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Abstract. A number of properties for the classes B, ! 'and B; have been proved. The class B,jl characterizes
the L7~ inequality involving the averaging operator and the class B} characterizes the L/- inequality involving

the adjoint averaging operator. The reverse inequalities involving the integral operators in L") have also
been studied.

1. Introduction

Let w be a weight which is positive and Lebesgue measurable function on (0, o). The weight class B, is
due to Arino and Muckenhoupt [1] who used it to characterize the Hardy inequality

00 X P 00
fo (91_( fo f(t)dt) o()dx < C fo FP(Ow(x)dx @

in the case v = w for non-negative non-increasing functions f, and equivalently, to characterize the bound-
edness of the maximal operator between Lorentz spaces. The general case for different weights and for
different indices p, g was proved by Sawyer [15]. The detailed information on the B,-class weights can be

found, e.g., in Cerda and Martin [2, 3], Kufner et al. [10], Maligranda [12], Sbordone and Wik [16] etc.
We say that (v,w) € B, 1 if the following holds

f,,m (J—C)pv(x)dx+fo‘rv(x)dx > C]O‘rw(x)dx, r>0 (2)

In [13], Neugebauer used B, ! to characterize the reverse of the inequality (1). Precisely, the following was
proved.
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Theorem 1.1. Let 1 < p < oo and v, w be weight functions defined on (0, 00). Then the reverse Hardy inequality

0o X p 00
j; (% j; f(t)dt) o(x)dx > C fo FP)w(x)dx

holds for some constant C > 0 and for all non-negative, non-increasing measurable functions f if and only if
(v,w) € B,

In this paper, we further investigate the class B,! and prove a number of properties of weights belonging
to this class. We also derive a number of properties of the weight class B which characterizes the Hardy
inequality involving the conjugate Hardy operator

Af0 =1 [ o

for non-increasing functions. In addition, we study the coresponding inequalities in grand Lebesgue spaces
LP) which consist of all those measurable functions f for which

1 e
Iflly) = sup (e f If(x)l”‘edx) <o, p>1.
0

O<e<p-1

These spaces were introduced by Iwaniec and Sbordone [8] and were further investigated by Fiorenza [4],
Fiorenza and Karadzhov [5], Fiorenza and Rakotoson [6, 7]. Further, the weighted version of the space »,

denoted by Lfg was introduced and the boundedness of the maximal operator was characterized in such
spaces.
We show that the classes of weights characterising certain inequality in LP)-spaces is essentially the same as

that in Lfl,)-spaces. Finally, we shall discuss the inequality involving the conjugate averaging operator
* 1 “
Af0 =1 [ o

in the framework of Lf,,) -spaces.
The rest of the paper is organized as follows. In Section 2, we study the class B, ! where we prove a number
of properties of this class. The two weight class B}, has been investigated in Section 3 and finally in Section

4, we study reverse LZ,) -inequalities for non-increasing functions involving averaging operator.
All the functions used in this paper are measurable and non-negative. The alphabet C has been used for a
constant which may have a different value at different places but does not create any confusion whatsoever.

2. The class B;l

For measurable function f, consider the modified Hardy averaging operator

T f(t
AHE) = — O 4 g1, q'=il,

- xl/q 0 tl/’?/ q-—
Note that for g = 1, A; = A. In [14], Neugebauer proved the following.
Theorem 2.1. Let 1 < p,q < oo and w be a weight function defined on (0, o). Then the inequality

fo ) (Agf) @wdx < € fo ) FP()w(x)dx 3)

holds for all non-increasing functions f if and only if w € B, ,.
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Our first aim is to characterize the reverse of the inequality (3). In the definition of B, L if v = w, we simply
write v € B;l. In that case, the inequality (2) becomes

fm(f)pv(x)dxchrv(x)dx/ r>0.
r x 0

The constant C in the above inequality is, of course, different than in (2).

Remark 2.2. In (2), the value of the constant C is not specified. So, one could think that C could take the value 1. In
that case w = v would imply that

frw(i)pv(x)dxzo )

which seems to be true always and as such there seems to be no meaning of saying that v € B, L. But when we say
that a particular inequality holds, it means that both the sides should exist finitely. In the present case, for p = 4 and
v(x) = x°, LHS of (4) is not finite, i.e., (4) does not hold.

