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Abstract. While there are many scientific manuscripts devoted to various details of the evolution of curves
and their models, there are still many perspectives of the research subject that required comprehensive in-
vestigation. In particular, this manuscript is devoted to the search of a new class of time evolution equations
of space curves written in the anholonomic coordinates. In this way, we have direct observation and access
to form a new class of anholonomic surfaces induced by the given evolution systems. Thus, the proper
representation of the evolution equations allows us to obtain useful characteristics of the corresponding
evolution dynamics.

1. Introduction

In the traditional differential geometry, the Frenet-Serret frame possesses a vital role to describe space
curves in given spaces whether they are characterized by definite or semi-definite metric structures. In
these spaces, there exist three well-known classes of planes that are spanned by the Frenet-Serret vectors
at each point of the curve i.e. osculating, rectifying, and normal planes. It also exists three corresponding
classes of space curves i.e. osculating, rectifying, and normal curves associated with each plane. To be
more specific, the position vector of osculating curves lies in its osculating space. Similarly, the position
vector of normal curves (rectifying curves) lies in its normal space (rectifying space). Chen [1] investigated
astonishing features of rectifying curves including their geometric invariants to construct rectifying curves
from Darboux vectors and spherical curves. Izumiya and Takeuchi [2] described rectifying curves and slant
helices to prove that rectifying developable of the conical geodesic is a cone.

The two basic concepts of curvature for a surface in a given space are the Gaussian and mean curvatures.
If the mean curvature of the surface vanishes then it is called minimal surface. It has been extensively studied
for both its significant prominence in applications and its unique mathematical features. If the Gaussian
curvature of the surface vanishes then the surface is called developable. It is also of special attention since it
can be flattened smoothly onto a plane without contraction or stretching. The geometric literature dealing
with the developable surface is very large and has led to comprehensive generalization. Accordingly,
a developable surface can also be constructed as the union of generalized cylinders, generalized cones,
tangent developable, planar developable types. This surface is also formed by conserving the measure
along with any curve between its points.
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A large class of physical processes and engineering mechanisms is formed in terms of the flow and
motion of curves, including the increase of dendritic crystals, the dynamics of vortex filaments, and the
planar motion of interfaces. Moreover, if this motion is governed by the integrable systems then it preserves
its global invariants containing both its enclosed area and the total length of the curve. For this reason,
there are many papers attempting to find the answer to the question: What is the connection between the
motion curves and integrable evolution equations either in 3D space or in the plane? A pioneering study of
Hasimoto [3] demonstrated that the evolution of motion of thin filament considered as a curve represented
by the well-known Da-Rios equation is equivalent to the famous nonlinear integrable Schrodinger equation.
Considering the Hasimoto transformation relating complex curvature functions and space curves, Lamb
[4] gave a more generalized form of the soliton-bearing equations.

The manuscript is structured in the following manner. Section 2 is devoted to some of the fundamental
knowledge and facts of the differential geometry of curves and anholonomic coordinates in the three-
dimensional ordinary space. Section 3 deals with defining transformations of the space curve flows to
special surfaces through the effective use of anholonomic coordinates. Section 4 is concerned with the
investigation of some pure geometric characteristics of these surfaces. Section 5 is dedicated to details of the
physical dynamics of the numerical and analytical solution of the transformation of the space curve flows.
Section 6 includes additional comments and results regarding the evolution of the special transformations
and new classes of surfaces.

2. The Differential Geometry of Curves and Anholonomic Coordinates in E3

Let α be a space curve in E3 such that three-dimensional coordinate location
(
x, y, z

)
indicates a point on

α. Furthermore, let R be a position vector placed at the same reference frame pointing to the location on α.
The Frenet-Serret frame of space curve α is described by the ordered triad of unit orthonormal vectors

such that they are mutually perpendicular to each other. It is also called the moving trihedron or moving
triple. It includes tangential axis T, principal normal axis N, and binormal axis B. (T,N,B) triad satisfies
the following cross product or vector product rule due to cyclic permutations, i.e.

T = N × B, B = T ×N, N = B × T. (1)

Let (s,n, b) denotes arc distance along with Frenet-Serret vectors (T,N,B), respectively. (s,n, b) establishes
a suitable curvilinear coordinate frame if arc distances are restricted appropriately around the origin, for
instance (s = s0,n = 0, b = 0) .

In the schematic trihedron, Frenet-Serret vectors of (T,B) span the rectifying plane; Frenet-Serret vectors
of (T,N) span the osculating plane; Frenet-Serret vectors of (N,B) span the normal plane.

