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Abstract. In this paper, we obtain some classification results of three-dimensional non-coK&hler almost
coKihler manifold M whose Reeb vector field is strongly normal unit vector field with £(||V:hl]) = O, for
which the *-Ricci tensor is of Codazzi-type or M satisfies the curvature condition Q" - R = 0.

1. Introduction

Corresponding to Ricci tensor, Tachibana in [22] introduced the concept of *-Ricci tensor. In [10] Hamada
applied these ideas to real hypersurfaces in complex space form. The *-Ricci tensor S* is defined by

S(X,Y) = %trace{(p oR(X, pY)}, (1)

for all vector fields X,Y, where ¢ is a (1,1)-tensor field. If *-Ricci tensor is a constant multiple of g, then
M is said to be *-Einstein manifold. Hamada gave a complete classification of *-Einstein hypersurfaces,
and further Ivey and Ryan [12] updated and refined the work of Hamada [10]. It is important to note
that Kaimakamis and Panagiotidou [13] introduced the concept of *-Ricci soliton in non-flat complex space
form as a generalization of *+-Einstein metric. Further, the idea of *-Ricci solitons in almost contact metric
manifolds was extensively studied by many authors in [5, 7, 11, 23, 24].

As a special class of almost contact metric manifolds and analogy of Kidhler manifolds, the geometry of
(almost) coKéhler manifolds was first introduced by Blair [1] and studied by Goldberg and Yano [8] and
Olszak [18]. Such manifolds are actually the almost cosymplectic manifolds studied in the above literature.
Due to Li’s [14] work, recently many authors in their papers adopted this new terminology. From Li’s work
we are aware that the coKéhler manifolds are really odd dimensional analogues of Kihler manifolds. In
a recent survey [3], the authors collected some new results concerning (almost) coKéhler manifolds both
from geometrical and topological point of view. Perrone [20, 21] obtained a complete classification results of
three-dimensional almost coKédhler manifolds which are homogeneous or the Reeb vector field is minimal
and also gave a local characterization of such manifolds.
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In recent years, many classification results on three-dimensional almost coKédhler manifolds are emerged.
For instance, Cho [4], studied Reeb flow symmetry (that is, the Ricci tensor is invariant along the Reeb
flow) on three-dimensional almost coKédhler manifolds. Moreover, the authors respectively in [6, 15, 26]
considered local @-symmetry, curvature and ball homogeneities in three-dimensional almost coKéhler
manifolds. Some other symmetry properties in terms of the Ricci operators, such as Codazzi-type, n-
parallelism and transversal Killing on three-dimensional almost coKadhler manifolds were also studied in
[19, 27]. The authors in [11] studied contact metric generalized (x, u)-space form under some curvature
condtion in terms of *-Ricci tensor, such as n-recurrent, *-Ricci semi-symmetry and globally ¢-+Ricci
symmetry. Motivated by the above studies, in the present paper we start to study Codazzi-type *-Ricci
tensor and curvature condtion Q* - R = 0 on three-dimensional almost coKdhler manifolds under some
reasonable conditions for the first time.

2. Almost coKihler three-manifolds

Let M be a smooth differentiable manifold of dimension 21 + 1. On M, if there exist a (1, 1)-tensor field
@, a characterstic vector field &, a 1-form 7 and a Riemannian metric g such that

P’ X = -X+n(XE &) =1,
9(@X, ¢Y) = g(X, Y) = n(X)n(Y),
for any vector fields X, Y, then we say that M admits an almost contact metric structure. We call £ as a Reeb

vector field. As a result of (2) we have ¢(&) = 0, n(¢) = 0. One can define an almost complex structure | on
M xR by

(2)

d d
I(X,u%) = ((pX - ué, n(X)%),

where t is the coordinate of R and u is a smooth function. If the aforementioned structure | is integrable,
then we say that an almost contact structure is normal, and this is equivalent to require

[p, 0l = -2dn® &,

where [¢, ¢] indicates the Nijenhuis tensor of ¢.

