + aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπa

− (a + b)
t−1∑
i=0

(aD)i+1(−b)ibπ

(2.3)
= −

t−1∑
i=0

(−aDb)i+1bπ +
t−1∑
i=0

aD(−aDb)ibπa

− aπbaD
t−2∑
i=0

(i + 1)(−aDb)i+1bπ + aπb(aD)2
t−2∑
i=0

(i + 1)(−aDb)ibπa

− b
t−1∑
i=0

(aD)i+1(−b)ibπ − a
t−1∑
i=0

(aD)i+1(−b)ibπ

= −

t−1∑
i=0

(−aDb)i+1bπ +
t−1∑
i=0

(−baD)i+1bπ

+ aπ
 t−2∑

i=0

(i + 1)(−baD)i+2bπ −
t−2∑
i=0

(i + 1)(−baD)i+1bπ


= −

t−1∑
i=0

(−aDb)i+1bπ +
t−1∑
i=0

(−baD)i+1bπ − aπ
t−1∑
i=1

(−baD)ibπ

= −

t−1∑
i=0

(−aDb)i+1bπ + aaD
t−1∑
i=1

(−baD)ibπ

(3.7)
= −

t−1∑
i=0

(−aDb)i+1bπ +
t−1∑
i=1

(−aaDbaD)ibπ

(2.3)
= −

t−1∑
i=1

(−aDb)ibπ − (−aD)tbtbπ +
t−1∑
i=1

(−aDb)ibπ

= 0.
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Hence, x2(a + b) = y2. It follows that x(a + b) = (a + b)x.
Step 2 We give the proof of x(a + b)x = x. From the equality (3.5), we obtain

x(a + b)x = x(a + b)

cD +

t−1∑
i=0

(aD)i+1(−b)ibπ


= (a + b)

cD +

t−1∑
i=0

(aD)i+1(−b)ibπ
 ×
cD +

t−1∑
i=0

(aD)i+1(−b)ibπ


= m1 +m2 +m3,

where

m1 = (a + b)(cD)2,m2 = (a + b)cD
t−1∑
i=0

(aD)i+1(−b)ibπ,m3 = (a + b)
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ.

Now we prove m1 +m2 +m3 = x. Also, the following equalities will be useful:

a + b = c + (a + b)bπ, (3.9)

and

(a + b)bπc = abπc + bbπc
(2.8)
= 0. (3.10)

Firstly, we have

m1 = (a + b)(cD)2 = [c + (a + b)bπ] (cD)2

= c(cD)2 + (a + b)bπ(cD)2

= c(cD)2 + (a + b)bπc(cD)3

(3.10)
= cD,

and

m2 = (a + b)cD
t−1∑
i=0

(aD)i+1(−b)ibπ = (a + b)(cD)2c
t−1∑
i=0

(aD)i+1(−b)ibπ

= (a + b)(cD)2(a + b)bbD
t−1∑
i=0

bDbaD(aD)i(−b)ibπ

(2.4)
= −(a + b)cD

t−1∑
i=0

bD(−baD)i+1bπ

(2.2)
= −(a + b)cD

t−1∑
i=0

(−baD)i+1bDbπ

= 0.

Secondly, we prove that

m3 =

t−1∑
i=0

(aD)i+1(−b)ibπ + aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ. (3.11)
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Then simple computations show that

m3 = (a + b)
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

= a
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ + b
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

=

aaDbπ +
t−1∑
i=1

(−aDb)ibπ
 t−1∑

i=0

(aD)i+1(−b)ibπ + b
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

= aaD
t−1∑
i=0

(aD)i+1(−b)ibπ − aaDbbD
t−1∑
i=0

(aD)i+1(−b)ibπ

+

t−1∑
i=1

(−aDb)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ + b
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

=

t−1∑
i=0

(aD)i+1(−b)ibπ − aaDbbD
t−1∑
i=0

(aD)i+1(−b)ibπ +
t−1∑
i=1

(−aDb)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

+ b
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

(2.4)
=

t−1∑
i=0

(aD)i+1(−b)ibπ + aaD
t−1∑
i=0

(−baD)i+1bDbπ +
t−1∑
i=1

(−aDb)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

+ b
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

=

t−1∑
i=0

(aD)i+1(−b)ibπ +
t−1∑
i=1

(−aDb)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ + b
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

=

t−1∑
i=0

(aD)i+1(−b)ibπ + z1 + z2,

where

z1 =

t−1∑
i=1

(−aDb)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ, z2 = b
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ.