Vector calculus components on vector or scalar fields are typically expressed by the fundamental three
vector operators. For instance, the divergent operator acts on an arbitrary vector field Z in the following
manner

divZ = T ·
δ
δs
Z +N ·

δ
δs
Z + B ·

δ
δs
Z. (2)

The curl operator acts on an arbitrary vector fieldZ in the following manner

curlZ = T ×
δ
δs
Z +N ×

δ
δs
Z + B×

δ
δs
Z. (3)

Finally, the gradient operator acts on an arbitrary scalar fieldY in the following manner

1radY =
δY
δs

T +
δY
δs

N +
δY
δs

B. (4)

The Frenet-Serret formulas describe the motion of the ordered triad of unit orthonormal vectors (T,N,B)
along with the s − line coordinate curve (vector line of s). In this case, the motion of the triad frame follows
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a space curve α parametrized by the arc-length s. By definition, the directional derivative of αwith respect
to the arc-length s is equal to T i.e.

δ
δs
α = T. (5)

It is denoted by the following identity

δ
δs
α =

∂
∂s
α

1√
∂
∂sα·

∂
∂sα
. (6)

In this paper, we always consider the special case in which the curve is supposed to be a unit speed curve
i.e.

δ
δs
α =

∂
∂s
α,

∣∣∣∣∣ ∂∂sα
∣∣∣∣∣ = 1. (7)

The Frenet-Serret formulas are characterized by taking the directional derivative of the unit orthonormal
vectors (T,N,B) with respect to the vector line of s in the following manner

δ
δs

T = κN,

δ
δs

N = −κT + τB, (8)

δ
δs

B = −τN,

where κ measures the bending or rate of change of the tangent vector in the (T,N) plane along with the
vector line of s. Torsion τmeasures the twisting or amount of rotation of the Frenet-Serret triad frame about
the T along with the vector line of s.

The directional derivative of α in the normal and binormal directions are expressed by considering the
parametrization with respect to arc-lentgh n and b, respectively. In the normal direction, the directional
derivative of αwith respect to the arc-length n is equal to N i.e.

δ
δn
α = N, (9)

where the unit speed curve parametrization is guaranteed by the following assumption

δ
δn
α =

∂
∂n
α,

∣∣∣∣∣ ∂∂nα
∣∣∣∣∣ = 1. (10)

Eqs. (9, 10) imply that the tangent vector of the n− line coordinate curve (vector line of n) is N in the normal
direction.

Similarly, in the binormal direction, the directional derivative of α with respect to the arc-length b is
equal to B i.e.

δ
δb
α = B, (11)

where the unit speed curve parametrization is guarenteed by the following assumption

δ
δb
α =

∂
∂b
α,

∣∣∣∣∣ ∂∂bα
∣∣∣∣∣ = 1. (12)

Eqs. (11, 12) imply that the tangent vector of the b−line coordinate curve (vector line of b) is B in the binormal
direction. These implications lead to define a new type of variations of the motion of the Frenet-Serret frame
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by taking the directional derivative of the (T,N,B) along with the n − line coordinate curve and b − line
coordinate curve. Accordingly, these variations satisfy that

δ
δn

T = θnsN + (Ωb + τ)B,

δ
δn

N = −θnsT − (divB)B, (13)

δ
δn

B = −(Ωb + τ)T + (divB)N,

and

δ
δb

T = −(Ωn + τ)N + θbsB,

δ
δb

N = (Ωn + τ)T + (κ + divN)B, (14)

δ
δb

B = −θbsT − (κ + divN)N.

The entire directional differential equation systems of the Frenet-Serret triad vectors given by Eqs. (8, 13, 14)
are called Gauss Weingarten equations [5].

The geometric quantities θns and θbs symbolize the normal deformation of the vector tube in the normal
and binormal directions, respectively, in the following manner

θns = N
δ
δn

T, θbs = B
δ
δn

T. (15)

The divergence of the tangent, normal, and binormal vectors are expressed by the following identities

divT = θns + θbs,

divN = B ·
δ
δb

N − κ, (16)

divB = −B ·
δ
δn

N.

The curl of the tangent, normal, and binormal vectors are expressed by the following notation

curl

 T
N
B

 =
 Ωs 0 κ
−divB Ωn θns
κ + divN −θbs Ωb


 T

N
B

 , (17)

whereΩs,Ωn,Ωb are called the abnormalities of the T− f ield, N− f ield, and B− f ield [5]. They are computed
by considering the comparison of the two forms for the curl operator. There also exists the following relation
among these functions

2(Ωs − τ) = Ωs +Ωn +Ωb. (18)