Theorem 2.3. Let 1 < p,q < oo and w be a weight function defined on (0, oo). Then the inequality

| (Af) @ = C | o ©)

holds for all non-increasing functions f if and only if w € B;/lq.

Proof. We use the idea as in [14], Theorem 2.3). The necessity follows by using the function f = x[o, in ((5))
. For the sufficiency, by change of variable, we get

1 X £y X
1w,
xl/q 0 ul/q’ xl/q 0

so that

1/

f(Z")dz,

1/q

{o'e] 00 X p
[ (s oo =g | [ﬁ [ f(z%dz] W
= g foo (% ftf(z'i)dz)llJ w1 dt.
0 0

Now, since w € B;/lq, we find that

00 00 /
() weertax - : (5] v
> Hfl w(t)dt
q 0
=C f w1 dx,
0

which implies that w(t)t7~! € B, 1. Consequently, by Theorem 1.1 and applying some variable transforma-
tion, the inequality

o t p 00
fo (% fo f(zq)dz) wt) 1 dt > C fo FENPw()t~dt

= %fo‘w fP(x)w(x)dx
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i.e.

fo ) (Aq f)p w(x)dx > C L ) FP(x)w(x)dx

holds, where we have used the constant C for gC. [

In [13], Neugebauer proved a number of properties for the weight class B,. Here, we prove some similar
properties as applicable for the weight class B, 1. We have

Theorem 2.4. For 1< q <p <oco,ifw € B,' then w(x7"'/7"!) € B,

Proof. By using change of variable, the fact that w € B, !'and again on using change of variable, we will
obtain

e\ © rr\ 1
— q-1/p-1 = -
[ 0w [
00 rl/a P
= arq”/"‘f ( ) w(u)du
nja\ U

/o
> Carir/® f w(u)du
0

"
:Crl—l/af w(xl/a)xl/a—ldx
0
.
ZCrll/"rl/“lf w(x"%)dx
0

=Cf wT VP Ndx,
0

where a = Z_;}, which proves the theorem. [J

Theorem 2.5. Let 1 < q < p < co. If (v,w) € B, then (v, w) € B,

Proof. In view of the monotonicity, we find that

foo (i)q o(x)dx > f‘” (;)p v(x)dx

and the result follows immediately. [

Theorem 2.6. Ifw € B,", then for all € > 0, x°w(x'*¢) € B, .

Proof. 1t is clear that w € B;/ll .. forall € > 0. The result now follows using this fact and some variable

transformation. Indeed, we have

0o I 0 _1+e
f (3—2) )y = — (e w(u)du

I+e€) Jaswe u

,,1 +€

C
>
ZTve Jy w(u)du
=C f x“w(x+€)dx,
0

and the theorem is proved. O
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Theorem 2.7. Let w € B! and v < 1. Then w(x*) € B;'.

Proof. By variable transformation and the fact that w € B;*, we have

frm (J—C)w(x“)dx = irl‘“ j:o (%)w(u)du

’,(\
> grl_“f w(u)du
a 0

=Cr1_“f w(x®)x* Ldx
0

ZCf w(x%)dx,
0

hence the theorem. [

Theorem 2.8. Let 1 < p < co. Then w € B," if and only if w(x) = u(x)x"~" with u(xr) e BiL.

Proof. Assume first that w € B,;l. Then

rywE?y e\
I (;) xl/l’" dx_pL/p (T W(t)dt

Alp
> pC f w(t)dt
0

s 1/p
w(x
= Cf %dx
0 x p
Thus, if we write
1 w(xlP)
u(xh) = S,

1771

(6)

then we have proved that u(x%) € Bl‘l. At the same time taking x'/7 = t in 6, we find that w(t) = u(t)#~! and

the assertion follows. Conversely, assume that w(x) = u(x)x*~! with u(xr%) € B;'. We have

foo (i)p w(x)dx = foo (J—:)p u(x)xP~tdx
- %fr:o(?)u(t;)dt
> % fo u(tr)dt

=Cf u(x)xPdx
0

=C L V w(x)dx

and the theorem is proved. O
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3. The class B;

