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Available at: http://www.pmf.ni.ac.rs/filomat

∗-Ricci tensor on three dimensional almost coKähler manifolds

V. Venkateshaa, Uday Chand Deb, H. Aruna Kumarac, Devaraja Mallesha Naikd

aDepartment of Mathematics, Kuvempu University, Shankaraghatta, Shivamogga, Karnataka-577 451, India
bDepartment of Mathematics, University of Calcutta, 35 Ballygunge Circular Road, West Bengal 700019, India

cDepartment of Mathematics, BMS Institute of Technology and Management, Yelahanka, Bangalore-560 064, India
dDepartment of Mathematics, Kuvempu University Shivamogga, Karnataka 577451, India

Abstract. In this paper, we obtain some classification results of three-dimensional non-coKähler almost
coKähler manifold M whose Reeb vector field is strongly normal unit vector field with ξ(∥∇ξh∥) = 0, for
which the ∗-Ricci tensor is of Codazzi-type or M satisfies the curvature condition Q∗ · R = 0.

1. Introduction

Corresponding to Ricci tensor, Tachibana in [22] introduced the concept of ∗-Ricci tensor. In [10] Hamada
applied these ideas to real hypersurfaces in complex space form. The ∗-Ricci tensor S∗ is defined by

S∗(X,Y) =
1
2

trace{φ ◦ R(X, φY)}, (1)

for all vector fields X,Y, where φ is a (1,1)-tensor field. If ∗-Ricci tensor is a constant multiple of 1, then
M is said to be ∗-Einstein manifold. Hamada gave a complete classification of ∗-Einstein hypersurfaces,
and further Ivey and Ryan [12] updated and refined the work of Hamada [10]. It is important to note
that Kaimakamis and Panagiotidou [13] introduced the concept of ∗-Ricci soliton in non-flat complex space
form as a generalization of ∗-Einstein metric. Further, the idea of ∗-Ricci solitons in almost contact metric
manifolds was extensively studied by many authors in [5, 7, 11, 23, 24].

As a special class of almost contact metric manifolds and analogy of Kähler manifolds, the geometry of
(almost) coKähler manifolds was first introduced by Blair [1] and studied by Goldberg and Yano [8] and
Olszak [18]. Such manifolds are actually the almost cosymplectic manifolds studied in the above literature.
Due to Li’s [14] work, recently many authors in their papers adopted this new terminology. From Li’s work
we are aware that the coKähler manifolds are really odd dimensional analogues of Kähler manifolds. In
a recent survey [3], the authors collected some new results concerning (almost) coKähler manifolds both
from geometrical and topological point of view. Perrone [20, 21] obtained a complete classification results of
three-dimensional almost coKähler manifolds which are homogeneous or the Reeb vector field is minimal
and also gave a local characterization of such manifolds.
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In recent years, many classification results on three-dimensional almost coKähler manifolds are emerged.
For instance, Cho [4], studied Reeb flow symmetry (that is, the Ricci tensor is invariant along the Reeb
flow) on three-dimensional almost coKähler manifolds. Moreover, the authors respectively in [6, 15, 26]
considered local φ-symmetry, curvature and ball homogeneities in three-dimensional almost coKähler
manifolds. Some other symmetry properties in terms of the Ricci operators, such as Codazzi-type, η-
parallelism and transversal Killing on three-dimensional almost coKähler manifolds were also studied in
[19, 27]. The authors in [11] studied contact metric generalized (κ, µ)-space form under some curvature
condtion in terms of ∗-Ricci tensor, such as η-recurrent, ∗-Ricci semi-symmetry and globally φ-∗-Ricci
symmetry. Motivated by the above studies, in the present paper we start to study Codazzi-type ∗-Ricci
tensor and curvature condtion Q∗ · R = 0 on three-dimensional almost coKähler manifolds under some
reasonable conditions for the first time.