3. Transformation of Curve Flows to Special Surfaces via Anholonomic Coordinates

To obtain the evolution of space or plane curves in the different geometric or physical spacetime
structures inducing the special equation systems attracts the attention of many researchers for a long time.
The main motivation comes from the research of geometric characterization and the physical dynamics of
moving curves, which have plentiful applications in various branches. From the subject, it is known that
many fascinating soliton equations or completely integrable equations relate to evolution of space curves
in the two or higher dimensional spaces which are homogenous or inhomogeneous. For example, the
well-known Da Rios equation relates the binormal motion of space curves and the completely integrable
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non-linear Schrödinger (NLS) equation [6]. A couple system of KDV equations, the Regge-Lund equation,
the defocusing nonlinear Schrödinger equation arise from hyperbolic evolution of curves [7]. The smoke
ring or vortex filament equation relates the motion of space curves having the unchanged type of traveling
wave solutions of the NLS equation [3]. In short, understanding the nature of the evolutionary equation
systems and models is a very important subject to describe further classes of geometric and physical models
and examine their behavior. These models are generally derived from the time evolution equations of the
moving space curves satisfying particular conditions. In this section, we choose to apply these ideas in a
straightforward and concrete manner within the different cases. First of all, we introduce a new class of
time evolution equations, which define the directional motion of curves in the three-dimensional ordinary
space E3. Then, we present the evolved geometric quantities and anholonomic coordinates with respect to
that motion. Finally, we form a new class of directional surfaces and give their geometric characterizations
and physical dynamics.

3.1. Osculating Motion of Curves and Osculating Surfaces in E3

Let s and n be arc-length parameters along with the curve α in the tangent direction (T) and normal
direction (N) in the three-dimensional ordinary spaceE3, respectively. Let us also define the time parameter
u and suppose that it is not dependent on neither s nor n. From Eqs. (5, 9) , the time evolution of a space
curve obeying the osculating motion is given by the following equation

∂
∂u
α =

∂
∂s
α ×

∂
∂n
α = T ×N = B. (19)

Here, we choose to define the time evolution of a curve in that order due to the rule of positive cyclic
permutations. It is also a trivial fact that we use the following abbreviation for the above equality

∂
∂u
α (s,n,u) =

∂
∂s
α (s,n,u) ×

∂
∂n
α (s,n,u) . (20)

For the rest of the paper, we rather choose to consider the type of Eq. (19) instead of the type of Eq. (20) for
the brevity purpose. We also make the same choice for similar situations.

Case 1. In this case, we investigate the osculating motion of curves and osculating surfaces in the tangent
direction in E3. In the tangent direction, when the time evolution of a space curve α is given by Eq. (19) the
evolution of the time derivative of Frenet-Serret vectors is computed by using the following compatibility
condition

∂
∂u
∂
∂s
α =

∂
∂s
∂
∂u
α, (21)

which implies that

∂
∂u

T =
∂
∂s

B. (22)

The further calculations are processed by the orthonormality condition of the Frenet-Serret vectors together
with the compatibility condition between the arc-length parameter s and time parameter u associated with
these vectors. Here, we should remind that the compatibility condition is not allowed between the partial
differentiation of the s and n parameter of the space curve α due to the nature of the evolution in the tangent
direction. From Eqs. (5 − 8, 19, 21, 22) , the time evolution equation of Frenet-Serret vectors obeying the
osculating motion is expressed in the following manner

δ
δu

(T,N,B) = (T,N,B)

 0 −τ 0
τ 0 λ
0 −λ 0

 , (23)

where λ is a function of (s,n,u) . The matrix is an antisymmetric, as follows from the generation process of
the vectors and orthonormality conditions. Comparing the coefficients of (T,N,B) in Eq. (23) leads to time
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evolution equations of scalar geometric quantities along with the osculating motion of the curve α. Thus,
we get the following three identities

∂
∂u
κ = −

∂
∂s
τ,
∂
∂u
τ = −

∂
∂s
τ2

κ
, λ =

τ2

κ
, κ , 0. (24)

By the definition of the Frenet-Serret frame equation, it is already supposed that the curvature κ is non-
vanishing. Therefore Eq. (24) is well-defined. If one also considers the compatibility condition of the scalar
geometric quantities then it is obtained that

∂2

∂s2

τ2

κ
+
∂2

∂u2κ = 0. (25)

Eq. (25) is a second-order non-linear Laplacian-like partial differential equation and its solution family for
some special cases helps to analyze physical dynamics of the osculating motion of the space curve. We
choose to deal with that problem in the application section not to distract our attention while determining
the geometric characterization of the osculating motion.