In view of the equality (3.11), it is enough to prove

z1 + z2 = aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ.

Since

aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ = (I − aaD)b
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ

= b
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ − aaDb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ,
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we only need to show

z1 = −aaDb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ, z2 = b
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ.

From btbπ = 0 and aaD commutes with aDb, we obtain

z1 =

t−1∑
i=1

(−aDb)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ =
t∑

i=1

(−aDb)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ

(2.1)
=

t∑
i=1

(−aaDaDb)ibπ
t−1∑
i=0

(−aDb)iaDbπ = aaD
t∑

i=1

(−aDb)ibπ
t−1∑
i=0

(−aDb)iaDbπ

= −aaD
t∑

i=1

(−aDb)i−1aDbbπ
t−1∑
i=0

(−aDb)iaDbπ
(2.1)
= −aaD

t−1∑
i=0

(−aDb)i
t−1∑
i=0

(−aDb)i(aDbbπ)aDbπ

= −aaD
t−1∑
i=0

(−aDb)i
t−1∑
i=0

(−aDb)iaD(aDbbπ)bπ
(2.1)
= −aaD(aD)2b

t−1∑
i=0

(−aDb)i
t−1∑
i=0

(−aDb)ibπ

(2.1)
= −aaDb(aD)2

t−1∑
i=0

(−aDb)i
t−1∑
i=0

(−aDb)ibπ = −aaDb(aD)2
t−2∑
i=0

(i + 1)(−aDb)ibπ

(2.3)
= −aaDb

t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ,

and similarly,

z2 = b
t−1∑
i=0

(aD)i+1(−b)ibπ
t−1∑
i=0

(aD)i+1(−b)ibπ
(2.1)
= b

t−1∑
i=0

(−aDb)iaDbπ
t−1∑
i=0

(−aDb)iaDbπ

(2.1)
= b

t−1∑
i=0

(−aDb)i
t−1∑
i=0

(−aDb)iaDbπaDbπ
(2.1)
= b

t−1∑
i=0

(−aDb)i
t−1∑
i=0

(−aDb)iaDaDbπbπ

= b
t−1∑
i=0

(−aDb)i
t−1∑
i=0

(−aDb)i(aD)2bπ
(2.1)
= b(aD)2

t−1∑
i=0

(−aDb)i
t−1∑
i=0

(−aDb)ibπ

= b(aD)2
t−2∑
i=0

(i + 1)(−aDb)ibπ
(2.3)
= b(aD)2

t−2∑
i=0

(i + 1)(aD)i(−b)ibπ

= b
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ.

Therefore

m3 =

t−1∑
i=0

(aD)i+1(−b)ibπ + aπb
t−2∑
i=0

(i + 1)(aD)i+2(−b)ibπ.

So, we get x(a + b)x = x.
Step 3 Now we will prove that a + b − (a + b)2x is nilpotent.
According to the equality (3.5), we have

(a + b)2x =

cD +

t−1∑
i=0

(aD)i+1(−b)ibπ
 (a + b)2 = cD(a + b)2 +

t−1∑
i=0

(aD)i+1(−b)ibπ(a + b)2. (3.12)
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By using (3.6), (3.9) and (3.10), we get

cD(a + b)2 = (a + b)2cD = (a + b)2c2(cD)3

= [(c + (a + b)bπ)c]2 (cD)3

= c4(cD)3 = c − ccπ.

(3.13)

By elementary computations, we obtain

t−1∑
i=0

(aD)i+1(−b)ibπ(a + b)2 (2.3)
= −

t−1∑
i=0

(−aDb)i+1bbπ −
t−1∑
i=0

(−aDb)i+1bπa

+

t−1∑
i=0

(−aDb)iaDbπab +
t−1∑
i=0

aD(−aDb)ibπa2

(3.8)
= −

t−1∑
i=0

(−aDb)i+1bbπ −
t−1∑
i=0

(−aDb)i+1bπa

+

t−1∑
i=0

(−aDb)iaaDbbπ +
t−1∑
i=0

aD(−aDb)ibπa2

= aaDbbπ −
t−1∑
i=0

(−aDb)i+1bπa +
t−1∑
i=0

aD(−aDb)ibπa2

(2.1)
= aaDbbπ −

t−1∑
i=0

(−aDb)i+1bπa +
t−1∑
i=0

(−aDb)iaDbπa2

(3.8)
= aaDbbπ −

t−1∑
i=0

(−aDb)i+1bπa +
t−1∑
i=0

(−aDb)iaaDbπa

(2.1)
= aaDbbπ −

t−1∑
i=0

(−aDb)i+1bπa +
t−1∑
i=0

aaD(−aDb)ibπa

= aaDbbπ + a(aDbπ)a
(2.1)
= aaDbbπ + aaDabπ.