In this paper, by an almost coKédhler manifold we mean an almost contact metric manifold (M, ¢, &, 1, 9)
in which 1 and ® are closed, where the fundamental 2-form @ of almost contact metric manifold M is
defined by ®(X,Y) = g(X, ¢Y), for all vector fields X and Y. An almost coKdhler manifold is said to be
coKéhler manifold (see [14]) if the associated almost contact structure is normal, which is also equivalent to

Vo =0, (VO =0).

On almost coKdhler manifold, we set three (1,1)-type tensor fields h = %Eé g, where £1is the Lie differentiation,
Jacobi operator ¢ = R(-, £)& generated by & and i’ = h o ¢, where R is the Riemannian curvature tensor.
From [2, 18], we are aware that ¢, h and /i’ are symmetric and satisfy

héE=¢£=0, tr(h)=tr(h')=0, 3)
hp+ph=0, VéE=h, divé=0, 4)
Veh = -H*p —pl, @tp—=21?, ®)

where tr and div indicates the trace and divergence operators, respectively. The well-known Ricci tensor S
is defined by

S(X,Y) = g(QX,Y) = t{Z — R(Z, X)Y},
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where Q denotes the Ricci operator. Note that a three-dimensional almost coKdhler manifold is coKdhler if
and only if & vanishes. In this connection it is worth to note that (almost) coKédhler manifold in fact is the
(almost) cosymplectic manifold studied in [4, 20].

Let us recall some useful formula listed in [21]. Let U be the open subset of three-dimensional
almost coKéhler manifold M satisfying & # 0 and U, be the open subset of M which is defined by
U, = {p € M : h = 0 in a neighborhood of p}. Consequently, U; U U, is open and dense in M and there
exists a local orthonormal basis {&, ¢, pe} of three smooth unit eigenvectors of & for any point p € U; U U,.
On U, we set h(e) = Ae and hence hpe = —A@e, where A is a positive function on U;. The eigenvalue
function A is continuous on M and smooth on U; U Us.

Lemma 2.1. On U, the Levi-Civita connection is given by
Vee = fope, Vepe=—fe, V.&E=-Ape, V& =-Ae,
1 1
Vee = 5= (pe(A) +o(@)pe,  Vopepe = 55 (e(A) + a(ge))e,
1 1
Vpee = A&~ ﬁ(E(A) +o(pe))pe, Vepe= A&~ ﬁ((pe(ﬂ) +a(e)e,
where f is a smooth function and o is the 1-form defined by o(-) = S(-, &).

As a result of above lemma, we have the following Poisson brackets:

(& el =(A+ flpe, [E,pel = (A= fle,

le, pe] = i(e()\) + o(pe))pe — i( e(A) + a(e))e ©)
P pepeT ‘
Putting (6) into the well-known Jacobi identity [[£, e], pe] + [[e, pel, E] + [[ge, &], €] = 0, we obtain
A -A
e - 1+ ¢ P TRy otgen =0, )

A A
pe(d + )+ 5(6( )Z;((Pe)) - f;\ (pe(d) + o(e)) = 0.

The Ricci operator Q of three-dimensional almost coKdhler manifold is expressed (see Proposition 4.1 in
[21]) on U, by

Q¢ = —2A%& + o(e)e + a(pe)pe,
Qe = o(e)é + %(r +2A% —4fA)e + E(A)pe, 8)
Qe = a(pe)& + E(M)e + %(r +2A% + 4fN)pe,

with respect to the local basis {&, ¢, ¢}, where r denotes the scalar curvature.

3. #-Ricci tensor on almost coKidhler three-manifolds

In this section, first we classify three-dimensional almost coKdhler manifolds whose *-Ricci tensor is of
Codazzi-type, that is,

(VxQ)Y = (VyQ)X, ©)

for any vector fields X and Y.
Before giving our main results, we first find the expression of *-Ricci operator on non-coKéahler almost
coKéhler three-manifold with respect to the local basis {&, e, pe}.
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Lemma 3.1. The *-Ricci opearator Q" of three-dimensional almost coKihler manifold is expressed on Uy by

Q& =a(e)e+a(pe)pe, Qe= ( + 2/\2) e, Qpe= ( + 2/\2)(pe (10)

with respect to {&, e, pe}.