Thus, we completely describe the osculating motion of the space curve in the tangent direction. The
osculating motion of a curve is determined by six equations: three in Eq. (23) and the three in Eq. (24) . The
set of these identities is the fundamental result of this subsection. Now, we shall present the formation of
the first osculating type of the anholonomic surface, which is called the osculating surface in the tangent
direction, due to the osculating motion of the space curve. It is denoted by OAs . This surface is generated
by the corresponding osculating motion throughout the space curve α. In the case of the osculating motion
of the curve in the tangent direction, the coefficients of 1st and 2nd fundamental forms of the first osculating
type of the anholonomic surface are computed respectively by the following equalities

I = dα · dα = (
∂
∂s
αds +

∂
∂u
αdu) · (

∂
∂s
αds +

∂
∂u
αdu), (26)

and

II = −dα · dN = −(
∂
∂s
αds +

∂
∂u
αdu) · (

∂
∂s
Nds +

∂
∂u
Ndu), (27)

whereN is a normal vector field of the surface given by

N =
∂
∂sα ×

∂
∂uα∥∥∥ ∂

∂sα ×
∂
∂uα
∥∥∥ = T × B = −N. (28)

From Eqs. (8, 19, 23, 24, 26 − 28) ,we have

I = ds2 + du2, (29)

and

II = κds2
− 2τdsdu − λdu2, (30)

where λ = τ
2

κ , κ , 0. Thus, from Eq. (29) , the coefficients of 1st fundamental forms of the osculating surface
in the tangent direction are given by

IE = 1, IF = 0, IG = 1, (31)

and similarly from Eq. (30) , the coefficients of 2nd fundamental forms of the osculating surface in the
tangent direction are given by

IIE = κ, IIF = −2τ, IIG = −
τ2

κ
. (32)
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As a result, the Gaussian curvature K and mean cuvature H of the osculating surface in the tangent
direction takes the following form

K = −5τ2, H =
κ2
− τ2

2κ
. (33)

Further geometric characterizations associated with the first osculating type of the anholonomic surface are
given in the next section.

Case 2. In this case, we investigate the osculating motion of curves and osculating surfaces in the normal
direction in E3. In the normal direction, when the time evolution of a space curve α is given by Eq. (19) the
evolution of the time derivative of Frenet-Serret vectors is computed by using the following compatibility
condition

∂
∂u
∂
∂n
α =

∂
∂n
∂
∂u
α, (34)

which implies that

∂
∂u

N =
∂
∂n

B. (35)

The further calculations are processed by the orthonormality condition of the Frenet-Serret vectors together
with the compatibility condition between the arc-length parameter n and time parameter u associated with
these vectors. Here, we should remind that the compatibility condition is not allowed between the partial
differentiation of the s and n parameter of the space curve α due to the nature of the evolution in the normal
direction. From Eqs. (9, 10, 13, 19, 34, 35) , the time evolution equation of Frenet-Serret vectors obeying the
osculating motion is expressed in the following manner

δ
δu

(T,N,B) = (T,N,B)

 0 (Ωb + τ) µ
−(Ωb + τ) 0 0
−µ 0 0

 , (36)

where µ is a function of (s,n,u) and divB = 0. The matrix is an antisymmetric, as follows from the generation
process of the vectors and orthonormality conditions. Comparing the coefficients of (T,N,B) in Eq. (36)
leads to time evolution equations of scalar geometric quantities along with the osculating motion of the
curve α. Thus, we get the following three identities

∂
∂u
θns =

∂
∂n

(Ωb + τ),
∂
∂u

(Ωb + τ) =
∂
∂n

(Ωb + τ)2

θns
, µ =

(Ωb + τ)2

θns
, θns , 0. (37)

Here, we suppose that the geometric quantity of θns is non-vanishing. Therefore Eq. (37) is well-defined. If
one also considers the compatibility condition of the scalar geometric quantities then it is obtained that

∂2

∂n2

(Ωb + τ)2

θns
+
∂2

∂u2θns = 0. (38)

Thus, we completely describe the osculating motion of the space curve in the normal direction. The
osculating motion of a curve is determined by six equations: three in Eq. (36) and the three in Eq. (37) . The
set of these identities is the fundamental result of this subsection. Now, we shall present the formation of
the second osculating type of the anholonomic surface, which is called the osculating surface in the normal
direction, due to the osculating motion of the space curve. It is denoted byOAn . This surface is generated by
the corresponding osculating motion throughout the space curve α. In the case of the osculating motion of
the curve in the normal direction, the coefficients of 1st and 2nd fundamental forms of the second osculating
type of the anholonomic surface are computed respectively by the following equalities

I = dα · dα = (
∂
∂n
αdn +

∂
∂u
αdu) · (

∂
∂n
αdn +

∂
∂u
αdu), (39)