(3.14)

Combining (3.9), (3.12), (3.13) and (3.14) gives

(a + b) − (a + b)2x

= [c + (a + b)bπ] − (c − ccπ) − (aaDbbπ + aaDabπ)

= bbπ + ccπ + aaπbπ − aaDbbπ

= d1 + d2.

It follows from Lemma 2.5, (a + b) − (a + b)2x = d1 + d2 is nilpotent.
(1)⇔ (4) This is similar to (1)⇔ (2).
(3)⇒ (4) In order to prove that e ∈ RD, let e = aaD(a+ b) = a2aD+ aaDb = a2aD+ aaDaaDb = a2aD(I+ aDb) =

1112, where 11 = a2aD, 12 = I + aDb. Obviously (a2aD)D = aD and

1112 = a2aD(I + aDb) = a2aD + aaDa(aDb)
(2.1)
= a2aD + (aDb)aaDa = (I + aDb)a2aD = 1211,

by [12, Lemma 2], we have e ∈ RD and

eD = (a2aD)D(I + aDb)D = (I + aDb)D(a2aD)D = aDξD = ξDaD.
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(4) ⇒ (3) We can write I + aDb = h1 + h2, where h1 = aπ, h2 = aD(a + b) = aDaaD(a + b) = aDe. It follows
from Lemma 2.1 that

aDe = aDaaD(a + b) = aaD(a + b)aD = eaD,

utilizing [12, Lemma 2] gets aD(a + b) = aDaaD(a + b) ∈ RD and[
aD(a + b)

]D
=
[
aDaaD(a + b)

]D
= (aD)D

[
aaD(a + b)

]D
= a2aD(a + b)D = aeD.

Applying again Lemma 2.1, we obtain that aDb commutes with aaD. Then aD(a + b) ∈ comm(aπ) and
h1h2 = h2h1 = 0. It follows from [1, corollary 1] that ξD = aπ + a2aD(a + b)D = aπ + aeD.

(4)⇒ (5) In order to verify that w ∈ RD, we write aaD(a + b)bbD = l1l2, where l1 = aaD(a + b), l2 = bbD. In
view of Lemma 2.1, we deduce that

aaD(a + b) = (aaD)2(a + b) = (aaD)2a + aaDa(aDb) = aaDaaaD + aaDbaaD = aaD(a + b)aaD

and abbDa
(2.2)
= (abD)ab

(2.1)
= aabbD, it follows by [1, Theorem 1] that abbDaD = aDabbD. So, we get

l1l2l1 = aaD(a + b)aD(abbDa)aD(a + b)

= aaD(a + b)aDaaDabbD(a + b)

= aaD(a + b)aDaaD
(
abbDa + abbDb

)
= aaD(a + b)aDaaD(aabbD + abbDb)

= aaD(a + b)aaD(a + b)bbD = l21l2.

In a similar way, l2l1l2 = l22l1. Thus, applying Lemma 2.3, we have w ∈ RD and

wD =
[
aaD(a + b)bbD

]D
=
[
aaD(a + b)

]D
(bbD)D = aaD(a + b)DbbD.

(2)⇒ (5) This is similar to (4)⇒ (5).
(5)⇒ (4) To check that e ∈ RD, let p1 = a2aD, p2 = aaDb. Further, we can write aaDb = q1q2, where q1 = aaD,

q2 = b. In view of Lemma 2.1, q1q2q1 = q2
1q2, q2q1q2 = q2

2q1. Then aaDb ∈ RD and (aaDb)D = (aaD)DbD = aaDbD

by Lemma 2.3.
It is easy to verify that p1p2p1 = p2

1p2, p2p1p2 = p2
2p1 and (p1 + p2)p2pD

2 = aaD(a + b)bbD
∈ R

D. Applying
(1)⇔ (2) to p1 and p2, we conclude that aaD(a + b) = p1 + p2 ∈ R

D, as required.