On the similar lines, we prove some similar properties as applicable for the weight class B;.
Theorem 3.1. For 1 < q <p < oo, if w € B, then w(x'~'/1"") € B;,

Proof. By using change of variable, the fact that w € B} and again using change of variable, we get

Ty 1 (™ (rV/[ 1
j; (;) w(x¥)dx = Ej; (E) (—ul_;)w(u)du
e a\g
= lr’”“’“f (r_) w(u)du
Sgr”q”‘f w(u)du
a 0
= CrPm1# f w(x*)x*dx
0

< Crlmapat f w(x®)dx
0

=C f w(x®)dx,
0

[y

where a = %. O

Theorem 3.2. Let1 <q<p <oo. Ifw € By, then w € B,

Proof. In view of the monotonicity, we find that

e\ s VAN i
[ (0 [ (5 s
and the result follows immediately. [J

Theorem 3.3. If w € B;, then for all € > 0, x°w(x*€) € B;,

.
p/l+e
and some variable transformation. Indeed, we have

1+e
' r P e 1+e _ 1 fr ri+e £
fo (x) xw(x ")dx = a+o Jy ” riew(u)du

< < w(u)du
1+€ Jy

sz x“w(x*€)dx,
0

Proof. Using the previous theorem, we have w € B for all € > 0. The result now follows using this fact

which proves the result. [J

Theorem 3.4. Let w € B} and a > 1. Then w(x") € B}.
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Proof. By variable transformation and the fact that w € B}, we have

r o a e
f (z)w(x“)dx = lrl_“f (r—)w(u)du < Erl_“f w(u)du

=Cr1_"‘f w(x®)x* dx
0

s
<C f w(x®)dx,
0

and the result is proved. [

Theorem 3.5. Let 1 <p < co. Then w € By, if and only if w(x) = u(x)xP~1 with u(x%) € B
Proof. Assume first that w € B;. Then

TrrywP) A\
j(;(;)—xl/rﬂ’ dx—p‘fov T ZU(t)dt

Alp

<pC j; w(t)dt

s ]/p
= Cf w(i‘/ " )dx
o XP
Thus, if we write
1 w(x!'P)
u(xr) = i 7)

then we have proved that u(x%) € B]. At the same time taking x!/P = tin (7)) , we find that w(t) = u(t)t’!

and the assertion follows. Conversely, assume that w(x) = u(x)x"~! with u(x%) € B]. We have
TP\ TP\ 1 (P
f (1) w(x)dx = f (Z) u(x)xPtdx = —f (T—)u(t%)dt
0 \X 0 \X pJo \t
7
<< f u(tr)dt
P Jo

=Cf u(x)xPdx
0

=C j; r w(x)dx

and the theorem is proved. O

4. Applications to Grand Lebesgue Spaces

In this section, we shall study some inequalities in the framework of weighted grand Lebesgue spaces
Lf,,) : These spaces consist of all those measurable functions f for which

1 =
lfllp)w := sup (efo |f(x)|p_€w(x)dx) <co, p>1

O<e<p-1
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Jain and Kumari [9] proved that the averaging operator A is bounded between L';,) spaces for non-increasing
functions if and only if w € By. In other words, it was proved that Lfv) -boundedness and L! -boundedness of

A are equivalent, where L}, is used to denote weighted L/-space. The equivalence of LZ,) -boundedness and
L} -boundedness of the maximal operator has been proved in terms of the famous A,-condition.

In this section, we investigate the corresponding result of Theorem 1.1 in the context of L’Z]) spaces. These
spaces require that the functions should be defined on bounded intervals, say,(0, 1). Note that Theorem A
is true for all functions which are non-negative and non-increasing. Among these functions, if we choose
those which are supported in (0, 1), the result remains valid. However, in the corresponding two weighted

B, ! condition, the integral fr * will be replaced by fr ' In order to avoid any ambiguity, we shall denote this
modified condition by B; 1(0,1). Thus, we have the following modification of Theorem 1.1.