T. Korpinar et al. / Filomat 37:6 (2023), 1777–1792 1784

and

II = −dα · dN = −(
∂
∂n
αdn +

∂
∂u
αdu) · (

∂
∂n
Ndn +

∂
∂u
Ndu), (40)

whereN is a normal vector field of the surface given by

N =
∂
∂nα ×

∂
∂uα∥∥∥ ∂

∂nα ×
∂
∂uα
∥∥∥ = N × B = T. (41)

From Eqs. (13, 19, 36, 37, 39 − 41) ,we have

I = dn2 + du2, (42)

and

II = −θnsdn2 + µdu2, (43)

where µ = (Ωb+τ)2

θns
, θns , 0. Thus, from Eq. (42) , the coefficients of 1st fundamental forms of the osculating

surface in the normal direction are given by

IE = 1, IF = 0, IG = 1, (44)

and similarly from Eq. (43) , the coefficients of 2nd fundamental forms of the osculating surface in the normal
direction are given by

IIE = −θns, IIF = 0, IIG =
(Ωb + τ)2

θns
. (45)

As a result, the Gaussian curvatureK and mean cuvatureH of the osculating surface in the normal direction
takes the following form

K = −(Ωb + τ)2, H =
(Ωb + τ)2

− θ2
ns

2θns
. (46)

3.2. Rectifying Motion of Curves and Rectifying Surfaces in E3

Let b and s be arc-length parameters along with the curve α in the binormal direction (B) and tangent
direction (T) in the three-dimensional ordinary spaceE3, respectively. Let us also define the time parameter
u and suppose that it is not dependent on neither b nor s. From Eqs. (5, 11) , the time evolution of a space
curve obeying the rectifying motion is given by the following equation

∂
∂u
α =

∂
∂b
α ×

∂
∂s
α = B × T = N. (47)

Case 1. In this case, we define the rectifying motion of curves and rectifying surfaces in the binormal
direction inE3. In the binormal direction, when the time evolution of a space curve α is given by Eq. (47) the
evolution of the time derivative of Frenet-Serret vectors is computed by using the following compatibility
condition

∂
∂u
∂
∂b
α =

∂
∂b
∂
∂u
α, (48)

which implies that

∂
∂u

B =
∂
∂b

N. (49)
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The time evolution equation of Frenet-Serret vectors obeying the rectifying motion is expressed in the
following manner

δ
δu

(T,N,B) = (T,N,B)

 0 ν −(Ωn + τ)
−ν 0 0

(Ωn + τ) 0 0

 , (50)

where ν is a function of (s, b,u) . Further details regarding the rectifying motion of curves and rectifying
surfaces in the binormal direction in E3 can be computed similarly as in the case of the osculating motion
of curves and osculating surfaces.

Case 2. In this case, we attempt to define the rectifying motion of curves and rectifying surfaces in the
tangent direction in E3. In the tangent direction, when the time evolution of a space curve α is given by
Eq. (47) the evolution of the time derivative of Frenet-Serret vectors is computed by using the following
compatibility condition

∂
∂u
∂
∂s
α =

∂
∂s
∂
∂u
α, (51)

which implies that

∂
∂u

T =
∂
∂s

N. (52)

It is computed that the curvature vanishes throughout the rectifying motion of the space curve α. This
contadicts with the fact that κ has to be a non-vanishing scalar to define the Frenet-Serret equations. Thus,
we conclude that there exist no rectifying surface in the tangent direction since the time evolution equation
of the rectifying motion is not valid.

3.3. Normal Motion of Curves and Normal Surfaces in E3

Let n and b be arc-length parameters along with the curve α in the normal direction (N) and binormal
direction (B) in the three-dimensional ordinary spaceE3, respectively. Let us also define the time parameter
u and suppose that it is not dependent on neither n nor b. From Eqs. (9, 11) , the time evolution of a space
curve obeying the normal motion is given by the following equation

∂
∂u
α =

∂
∂n
α ×

∂
∂b
α = N × B = T. (53)

Case 1. In this case, we define the normal motion of curves and normal surfaces in the normal direction
in E3. In the normal direction, when the time evolution of a space curve α is given by Eq. (53) the evolution
of the time derivative of Frenet-Serret vectors is computed by using the following compatibility condition

∂
∂u
∂
∂n
α =

∂
∂n
∂
∂u
α, (54)

which implies that

∂
∂u

N =
∂
∂n

T. (55)

The time evolution equation of Frenet-Serret vectors obeying the normal motion is expressed in the following
manner

δ
δu

(T,N,B) = (T,N,B)

 0 0 β
0 0 (Ωb + τ)
−β −(Ωb + τ) 0

 , (56)
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where β is a function of (n, b,u) . Further details regarding the normal motion of curves and normal surfaces
in the normal direction in E3 can be computed similarly as in the case of the osculating motion of curves
and osculating surfaces.