Remark 3.2. As mentioned in the introduction, in the papers of Zhuang et al. [12] and Liu and Qin [2], the
commutativity ab = ba was assumed. In [12, Theorem 3], they proved that if a, b ∈ RD and ab = ba, then a + b ∈ RD

if and only if I + aDb ∈ RD. Moreover, the expressions of (a + b)D and (I + aDb)D are presented. In [2, Theorem
2.1], Liu and Qin assumed that aaD(a + b) instead of I + aDb, they deduced another expression for (a + b)D. In
Theorem 3.1, we relax this hypothesis ab = ba by assuming two conditions a2b = aba and b2a = bab. It also can be
seen from Theorem 3.1 that the condition I + aDb ∈ RD of [12, Theorem 3] and aaD(a + b) ∈ RD of [2, Theorem 2.1]
are equivalent. Moreover, the expressions for (a + b)D in [12, Theorem 3] will be exactly the same as in [2, Theorem
2.1], we will prove them in Corollary 3.4.

First we show that ab = ba implies the conditions of Theorem 3.1. From ab = ba, we get a2b = a(ab) = aba.
Symmetrically, b2a = bab. To prove that our conditions are strictly weaker than ab = ba, we construct matrices a, b
satisfying the conditions of Theorem 3.1, but not ab = ba.

Example 3.3. Let R =M3(C), and take

a =

 0 0 0
0 0 1
0 1 0

 , b =

 0 1 0
0 0 1
0 1 0

 ∈ RD.
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It is easy to check a2b = aba and b2a = bab. But ab , ba. Then, applying Theorem 3.1 and after simple
computations, we obtain

(a + b)D =


0 1

4 0
0 0 1

2
0 1

2 0

 .
The following corollary follows from Theorem 3.1. For the sake of clarity of presentation, the short proof

is given.

Corollary 3.4. Let a, b ∈ RD be such that ab = ba. Then the following conditions are equivalent:
(1) a + b ∈ RD;
(2) ξ = I + aDb ∈ RD;
(3) e = aaD(a + b) ∈ RD.
In this case,

(a + b)D = ξDaD + bD(I + aaπbD)−1aπ

= eD + aπ(I + bDaaπ)−1bD = eD + aπ
ind(a)−1∑

i=0

(−bDa)i

 bD

= aDξDbbD + bπ(I + bbπaD)−1aD + bD(I + aaπbD)−1aπ,

(3.15)

where ξD = aπ + a2aD(a + b)D, eD = aaD(a + b)D.

Proof. Since ab = ba, we get a2b = aba and b2a = bab. Using Theorem 3.1, the following are equivalent:
(1) a + b ∈ RD;
(2) ξ = I + aDb ∈ RD;
(3) e = aaD(a + b) ∈ RD.
Recall that aaπ is nilpotent and its index of nilpotency is the Drazin index of a. Let s=index(a). From

the assumption ab = ba, we have a, b, aD and bD commute with each other by [1, Theorem 1 ]. From this,
we conclude that aπb = baπ and bπa = abπ. Applying again [1, Theorem 1 ], we get aπbD = bDaπ. Hence
aπb(eD)2 = aπb(aDξD)2 = 0 and bπa

∑s−2
i=0 (i + 1)(bD)i+2(−a)iaπ = 0.

Since bDaaπ is nilpotent, I + bDaaπ is invertible and aπbD = bDaπ, we get

(I + bDaaπ)−1 = I + (−bDaaπ) + (−bDaaπ)2 + · · · + (−bDaaπ)s−1

=

s−1∑
i=0

(−bDaaπ)i =

s−1∑
i=0

(−aπbDa)i = aπ
s−1∑
i=0

(−bDa)i.

From (I + bDaaπ)bD = bD(I + aaπbD), we obtain

bD(I + aaπbD)−1aπ = aπ(I + bDaaπ)−1bD = aπ
aπ s−1∑

i=0

(−bDa)i

 bD

= aπ
ind(a)−1∑

i=0

(−bDa)i

 bD.

Note that eD = ξDaD by Theorem 3.1, then we have

(a + b)D = ξDaD + bD(I + aaπbD)−1aπ = eD + aπ(I + bDaaπ)−1bD

= eD + aπ
ind(a)−1∑

i=0

(−bDa)i

 bD.

The last equality (a + b)D = aDξDbbD + bπ(I + bbπaD)−1aD + bD(I + aaπbD)−1aπ appearing in (3.15) follows
from the one in [12, Theorem 3].
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4. Main result 2

In this section, we consider some results on the expressions of (ab)D and (a + b)D, by using a, b, aD and
bD, where a, b ∈ RD. We begin with

Lemma 4.1. Let a, b ∈ RD with a2b = aba = ba2, then aaDb = baaD.