2. Almost coKähler three-manifolds

Let M be a smooth differentiable manifold of dimension 2n + 1. On M, if there exist a (1, 1)-tensor field
φ, a characterstic vector field ξ, a 1-form η and a Riemannian metric 1 such that

φ2X = −X + η(X)ξ, η(ξ) = 1,
1(φX, φY) = 1(X,Y) − η(X)η(Y),

(2)

for any vector fields X,Y, then we say that M admits an almost contact metric structure. We call ξ as a Reeb
vector field. As a result of (2) we have φ(ξ) = 0, η(φ) = 0. One can define an almost complex structure J on
M ×R by

J
(
X,u

d
dt

)
=

(
φX − uξ, η(X)

d
dt

)
,

where t is the coordinate of R and u is a smooth function. If the aforementioned structure J is integrable,
then we say that an almost contact structure is normal, and this is equivalent to require

[φ,φ] = −2dη ⊗ ξ,

where [φ,φ] indicates the Nijenhuis tensor of φ.
In this paper, by an almost coKähler manifold we mean an almost contact metric manifold (M, φ, ξ, η, 1)

in which η and Φ are closed, where the fundamental 2-form Φ of almost contact metric manifold M is
defined by Φ(X,Y) = 1(X, φY), for all vector fields X and Y. An almost coKähler manifold is said to be
coKähler manifold (see [14]) if the associated almost contact structure is normal, which is also equivalent to

∇φ = 0, (∇Φ = 0).

On almost coKähler manifold, we set three (1,1)-type tensor fields h = 1
2 £ξ1, where £ is the Lie differentiation,

Jacobi operator ℓ = R(·, ξ)ξ generated by ξ and h′ = h ◦ φ, where R is the Riemannian curvature tensor.
From [2, 18], we are aware that ℓ, h and h′ are symmetric and satisfy

hξ = ℓξ = 0, tr(h) = tr(h′) = 0, (3)
hφ + φh = 0, ∇ξ = h′, div ξ = 0, (4)

∇ξh = −h2φ − φℓ, φℓφ − ℓ = 2h2, (5)

where tr and div indicates the trace and divergence operators, respectively. The well-known Ricci tensor S
is defined by

S(X,Y) = 1(QX,Y) = tr{Z→ R(Z,X)Y},
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where Q denotes the Ricci operator. Note that a three-dimensional almost coKähler manifold is coKähler if
and only if h vanishes. In this connection it is worth to note that (almost) coKähler manifold in fact is the
(almost) cosymplectic manifold studied in [4, 20].

Let us recall some useful formula listed in [21]. Let U1 be the open subset of three-dimensional
almost coKähler manifold M satisfying h , 0 and U2 be the open subset of M which is defined by
U2 = {p ∈ M : h = 0 in a neighborhood of p}. Consequently, U1 ∪ U2 is open and dense in M and there
exists a local orthonormal basis {ξ, e, φe} of three smooth unit eigenvectors of h for any point p ∈ U1 ∪U2.
On U1, we set h(e) = λe and hence hφe = −λφe, where λ is a positive function on U1. The eigenvalue
function λ is continuous on M and smooth onU1 ∪U2.

Lemma 2.1. OnU1, the Levi-Civita connection is given by

∇ξe = fφe, ∇ξφe = − f e, ∇eξ = −λφe, ∇φeξ = −λe,

∇ee =
1

2λ
(φe(λ) + σ(e))φe, ∇φeφe =

1
2λ

(e(λ) + σ(φe))e,

∇φee = λξ −
1

2λ
(e(λ) + σ(φe))φe, ∇eφe = λξ −

1
2λ

(φe(λ) + σ(e))e,

where f is a smooth function and σ is the 1-form defined by σ(·) = S(·, ξ).

As a result of above lemma, we have the following Poisson brackets:

[ξ, e] = (λ + f )φe, [ξ, φe] = (λ − f )e,

[e, φe] =
1

2λ
(e(λ) + σ(φe))φe −

1
2λ

(φe(λ) + σ(e))e.
(6)

Putting (6) into the well-known Jacobi identity [[ξ, e], φe] + [[e, φe], ξ] + [[φe, ξ], e] = 0, we obtain

e(λ − f ) + ξ
(
φe(λ) + σ(e)

2λ

)
+

f − λ
2λ

(e(λ) + σ(φe)) = 0,

φe(λ + f ) + ξ
(

e(λ) + σ(φe)
2λ

)
−

f + λ
2λ

(φe(λ) + σ(e)) = 0.
(7)

The Ricci operator Q of three-dimensional almost coKähler manifold is expressed (see Proposition 4.1 in
[21]) onU1 by

Qξ = −2λ2ξ + σ(e)e + σ(φe)φe,

Qe = σ(e)ξ +
1
2

(r + 2λ2
− 4 fλ)e + ξ(λ)φe,

Qφe = σ(φe)ξ + ξ(λ)e +
1
2

(r + 2λ2 + 4 fλ)φe,

(8)

with respect to the local basis {ξ, e, φ}, where r denotes the scalar curvature.