Case 2. In this case, we define the normal motion of curves and normal surfaces in the binormal direction
inE3. In the binormal direction, when the time evolution of a space curve α is given by Eq. (53) the evolution
of the time derivative of Frenet-Serret vectors is computed by using the following compatibility condition

∂
∂u
∂
∂b
α =

∂
∂b
∂
∂u
α, (57)

which implies that

∂
∂u

B =
∂
∂b

T. (58)

The time evolution equation of Frenet-Serret vectors obeying the normal motion is expressed in the following
manner

δ
δu

(T,N,B) = (T,N,B)

 0 ϖ 0
−ϖ 0 (Ωn + τ)
0 −(Ωn + τ) 0

 , (59)

where ϖ is a function of (n, b,u) = 0. Further details regarding the normal motion of curves and normal
surfaces in the binormal direction in E3 can be computed similarly as in the case of the osculating motion
of curves and osculating surfaces.

4. Some Pure Geometric Characteristics of the Anholonomic Surfaces

In the research of pure differential geometry, the theory of surfaces has been of great importance. In the
investigation of the characteristics of a surface, the most significant step is to comprehend the nature of the
formation and the process of the construction of the surface. There exist many well-known construction
methods for the surfaces. For example, they can be constructed provided satisfying particular equations
for different parameters or they can be created by continuous motion of a generating curve or a line. They
can also be defined by the rigid kinematical motion of uniparametric family of curves. However, they
can also be described by the fully abstract motion without referencing to an ambient space such as the
Klein bottle. Recently, different parametric basis functions and operators have been improved to define
special surfaces. As a result of this extensive research effort, it has been developed various surfaces such as
ruled surfaces, developable surfaces, minimal surfaces, Roman surfaces, Boy’s surfaces, Steiner surfaces,
etc. together with their topological and or differential classifications [8 − 17]. In the present section, we
investigate further geometric characterizations including the local behavior of the anholonomic surfaces
generated by the directional motion of space curves.

Theorem 1. Let OAs be the osculating surface in the tangent direction. Then the followings hold.
i. If α is a plane curve then a point of a surface OAs is parabolic. In this case, OAs is also a developable

surface.
ii. If α is not a plane curve then a point of a surface OAs is hyperbolic.

Proof. It is known that the torsion τ of the plane curve vanishes. Thus, if one considers Eqs. (33) then
the proof comes from the fact that a point of a surface is parabolic (hyperbolic) when the Gaussian curvature
is zero (negative), respectively. Here it is also obvious that one of the principal curvatures is non-vanishing.

Theorem 2. Let OAn be the osculating surface in the normal direction. Then the followings hold.
i. If τ = −Ωb then a point of a surface OAn is parabolic. In this case, OAs is also a developable surface.
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ii. If τ , −Ωb then a point of a surface OAn is hyperbolic.

Proof. It is obvious from Eq. (46).

Theorem 3. Let OAs be the osculating surface in the tangent direction. Then the followings hold.
i. s-parameter curves of the osculating surface OAs are geodesics.
ii. u-parameter curves of the osculating surface OAs are geodesics.

Proof. i. From Eq. (8) ,we know that

∂2

∂s2α = κN, (60)

and from Eq. (28) , the normal of the osculating surface is given by

N = −N. (61)

From Eqs. (60, 61) , it is seen that ∂
2

∂s2α is parallel to the osculating surface normal in the tangent direction,
which proves the first part of the theorem.

ii. From Eq. (23) ,we compute that

∂2

∂u2α = −λN. (62)

Thus, it is seen from Eq. (62) that the binormal component of ∂2

∂u2α vanishes. As a result, the proof is
completed.

Theorem 4. Let OAn be the osculating surface in the normal direction. Then the followings hold.
i. n-parameter curves of the osculating surface OAn are geodesics.
ii. u-parameter curves of the osculating surface OAn are geodesics.

Proof. i. From Eq. (13) ,we know that

∂2

∂n2α = −θnsT − (divB)B, (63)

and from Eq. (36) , it is computed that divB = 0. Thus, we get the following equality

∂2

∂n2α = −θnsT. (64)

Moreover, from Eq. (41) , the normal of the osculating surface is given by

N = T. (65)

From Eqs. (64, 65) , it is seen that ∂
2

∂n2α is parallel to the osculating surface normal in the normal direction,
which proves the first part of the theorem.

ii. From Eq. (36) ,we compute that

∂2

∂u2α = −µT. (66)

Thus, it is seen from Eq. (66) that the binormal component of ∂2

∂u2α vanishes. As a result, the proof is
completed.
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Theorem 5. Let OAs be the osculating surface in the tangent direction. Then the followings hold.
i. s-parameter curves of the osculating surface OAs cannot be asymptotics.
ii. u-parameter curves of the osculating surface OAs are asymptotics if and only if

τ = 0.