Proof. It is well known that the curvature tensor R of any three-dimensional Riemannian manifold is given

by
R(X, V)Z =g(Y, Z)QX — 9(X, 2)QY + §(QY, 2)X = g(QX, 2)Y
- 202X - g(X,2)Y),

for any vector fields X, Y,Z. Applying (8), the curvature tensor R of a non-coKdhler three-dimensional
almost coKéhler manifold M can be given as the following:

R(e, &)E = —A(A +2f)e + E(A) e, (11)
R(pe, £)& = E(A)e = A(A = 2f)pe, (12)
R(e, &)e = AA + 2f)E — a(qpe)pe, (13)
R(e, &)pe = —E(A)E + a(gpe)e, (14)

R(pe, &)e = —E(A)E + ale)pe, (15)

R(pe, )pe = MA - 2f)& = ale)e, (16)
R(e, pe)é = o(pe)e — o(e)pe, (17)

R(e, pe)e = —o(pe)é — ( + 2)\2)@6 (18)
R(e, pe)pe = o(e)é + (E + 2/\2)6. (19)

By the definition of *-Ricci tensor, we have

S'(X,Y) = g(eR(X, pY)e;, e))

N =

g(R(ei, pen) X, @Y)

N~

&Mw ':'Mw

3
1
=3 Zg((pR (61, pe)X, Y),
i=1

where e; = &, e; = e and e3 = @e. In this sequel, we can write

| =

3
2 Z QR(e;, per) X
i=1

| =

5{PR(e, pe)X — pR(gpe, e)X}. (20)
Emplyoing X = & in above equation, recalling (17) we obtain
Q& = @R(e, pe)s
= g(e)e + o(pe)pe.

Simillarly, setting X by e and e separately in (20), utilization of (18) and (19) gives second and third term
of (10) respectively. [
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Proposition 3.2. The *-Ricci tensor of three-dimensional almost coKihler manifold is symmetric if and only if Reeb
vector field is an eigenvector field of the Ricci operator.

Proof. As a result of Lemma 3.1, we have
S'(&e)=g9(Q&e)=0(e), S(eé)=g(Q%&) =0,
S(e, pe) = g(Q'e,pe =0, S'(&, pe) = g(Q°E, pe) = a(pe),
S'(pe, &) = g(Q'pe, &) =0,  S'(pe,e) = g(Q pe,e) =0

Above relations enables us to conclude that S* is symmetric if and only if o(e) = o(pe) = 0, that is, Reeb
vector field is an eigenvector field of the Ricci operator. [J

Remark 3.3. It is worth to remark that the *-Ricci tensor is not symmetric for three-dimensional almost coKihler
manifolds. But, our Proposition 3.2 gives a necessary and sufficient condition for the =-Ricci tensor to be symmetric.

Lemma 3.4. The +-Ricci operator of three-dimensional non-coKéhler almost coKihler manifold is of Codazzi type if
and only if Reeb vector field is an eigenvector field of the Ricci operator and r = —4A2,

Proof. On U, by applying Lemma 2.1 and relation (10) we obtain the following equations:

(VeQ)E = (E(o(e)) — falpe))e + (E(a(gpe)) + fole)pe, (21)
(V:Q)e = & (g + 2/\2)e, (VeQ')pe = & (f + 2/12)goe, (22)
(V@ =e(3+20%)e, (VpuQhpe = o5 +24%) g, 23)
(V.Q)pe = A (5 +212) & = Aote)e + (¢ (5 +202) - Ao(pe))pe, (24)
(VpeQ)e = ( + 2/12) N ((pe( + 2)\2) Ao(@)e — Aa(pe)pe, (25)

(V.Q)E = Aa(pe)é + {e(a(e)) - 299 (pe(n) + o >>}

{A (5 +202) + etotpen + S ety + o(e»} ve, (26)
(VpeQ)E = Aa(e)E + {)\ (g + 2/\2) T ge(o(e)) + ((P )(e()\) + G((pe))}
{qoe(a«pe)) - e+ a(cpe»} pe. @)

Let us suppose that the *-Ricci operator of M is of Codazzi-type. Then switching X = eand Y = £ into (9)
we obtain (V.Q")E — (VeQ)e = 0. In this relation, applying (26) and first term of (22) we get