Theorem 4.1. Let 1 < p < oo and v, w be weight functions defined on (0, 00). Then the reverse Hardy inequality

1 1 x p 1
fo (; fo f(t)dt) o(x)dx > C fo fP()w(x)dx ®

holds for some constant C > 0 and for all non-negative, non-increasing measurable functions f if and only if
(v,w) € B,'(0,1), ie.,

j;l (g)v(x)dx+ j: v(x)dx > Cj: w)dx, 0<r<l1.

Remark 4.2. The result of Theorem 2.5 is valid for the class (v, w) € B, 1(0,1) too, i.e., (v,w) € B, 1(0,1) implies
(v,w) e B;l(O, 1) for 1 < g < p < oco. Indeed, the implication follows by monotonicity.

We now prove the following.

Theorem 4.3. Let 1 < p < oo and v, w be weight functions defined on (0,1). The necessary condition for the
inequality

”Af”p),v > ||f||p),w (9)
to hold for all non-negative and non-increasing functions f is (v,w) € B, 10,1).

Proof. Let (v,w) € B,'(0,1) and 0 < ¢ < p — 1. We have

max{sup ((—: j(;l [f(x)]P—ew(X)dx)plel sup (e f()'l[f(x)]p_ew(x)dx)plf}

O<e<o o<e<p-1

”f”p),w

1 = 1 1 1 1 ﬁ
< max{sup (ef [f(x)]P—fw(x)dx)p , sup (e)v-fo_xf-am-o(f [f(x)]lﬂ—ew(x)dx) }
O<e<o 0 o<e<p-1 0
1 i
< (p-1)0 7 sup (e f [f(x)]”‘ew(x)dx) : (10)
O<e<o 0

Since 0 < € < g, therefore p —e > 1. In view of Remark 4.2, (v, w) € B;}e(O, 1). Then, in view of Theorem 4.1,
the Inequality 8 with p replaced by p — € holds. In the corresponding inequality, multiplying both sides by

€<, we obtain

C(e fo 1[f(x)]”‘5w(x)dx)ple < (e fo 1[Af(x)]l7—€z;(x)dx)ple,
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which on passing to the sup over 0 < € < ¢ gives

C sup (e fo | f(x)]”‘ew(x)dx)ple < sup (e fo A f(x)]P-ev(x)dx)”L < IS llpo-

O<e<o O<e<o

Combining the last estimate with (10), we get

C
ore ”f”p),zm

>
14flhyo 2 =

which is true for all ¢ € (0,p — 1). Therefore, we have

”Af”p),v = C(Pr 0, w)”f”p),w

with

1
sup o+,
O<e<o

Cp,v,w) = ; S 1
and the result is proved. O

For the converse of the above theorem, we have the following.

Theorem 4.4. Let 1 <p < 00,0 € (0,p — 1) and v, w be weight functions defined on (0,1). The sufficient condition
for the inequality ||Afllp)o = ||flly),w for non-negative and non-increasing function f to hold is (v, w) € B;EG(O, 1).

Proof. Let ||Afllpo = llflly)w i-e.

1 1 X p—€ p%t 1 }i
sup (e f (— f f(t)dt) v(x)dx) >C sup (e f (f(x))”_ew(x)dx)
O<e<p-1 0o \XJo O<e<p-1 0

hold. Then there exists a 0 € (0,p — 1) such that the inequality
1 1 X p—o p_% 1 P%F
o( f (— f f(t)dt) v(x)dx) >C sup (e f (f(x))P-fw(x)dx)
o \XJo 0<e<p—1 0

holds. This implies that the LHS dominates the RHS for every € € (0,p — 1) and in particular, for € = o.
Consequently, the inequality

j: (91_6 fox f(t)dt)p_“v(x)dx >CPr e Ll(f(x))paw(x)dx

holds. Now, consider the function f = (0, r) for a fixed 0 < r < 1, which is a non-negative and non-increasing
function. With this f the last inequality becomes

fr 1 (i)p_av(x)dx + fo o)dx = P fo ()

which means that (v, w) € B,2,(0,1) and we are done. [
As regards a kind of converse of Theorem 2.5, we believe that the following should be true.

Conjecture 4.5. Let 1 < p < oo and v, w be weight functions defined on (0, ). If (v,w) € B, 1, then there exists

€ > 0 such that (v, w) € B, ..
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