3. ∗-Ricci tensor on almost coKähler three-manifolds

In this section, first we classify three-dimensional almost coKähler manifolds whose ∗-Ricci tensor is of
Codazzi-type, that is,

(∇XQ∗)Y = (∇YQ∗)X, (9)

for any vector fields X and Y.
Before giving our main results, we first find the expression of ∗-Ricci operator on non-coKähler almost

coKähler three-manifold with respect to the local basis {ξ, e, φe}.
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Lemma 3.1. The ∗-Ricci opearator Q∗ of three-dimensional almost coKähler manifold is expressed onU1 by

Q∗ξ = σ(e)e + σ(φe)φe, Q∗e =
( r

2
+ 2λ2

)
e, Q∗φe =

( r
2
+ 2λ2

)
φe, (10)

with respect to {ξ, e, φe}.

Proof. It is well known that the curvature tensor R of any three-dimensional Riemannian manifold is given
by

R(X,Y)Z =1(Y,Z)QX − 1(X,Z)QY + 1(QY,Z)X − 1(QX,Z)Y

−
r
2

(1(Y,Z)X − 1(X,Z)Y),

for any vector fields X,Y,Z. Applying (8), the curvature tensor R of a non-coKähler three-dimensional
almost coKähler manifold M can be given as the following:

R(e, ξ)ξ = −λ(λ + 2 f )e + ξ(λ)φe, (11)
R(φe, ξ)ξ = ξ(λ)e − λ(λ − 2 f )φe, (12)
R(e, ξ)e = λ(λ + 2 f )ξ − σ(φe)φe, (13)

R(e, ξ)φe = −ξ(λ)ξ + σ(φe)e, (14)
R(φe, ξ)e = −ξ(λ)ξ + σ(e)φe, (15)

R(φe, ξ)φe = λ(λ − 2 f )ξ − σ(e)e, (16)
R(e, φe)ξ = σ(φe)e − σ(e)φe, (17)

R(e, φe)e = −σ(φe)ξ −
( r

2
+ 2λ2

)
φe, (18)

R(e, φe)φe = σ(e)ξ +
( r

2
+ 2λ2

)
e. (19)

By the definition of ∗-Ricci tensor, we have

S∗(X,Y) =
1
2

3∑
i=1

1(φR(X, φY)ei, ei)

= −
1
2

3∑
i=1

1(R(ei, φei)X, φY)

=
1
2

3∑
i=1

1(φR(ei, φei)X,Y),

where e1 = ξ, e2 = e and e3 = φe. In this sequel, we can write

Q∗X =
1
2

3∑
i=1

φR(ei, φei)X

=
1
2
{φR(e, φe)X − φR(φe, e)X}. (20)

Emplyoing X = ξ in above equation, recalling (17) we obtain

Q∗ξ = φR(e, φe)ξ
= σ(e)e + σ(φe)φe.

Simillarly, setting X by e and φe separately in (20), utilization of (18) and (19) gives second and third term
of (10) respectively.
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Proposition 3.2. The ∗-Ricci tensor of three-dimensional almost coKähler manifold is symmetric if and only if Reeb
vector field is an eigenvector field of the Ricci operator.

Proof. As a result of Lemma 3.1, we have

S∗(ξ, e) = 1(Q∗ξ, e) = σ(e), S∗(e, ξ) = 1(Q∗e, ξ) = 0,
S∗(e, φe) = 1(Q∗e, φe = 0, S∗(ξ, φe) = 1(Q∗ξ, φe) = σ(φe),

S∗(φe, ξ) = 1(Q∗φe, ξ) = 0, S∗(φe, e) = 1(Q∗φe, e) = 0

Above relations enables us to conclude that S∗ is symmetric if and only if σ(e) = σ(φe) = 0, that is, Reeb
vector field is an eigenvector field of the Ricci operator.

Remark 3.3. It is worth to remark that the ∗-Ricci tensor is not symmetric for three-dimensional almost coKähler
manifolds. But, our Proposition 3.2 gives a necessary and sufficient condition for the ∗-Ricci tensor to be symmetric.

Lemma 3.4. The ∗-Ricci operator of three-dimensional non-coKähler almost coKähler manifold is of Codazzi type if
and only if Reeb vector field is an eigenvector field of the Ricci operator and r = −4λ2.