Ao(pe) =0,
e M(@ew wote) -3 + Mz) =0 (28)
A (% + 2}\2) + e(o(pe)) + o(e )((pe(/\) +o(e) =

Similarly, setting X = e and Y = ¢ into (9) we have (V,,Q")& — (VeQ")pe = 0. In this relation, using (27)
and second term of (22) we obtain

Ao(e) =
((p e)

A (% + 2A2) + pe(a(e)) + (e(A) + a(ge)) = (29)

petotge) - S e + otpe) - £ (5 + zaz) -0
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Employing X = e and Y = @e into (9) we obtain (V.Q")pe — (V,.Q")e = 0. In this relation, applying (24) and
(25) we get

e(% + 2)\2) 0, <pe(£ + 2)\2) 0. (30)

In view of A is positive function on U;, it follows from first terms of (28) and (29) that o(e) = o(pe) = 0,
that is, Reeb vector field is an eigenvector field of the Ricci operator. This together with second term of (29)
enables us to claim that r = —4A2. Conversely, suppose that Reeb vector field is an eigenvector field of the
Ricci operator and the relation r = —4A2 holds, one can check directly that (9) holds trivially for any vector
fields X, Y. O

As a consequence of above lemma, we state the following:

Proposition 3.5. If +-Ricci operator of three-dimensional non-coKihler almost coKihler manifold is of Codazzi-type,
then the *-Ricci tensor vanishes.

In [9], the authors introduced the notion of strongly normal unit vector field. A unit vector field V on a
Riemannian manifold is called strongly normal if

g(VxVV)Y,Z) =0, forany X,Y,Z L V.

Many geometers studied three-dimensional almost coKdhler manifold under the condition V¢h = 0 (see
[28]). In this paper we consider the condition &(||[Veh|[) = 0, which is weaker than V¢ = 0. Applying this
with Lemma 3.4, we obtain the following outcome:

Theorem 3.6. Let M be a three-dimensional non-coKihler almost coKihler manifold whose Reeb vector field & is
strongly normal unit vector field with E(||V¢hl|) = 0. Then *-Ricci operator is of Codazzi-type if and only if it is locally
isometric to a simply connected unimodular Lie group equipped with a left invariant almost coKihler structure. More
precisely, we have the following classification:

o Incase f =0, then M is locally isometric to the group E(1,1) of rigid motions of the Minkowski 2-space.

o Incase f > 0, then M is locally isometric to either the universal covering EQ2) of the group of rigid motions of
the Euclidean 2-space if f > A, the Heisenberg group H® if f = A or the group E(1,1) of rigid motions of the
Minkowski 2-space if f < A.

o Incase f <0, then M is locally isometric to either the universal covering EQ) of the group of rigid motions of
the Euclidean 2-space if f < —A, the Heisenberg group H if f = —A or the group E(1, 1) of rigid motions of the
Minkowski 2-space if f > —A.

Proof. As a result of Lemma 2.1 we find
(VoVE)e = —A2E + ge(A)e — e(A)pe,

(V.VE)pe = (VyeVE)e = —e(A)e — pe(A)pe,
(v(peVS)(Pe =—(V,V&)e - 2/\25/

and so & is strongly normal implies e(1) = @e(A) = 0. Suppose that M has a Codazzi-type *-Ricci tensor,
then Lemma 3.4 is applicable. Switching r = —4A? into (8), recalling o(e) = o(pe) = 0 yields

Q& =-2A%, Qe=-AA+ 2f)e+ E(MN)pe, Qe = E(A)e + A2f — A)pe. (31)
Applying Lemma 2.1 and (31), by a direct calculation, we have

(VeQ)& = —4AE(A)E,  (VeQ)e = AE(A)E — 2Ae(f)e + e(E(A))pe,
(VpeQ)pe = AE(A)E + pe(E(A))e + 2Ape(f)pe,
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where we utilized X(trh?) = 0 for any X € Kern. Applying aforementioned three equations in the well-
known formula div Q = }grad r we see that the following relation holds on U;:

%Wﬂd r==2AEA)E + (pe(E(A)) = 2Ae(f))e + 2Ape(f) + e(E(A)))pe. (32)

In view of A > 0, taking inner product of above equation with £ we obtain that £(1) = 0. Utilization of this
in X(trh*) = 0 for any X € Kern shows that A is a positive constant and the scalar curvature r is also constant.
Again, take inner product of (32) with e and ¢ respectively to obtain e(f) = ge(f) = 0, that is, X(f) = 0 for
any X € Ker n. Utilization of Lemma 2.1, a simple calculation, gives
1
Vih = XE(A)h + 2fph.
Since & is minimal and A is constant, we obtain from above equation that ||[V:h||> = 842 f2. We know that
e(f) = pe(f) = 0 and hence, since E(|[V¢hl|) = 0 gives £(f) = 0, so that f is constant.
Next, we shall separate our discussions into two cases as follows.
Case 1. f = 0. In this context, we obtain from Poisson brackets (6) that

[E,e] = Ape, [pe, &1 =—Ae, [e,pe] =0.

According to Milnor [16] and the abovementioned relations, it can be easily seen that the manifold is locally
isometric to the group E(1,1) of rigid motions of the Minkowski 2-space equipped with a left invariant
almost coKahler structure.

Case 2. f # 0. We obtain from Poisson brackets (6) that

[& el = A+ flpe, [E,pel = (A~ fle, [e pe] =0.

Now, we consider the following invariant
p = IVehll = V2Ilnll%,

which is defined by Perrone in [21]. From the relation V¢h = 2 fh with f € R and using simple computation
we obtain that

p=2V2A(f = A), if f>0,
p=-2V2A(f+ 1), if f<O.

We know that Reeb vector field is minimal and also note that both ||V:k|| and ||k are constants. From
Theorem 4.4 of Perrone [21] we conclude that M is locally isometric to a simply connected unimodular
Lie group G equipped with a left invariant almost coKéhler structure. More precisely, G is the universal
covering E(2) of the group of rigid motions of the Euclidean 2-space if § > 0, the Heisenberg group H® if
p = 0 or the group E(1, 1) of rigid motions of the Minkowski 2-space if p < 0.

Conversely, on non-coKédhler almost coKéahler structures defined on the above Lie groups, from Perrone
[20] one can easily check that r is constant and hence equation (9) holds true. This completes the proof. [

Now, we give the coKdhler version of Theorem 3.6 as follows:

Theorem 3.7. The +-Ricci operator of three-dimensional coKihler manifold is of Codazzi-type if and only if the
manifold is locally isometric to the product space R x N?(c), where N*(c) denotes a Kiihler surface of constant
curvature ¢ (c = 0 means that M is locally the flat Euclidean space R®).

Proof. The authors in [17], gave the expression of *-Ricci operator Q" on three-dimensional coKdhler mani-
fold in the following form:

r

QX = 2X - Zn(X)e.
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But, we know that the expression of Ricci operator is of the form QX = 7X — 57n(X)¢&. This together with
above equation shows that Q* = Q. Consequently, M becomes a manifold whose Ricci operator is of
Codazzi-type (Riemannian curvature tensor is harmonic). According to Theorem 5.1 of Wang [25], we state
that the manifold M is locally isometric to the product space R x N?(c), where N?(c) denotes a Kihler surface
of constant curvature ¢ (c = 0 means that M is locally the flat Euclidean space R%). The converse part can be
proved easily. [

Now, we characterize three-dimensional almost coKé&hler manifold whose *-Ricci operator satisfy Q*-R =
0 and this curvature condition is defined by

Q- R(X Y)Z=Q(R(XY)Z)-RQX,Y)Z
~R(X,Q'Y)Z - R(X, V)Q'Z, (33)

for any vector fields X, Y, Z.
We prove the following outcome.

Lemma 3.8. A three-dimensional non-coKihler almost coKiihler manifold M satisfies the curvature condition Q*-R =
0 if and only if Reeb vector field is an eigenvector field of the Ricci operator and the scalar curvature r = —4A2.