Proof. i. From Eq. (8) ,we know that

∂2

∂s2α = κN, (67)

and from Eq. (28) , the normal of the osculating surface is given by

N = −N. (68)

From Eqs. (67, 68) , it is seen that the normal component of ∂
2

∂s2α vanishes in the tangent direction if and only
if κ = 0. However, this contradicts with our choice of the non-vanishing curvature due to Eq. (24). Thus, it
proves the first part of the theorem.

ii. From Eq. (23) ,we compute that

∂2

∂u2α = −λN, λ =
τ2

κ
, κ , 0. (69)

Thus, it is seen from Eq. (69) that the normal component of ∂2

∂u2α vanishes in the tangent direction if and
only if τ = 0, i.e. α is a plane curve. As a result, the proof is completed.

Theorem 6. Let OAn be the osculating surface in the normal direction. Then the followings hold.
i. n-parameter curves of the osculating surface OAn are asymptotics.
ii. u-parameter curves of the osculating surface OAn are asymptotics.

Proof. i. From Eq. (13) ,we know that

∂2

∂n2α = −θnsT − (divB)B, (70)

and from Eq. (36) , it is computed that divB = 0. Thus, we get the following equality

∂2

∂n2α = −θnsT. (71)

Moreover, from Eq. (41) , the normal of the osculating surface is given by

N = T. (72)

From Eqs. (71, 72) , it is seen that the normal component of ∂
2

∂n2α vanishes in the normal direction. Thus, it
proves the first part of the theorem.

ii. From Eq. (36) ,we compute that

∂2

∂u2α = −µT. (73)

Thus, it is seen from Eq. (73) that the normal component of ∂2

∂u2α vanishes in the normal direction. As a
result, the proof is completed.

Corollary 7. The parameter curves of the first osculating type of the anholonomic surface OAs are lines
of curvature if and only if α is a plane curve i.e. τ = 0.
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Proof. For the first osculating type of the anholonomic surface OAs , we know from Eqs. (31, 32) that
IF = IIF = 0 if and only if τ = 0. This completes the proof.

Corollary 8. The parameter curves of the second osculating type of the anholonomic surface OAn are
lines of curvature.

Proof. For the second osculating type of the anholonomic surface OAn , we know from Eqs. (44, 45) that
IF = IIF = 0. This completes the proof.

Similar results regarding the rectifying (normal) motion of curves and rectifying (normal) surfaces in
the tangent, normal or binormal direction in E3 can be obtained similarly as in the case of the osculating
motion of curves and osculating surfaces.

5. Application: A Fractional Solution of the Directional Motion of the Helical Model

In this section, we apply a relatively effective approach known as Adomian decomposition technique
for solving the second-order non-linear Laplacian-like partial differential equation, which are obtained
to characterize physical dynamics of the directional motion of the space curve. Accordingly, we first
transform the second-order non-linear Laplacian-like partial differential equation into a time fractional
boundary value problems of wave equation. Then, we apply the fractional derivative in the sense of the
Caputo derivative. Moreover, the Adomian decomposition technique is considered to establish approximate
analytical solutions of time dependent fractional wave equation with the certain constraints of boundary
conditions.

Now, from Eqs. (24, 25), we have the following identity

∂2

∂s2

τ2

κ
+
∂2

∂u2κ = 0, (74)

which explains physical dynamics of the osculating motion of the space curve in the tangent direction in
E3. Then, if we assume that the space curve is a helix then the ratio of the torsion and curvature of the
curve is a constant. This assumption provides to analyze more specific and attractive case. Finally, Eq. (74)
is written in the following form

τuu + k2τss = 0. (75)

From the fractional differential approach and Eq. (75) we obtain that

Dα∗uτ(s,u) = −k2 ∂
2

∂s2 τ(s,u), 0 < u < 1, 1 < α ≤ 2. (76)

Now, let us consider the following boundary value problem

Dα∗uτ(s,u) = −k2 ∂
2

∂s2 τ(s,u), 0 < u < 1, 1 < α ≤ 2, (77)

τ(s, 0) = sin s, τ(s, 1) = sin s, (78)

where Dα∗u is the Caputo fractional derivative of order α, 1 < α ≤ 2 with respect to time variable u. If the
inverse operator Iαu is applied to the both sides of Eq. (77), then we compute that

τ(s,u) = τ(s, 0) + u τu(s, 0) + Iαu(−k2 ∂
2

∂s2 τ(s,u)). (79)
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Then, the Adomian decomposition method [18, 19] implies that

∞∑
i=0

τi(s,u) = τ(s, 0) + u τu(s, 0) + Iαu(−k2 ∂
2

∂s2 (
∞∑

i=0

τi(s,u))), (80)

τ0(s,u) = τ(s, 0) + u τu(s, 0),

τi+1(s,u) = Iαu(−k2 ∂
2

∂s2 τi(s,u)), i ≥ 0.