Proof. Since a2b = aba, by [1, Theorem 1 ], abaD = aDab. Then baaD = ba2(aD)2 = aba(aD)2 = abaD = aDab.

We come now to the demonstration of the main result of this section which extends [12, Lemma 2].

Theorem 4.2. Let a, b ∈ RD with a2b = aba = ba2 and b2a = bab, then ab ∈ RD and (ab)D = bDaD = aDbD.

Proof. Let x = bDaD. Since aaDb = baaD, by [1, Theorem 1 ], aaDbD = bDaaD.
Step 1 We can verify that

xab = bDaDab = aD(ab)bD (2.1)
= a(baD)bD (2.2)

= abbDaD = abx.

Step 2 It is easy to check that

xabx = bD(aDab)bDaD = bbD(aDabD)aD = bDbbDaDaaD = bDaD = x.

Step 3 Take k = max{ind(a), ind(b)}. Since a2b = aba, by [11, Lemma 2.1(2)], (ab)k = akbk. From the definition
of the Drazin inverse and (ab)k = akbk, we have

(ab)k+1x = (ab)k+1bDaD = ak+1(bk+1bD)aD = ak+1bkaD

= a(akbk)aD = a(ab)kaD (2.1)
= aDa(ab)k

= (aDak+1)bk = akbk = (ab)k.

Hence, (ab)D = bDaD. Similarly, we can check that (ab)D = aDbD.

Corollary 4.3. [12, Lemma 2] Let a, b ∈ RD with ab = ba, then ab ∈ RD and (ab)D = bDaD = aDbD.

Proof. From ab = ba, we have a2b = a(ab) = (ab)a = ba2 and b2a = b(ba) = bab. This completes the proof by
Theorem 4.2.

Remark 4.4. In Theorem 4.2, the conditions a2b = aba = ba2 and b2a = bab are weaker than ab = ba. Since ab = ba,
by the proof of Corollary 4.3 we get a2b = aba = ba2 and b2a = bab. However, in general, the converse is false. The
following example can illustrate this fact.

Example 4.5. Let R =M3(C), and take

a =

 1 0 0
0 0 1
0 0 0

 , b =

 1 0 0
0 0 1
0 0 1

 ∈ RD.

It is clear that a2b = aba = ba2 and b2a = bab. However, ab , ba. Therefore we can apply Theorem 4.2 and we
obtain

(ab)D =

 1 0 0
0 0 0
0 0 0

 .
In the rest of the paper, we look for simplifying equation (3.2) for (a+b)D under some stronger hypotheses

than those of Theorem 3.1. First, we give a result which recovers a known result in [9, Theorem 3(2) ] for
matrices and [12, Corollary 5(2)] for elements of a ring.
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Theorem 4.6. Let a, b ∈ RD be such that a2b = aba = ba2, b2a = bab and ind(a) = s. Then the following conditions
are equivalent:

(1) a + b ∈ RD;
(2) ς = a(I + aDb) ∈ RD.
In this case,

(a + b)D = ςD +

s−1∑
i=0

(bD)i+1(−a)iaπ + bπa(bD)2, (4.1)

where ςD = aaD(a + b)D.

Proof. (1)⇒ (2) Let ς have the following representation

ς = a(I + aDb) = aaD(a + b) + aaπ = r1 + r2,

where r1 = aaD(a + b), r2 = aaπ.
By Lemma 4.1, we have aaD(a+b) = (a+b)aaD. Then, in view of Corollary 4.3, it follows that aaD(a+b) ∈ RD

and
[
aaD(a + b)

]D
= aaD(a + b)D.

From aaD(a + b) = (a + b)aaD and aDaπ = 0, we have r1r2 = r2r1 = 0. Observe that aaπ is nilpotent. Hence,
we can apply [1, Corollary 1] to get an expression of ςD obtaining

ςD =
[
aaD(a + b)

]D
+ (aaπ)D =

[
aaD(a + b)

]D
= aaD(a + b)D.

(2) ⇒ (1) Obviously, aaD(a + b) = a2aD(I + aDb) = aaDa(I + aDb). By virtue of Lemma 4.1, aaDb = baaD,
and so aaDa(I + aDb) = a(I + aDb)aaD. It follows from Corollary 4.3 that aaDa(I + aDb) ∈ RD. Hence
aaD(a + b) ∈ RD. This completes the proof by Theorem 3.1. In this case, (a + b)D is represented as in (3.2),
where ςD = eD = aaD(a + b)D.