Proof. Let us suppose that M satisfies the curvature condition Q* - R = 0, then setting X = Z =eand Y = ¢e
into (33), recalling (10) and (18) gives

2
o@o(pe) =0, (%+2090(pe) =0, 2 (g + 2)\2) — (o(qe)? = 0. (34)
Similarly, taking X = eand Y = Z = ¢e into (33), applying (10) and (19) we obtain
2
(% + 2/\2)0(6) =0, (0(e)? - 2(% + 2/\2) =0, o(pe)a(e) = 0. (35)

Setting X = ¢, Y = e and Z = £ into (33), according to (10) and (18) one can get
(% + 2)\2)0(6) _0, (g ; 2A2)a(<pe) 0. (36)
Substituting X = Z = eand Y = ¢ into (33), as a result of (10), (13) and (18) gives
(a(pe))? = 2A(A + 2f) (% + 2A2) =0, A(A+2f)a(e) =0, .
AL + 2)o(pe) +2 (% + 2)\2) o(qe) = 0. 7
Setting X = eand Y = Z = ¢ into (33), utilization of (10) and (11)-(19) yields
a(pe)é(A) — A(A +2f)a(e) =0, (a((pe))2 =0, o(e)o(pe)=0. (38)
Taking X =¢, Y = £ and Z = ¢e into (33), applying (10) and (11)-(19) we obtain

2 (% ; 2/\2) () - a(e)o(ge) = 0,

r (39)
S(OEN) + 2(5 ; ZAZ)G((pe) =0, o(pe)E(d) = 0.
Substituting X = @e, Y = £ and Z = e into (33), recalling (10) and (11)-(19) gives
260 (5 +20) = 0(@)ope) =0, o) =0,
(40)

o(Qe)E) +2 (g + 2/\2)0(@) 0.
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Switching X = Z = pe and Y = £ into (33) and making use of (10) and (11)-(19) we obtain

(0(e)® = 2A(A = 2f) (% ; 2/\2) =0, A(A=2f)o(pe) =0,
(41)
AL = 2f)a(e) + 20(e) (% + 2)\2) 0.

Setting X = @e and Y = Z = £ into (33), utilization of (10) and (11)-(19) we have

o(e)&(A) — AMA = 2f)o(pe) =0, o(e)o(pe) =0, (o(e))* = 0. (42)

The relation o(e) = o(pe) = 0 follows directly from third term of (42) and second term of (38). This together
with second term of equation (35) shows that the scalar curvature r = —4A?. Convesely, if the conditions
r = —4A% and o(e) = o(¢pe) = 0 holds, then it is not hard to show that M satisfies Q*- R =0. [

Proposition 3.9. If three-dimensional non-coKihler almost coKihler manifold M satisfies the curvature condition
Q" - R =0, then the *»-Ricci tensor vanishes.

Theorem 3.10. Let M be a three-dimensional non-coKihler almost coKihler manifold whose Reeb vector field & is
strongly normal unit vector field with £(|[V¢hl) = 0. Then M satisfies the curvature condition Q* - R = 0 if and only
if it is locally isometric to a simply connected unimodular Lie group equipped with a left invariant almost coKihler
structure. More precisely, we have the following classifications:

o Incase f =0, then M is locally isometric to the group E(1,1) of rigid motions of the Minkowski 2-space.

o Incase f > 0, then M is locally isometric to either the universal covering EQ) of the group of rigid motions of
the Euclidean 2-space if f > A, the Heisenberg group H® if f = A or the group E(1,1) of rigid motions of the
Minkowski 2-space if f < A.

o Incase f <0, then M is locally isometric to either the universal covering EQ2) of the group of rigid motions of
the Euclidean 2-space if f < —A, the Heisenberg group H if f = —A or the group E(1, 1) of rigid motions of the
Minkowski 2-space if f > —A.

Proof. The proof of this theorem follows the same steps and arguments as followed in Theorem 3.6. [J

Remark 3.11. From Lemma 3.4 and Lemma 3.8, we can state that in a three-dimensional non-coKihler almost
coKdhler manifold M the following conditions are equivalent:

o x-Ricci operator is Codazzi-type.
o M satisfies Q*-R = 0.

e Reeb vector field is an eigenvector field of the Ricci operator and the scalar curvature r = —4A2,
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