Proof. OnU1 by applying Lemma 2.1 and relation (10) we obtain the following equations:

(∇ξQ∗)ξ = (ξ(σ(e)) − fσ(φe))e + (ξ(σ(φe)) + fσ(e))φe, (21)

(∇ξQ∗)e = ξ
( r

2
+ 2λ2

)
e, (∇ξQ∗)φe = ξ

( r
2
+ 2λ2

)
φe, (22)

(∇eQ∗)e = e
( r

2
+ 2λ2

)
e, (∇φeQ∗)φe = φe

( r
2
+ 2λ2

)
φe, (23)

(∇eQ∗)φe = λ
( r

2
+ 2λ2

)
ξ − λσ(e)e + (e

( r
2
+ 2λ2

)
− λσ(φe))φe, (24)

(∇φeQ∗)e = λ
( r

2
+ 2λ2

)
ξ + (φe

( r
2
+ 2λ2

)
− λσ(e))e − λσ(φe)φe, (25)

(∇eQ∗)ξ = λσ(φe)ξ +
{

e(σ(e)) −
σ(φe)

2λ
(φe(λ) + σ(e))

}
e{

λ
( r

2
+ 2λ2

)
+ e(σ(φe)) +

σ(e)
2λ

(φe(λ) + σ(e))
}
φe, (26)

(∇φeQ∗)ξ = λσ(e)ξ +
{
λ
( r

2
+ 2λ2

)
+ φe(σ(e)) +

σ(φe)
2λ

(e(λ) + σ(φe))
}

e{
φe(σ(φe)) −

σ(e)
2λ

(e(λ) + σ(φe))
}
φe. (27)

Let us suppose that the ∗-Ricci operator of M is of Codazzi-type. Then switching X = e and Y = ξ into (9)
we obtain (∇eQ∗)ξ − (∇ξQ∗)e = 0. In this relation, applying (26) and first term of (22) we get

λσ(φe) = 0,

e(σ(e)) −
σ(φe)

2λ
(φe(λ) + σ(e)) − ξ

( r
2
+ 2λ2

)
= 0,

λ
( r

2
+ 2λ2

)
+ e(σ(φe)) +

σ(e)
2λ

(φe(λ) + σ(e)) = 0.

(28)

Similarly, setting X = φe and Y = ξ into (9) we have (∇φeQ∗)ξ − (∇ξQ∗)φe = 0. In this relation, using (27)
and second term of (22) we obtain

λσ(e) = 0,

λ
( r

2
+ 2λ2

)
+ φe(σ(e)) +

σ(φe)
2λ

(e(λ) + σ(φe)) = 0,

φe(σ(φe)) −
σ(e)
2λ

(e(λ) + σ(φe)) − ξ
( r

2
+ 2λ2

)
= 0.

(29)



V. Venkatesha et al. / Filomat 37:6 (2023), 1793–1802 1798

Employing X = e and Y = φe into (9) we obtain (∇eQ∗)φe − (∇φeQ∗)e = 0. In this relation, applying (24) and
(25) we get

e
( r

2
+ 2λ2

)
= 0, φe

( r
2
+ 2λ2

)
= 0. (30)

In view of λ is positive function on U1, it follows from first terms of (28) and (29) that σ(e) = σ(φe) = 0,
that is, Reeb vector field is an eigenvector field of the Ricci operator. This together with second term of (29)
enables us to claim that r = −4λ2. Conversely, suppose that Reeb vector field is an eigenvector field of the
Ricci operator and the relation r = −4λ2 holds, one can check directly that (9) holds trivially for any vector
fields X,Y.

As a consequence of above lemma, we state the following:

Proposition 3.5. If ∗-Ricci operator of three-dimensional non-coKähler almost coKähler manifold is of Codazzi-type,
then the ∗-Ricci tensor vanishes.

In [9], the authors introduced the notion of strongly normal unit vector field. A unit vector field V on a
Riemannian manifold is called strongly normal if

1((∇X∇V)Y,Z) = 0, for any X,Y,Z ⊥ V.