Now, let us calculate aπb(eD)2 appearing in (3.2). The hypothesis a2b = aba = ba2 implies that aπb = baπ,
by Lemma 4.1. From this and aπaD = 0, we get aπb(eD)2 = aπbaaD(a + b)DeD = 0.

Finally, let us observe that the expression bπa
∑s−2

i=0 (i+ 1)(bD)i+2(−a)iaπ given in (3.2) can be simplified. By
using the condition a2b = ba2, [1, Theorem 1 ] leads to a2bD = bDa2 and

bDa2 = a(abD)
(2.1)
= abDa. (4.2)

Using the equation bπbD = 0, we have

bπa
s−2∑
i=0

(i + 1)(bD)i+2(−a)iaπ = bπa(bD)2aπ + bπa
s−2∑
i=1

(i + 1)(bD)i+2(−a)iaπ

= bπa(bD)2
− bπabD(bDa)aD

− bπa
s−2∑
i=1

(i + 1)(bD)i+1(bDa)(−a)i−1aπ

(2.2)
= bπa(bD)2

− bπ(abDa)bDaD
− bπ

s−2∑
i=1

(i + 1)(abDa)(bD)i+1(−a)i−1aπ

(4.2)
= bπa(bD)2

− bπbDa2bDaD
− bπ

s−2∑
i=1

(i + 1)bDa2(bD)i+1(−a)i−1aπ = bπa(bD)2,

then (3.2) becomes (4.1).

Remark 4.7. In Theorem 4.6, the conditions a2b = aba = ba2, b2a = bab and a(I + aDb) ∈ RD are weaker than
ab = ba and aDb = 0 which were used in the paper [12, Corollary 5(2)](or [9, Theorem 3(2) ]). In fact, Example 4.5
can also illustrate this fact.
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Adding a condition aDb = 0 in Theorem 4.6, we obtain the next result.

Corollary 4.8. Let a, b ∈ RD be such that a2b = aba = ba2, b2a = bab, aDb = 0 and ind(a) = s. Then a + b ∈ RD and

(a + b)D = aD +

s−1∑
i=0

(bD)i+1(−a)i + bπa(bD)2. (4.3)

Proof. From aDb = 0, we get a(I + aDb) = a ∈ RD. Hence Theorem 4.6 is applicable. Since a2b = aba = ba2

and b2a = bab,we have aaDbD = bDaaD by Lemma 4.1 and [1, Theorem 1 ], combining aDb = 0, we derive

s−1∑
i=0

(bD)i+1(−a)iaπ =
s−1∑
i=0

(bD)i+1(−a)i(I − aaD)

=

s−1∑
i=0

(bD)i+1(−a)i
−

s−1∑
i=0

(bD)i+1(−a)iaaD

=

s−1∑
i=0

(bD)i+1(−a)i
−

s−1∑
i=0

aaD(bD)i+1(−a)i

=

s−1∑
i=0

(bD)i+1(−a)i
−

s−1∑
i=0

a(aDb)(bD)i+2(−a)i

=

s−1∑
i=0

(bD)i+1(−a)i.

According to the representation in (4.1), the equation (4.3) can be obtained.
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[5] D. Mosić, The Drazin inverse of the sum of two matrices, Math. Slovaca. 68 (2018), 767–772.
[6] R. Puystjens, M.C. Gouveia, Drazin invertibility for matrices over an arbitrary ring, Linear Algebra and its Applications 385 (2004),

105–116.
[7] A. Shakoor, I. Ali, S. Wali, A. Rehman, Some Formulas on the Drazin Inverse for the Sum of Two Matrices and Block Matrices, Bulletin

of the Iranian Mathematical Society 48 (2022), 351–366.
[8] L. Wang, X. Zhu, J. Chen, Additive property of Drazin invertibility of elements in a ring, Filomat 30 (2016), 1185–1193.
[9] Y. Wei, C. Deng, A note on additive results for the Drazin invere, Linear Multilinear Algebra 59(12) (2011), 1319–1329.

[10] X. Yang, X. Liu, F. Chen, Some additive results for the Drazin inverse and its application, Filomat 31 (2017), 6493–6500.
[11] H. Zhu, J. Chen, Additive and product properties of Drazin inverses of elements in a ring, Bull. Malays. Math. Sci. Soc. 40 (2017),

259–278.
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