Furthermore, from the Taylor series expansion of sin s, we calculate the following equalities

τ0(s,u) = (1 − u) sin s + us,

τ1(s,u) = −k2 uα

Γ(α + 1)
(1 − u) sin s − uα+1 s3

3!
,

...

τ(s,u) =

∞∑
i=0

(−1)iuiα

Γ(iα + 1)
(k2)i(1 − u) sin s +

∞∑
i=0

(−1)iuiα+1s2i+1

(2i + 1)!
.

τ(s,u) = (1 − u)Eα(k2uα) sin s + u1− α2 sin(u
α
2 s), (81)

where Eα(u) is the Mittag–Leffler function defined by

Eα(u) =
∞∑

i=0

ui

Γ(iα + 1)
, |u| < ∞.

When α = 2, the solution of the wave equation Eq. (77) is given by the following equality

τ(s,u) = (1 − u)
∞∑

i=0

(k2)i cos u sin s + sin(us).

Figure 1: The 3D graphics of the fractional differential equation Eq. (77) for (k=0.5) (a) α = 1.25, (b) α = 1.5, (c) α = 1.75.
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Figure 2: The 2D graphics of the fractional differential equation Eq. (77) for different values of α. (k=0.5, s=0.4)

s \ u 0.5 1 1.5 2 2.5
0.5 0.278376 0.603928 0.508998 9.09058 96.0454
1 0.427139 0.841471 0.366079 16.9675 170.203

1.5 0.531204 0.960396 0.146163 20.8174 202.874
2 0.599487 0.999591 0.001564 19.5354 185.758

2.5 0.638366 0.979623 0.0258319 13.4167 123.008

Table 1. ADM solutions of the fractional differential equation Eq. (77)
for different values of s and u.(α = 1.25, k = 0.5)

In Figure 1, Figure 2 and Table1, six-dependent terms of the decomposition series are obtained by the
ADM solutions.

We can also solve similar type equations to analyze the physical dynamics of the other directional
motions of the space curve. However, we left that exercise to the reader to keep the manuscript in the
concise and compact form.

6. Conclusion

The manuscript focuses on the directional motion of curves in the three-dimensional ordinary space
E3. We report evolved geometric quantities and anholonomic coordinates with respect to those motions.
At the same time, it has been defined a new class of directional surfaces. Moreover, some geometric
characterization and local behavior of these surfaces are determined.

In differential geometry, there exists quite a number of fascinating special cases (minimal surfaces, ruled
surfaces, parallel surfaces, surfaces of revolution), which become a beautiful example of differentiable
methods. In future studies, we consider these special cases to focus more on defining new directional
surfaces. For example, based on the definition of the ruled surface, it is quite natural to describe the
osculating ruled surface in the tangent direction due to the osculating motion of the space curve. Similar
definitions may also be obtained for other cases by using the same argument. Thus, we can further discuss
whether a new family of surfaces developable or not. Moreover, the inextensibility, bi-inextensibility, and
parallelism conditions of the surface evolution and its flow can also be characterized.

In determining the characterization of many dynamical and physical systems, one encounters the
mathematical ideas of geometric quantities and variables such as curvatures, abnormality functions, etc.
Examples of such dynamics mostly contain connections between the integrable systems and the differential
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geometry of curve motion. One example is that the sine-Gordon equation describes the dynamics of more
generalized types of evolution, while the nonlinear Schrödinger equation deals with the special cases of
evolution systems that are connected to solitons and other integrable systems. These systems are generally
represented by time-dependent equations. In the future, we plan to investigate purely local properties of
anholonomic surface dynamics preserving global restrictions. Concentrating on the fundamental classes
of directional motions, we attempt to obtain special partial differential equations associated with these
motions and finally compute their particular and explicit solutions.

Data Availability Statement

The data that support the findings of this study are available from the corresponding author upon
reasonable request.
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[17] N. Gürbüz, D.W. Yoon, Hasimoto surfaces for two classes of curve evolution in Minkowski 3-space, Demonstratio Mathematica

53 (2020) 277-284.
[18] Z.M. Odibat, S. Momani, Approximate solutions for boundary value problems of time-fractional wave equation, Applied

Mathematics and Computation 181 (2006) 767-774.
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