Many geometers studied three-dimensional almost coKähler manifold under the condition ∇ξh = 0 (see
[28]). In this paper we consider the condition ξ(∥∇ξh∥) = 0, which is weaker than ∇ξh = 0. Applying this
with Lemma 3.4, we obtain the following outcome:

Theorem 3.6. Let M be a three-dimensional non-coKähler almost coKähler manifold whose Reeb vector field ξ is
strongly normal unit vector field with ξ(∥∇ξh∥) = 0. Then ∗-Ricci operator is of Codazzi-type if and only if it is locally
isometric to a simply connected unimodular Lie group equipped with a left invariant almost coKähler structure. More
precisely, we have the following classification:

• In case f = 0, then M is locally isometric to the group E(1, 1) of rigid motions of the Minkowski 2-space.

• In case f > 0, then M is locally isometric to either the universal covering Ẽ(2) of the group of rigid motions of
the Euclidean 2-space if f > λ, the Heisenberg group H3 if f = λ or the group E(1, 1) of rigid motions of the
Minkowski 2-space if f < λ.

• In case f < 0, then M is locally isometric to either the universal covering Ẽ(2) of the group of rigid motions of
the Euclidean 2-space if f < −λ, the Heisenberg group H3 if f = −λ or the group E(1, 1) of rigid motions of the
Minkowski 2-space if f > −λ.

Proof. As a result of Lemma 2.1 we find

(∇e∇ξ)e = −λ2ξ + φe(λ)e − e(λ)φe,
(∇e∇ξ)φe = (∇φe∇ξ)e = −e(λ)e − φe(λ)φe,

(∇φe∇ξ)φe = −(∇e∇ξ)e − 2λ2ξ,

and so ξ is strongly normal implies e(λ) = φe(λ) = 0. Suppose that M has a Codazzi-type ∗-Ricci tensor,
then Lemma 3.4 is applicable. Switching r = −4λ2 into (8), recalling σ(e) = σ(φe) = 0 yields

Qξ = −2λ2ξ, Qe = −λ(λ + 2 f )e + ξ(λ)φe, Qφe = ξ(λ)e + λ(2 f − λ)φe. (31)

Applying Lemma 2.1 and (31), by a direct calculation, we have

(∇ξQ)ξ = −4λξ(λ)ξ, (∇eQ)e = λξ(λ)ξ − 2λe( f )e + e(ξ(λ))φe,
(∇φeQ)φe = λξ(λ)ξ + φe(ξ(λ))e + 2λφe( f )φe,
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where we utilized X(trh2) = 0 for any X ∈ Kerη. Applying aforementioned three equations in the well-
known formula div Q = 1

21rad r we see that the following relation holds onU1:

1
2
1rad r = −2λξ(λ)ξ + (φe(ξ(λ)) − 2λe( f ))e + (2λφe( f ) + e(ξ(λ)))φe. (32)

In view of λ > 0, taking inner product of above equation with ξ we obtain that ξ(λ) = 0. Utilization of this
in X(trh2) = 0 for any X ∈ Kerη shows that λ is a positive constant and the scalar curvature r is also constant.
Again, take inner product of (32) with e and φ respectively to obtain e( f ) = φe( f ) = 0, that is, X( f ) = 0 for
any X ∈ Ker η. Utilization of Lemma 2.1, a simple calculation, gives

∇ξh =
1
λ
ξ(λ)h + 2 fφh.

Since ξ is minimal and λ is constant, we obtain from above equation that ∥∇ξh∥2 = 8λ2 f 2. We know that
e( f ) = φe( f ) = 0 and hence, since ξ(∥∇ξh∥) = 0 gives ξ( f ) = 0, so that f is constant.

Next, we shall separate our discussions into two cases as follows.
Case 1. f = 0. In this context, we obtain from Poisson brackets (6) that

[ξ, e] = λφe, [φe, ξ] = −λe, [e, φe] = 0.

According to Milnor [16] and the abovementioned relations, it can be easily seen that the manifold is locally
isometric to the group E(1, 1) of rigid motions of the Minkowski 2-space equipped with a left invariant
almost coKähler structure.
Case 2. f , 0. We obtain from Poisson brackets (6) that

[ξ, e] = (λ + f )φe, [ξ, φe] = (λ − f )e, [e, φe] = 0.

Now, we consider the following invariant

p = ∥∇ξh∥ −
√

2∥h∥2,

which is defined by Perrone in [21]. From the relation∇ξh = 2 fφh with f ∈ R and using simple computation
we obtain that

p̄ = 2
√

2λ( f − λ), if f > 0,

p̄ = −2
√

2λ( f + λ), if f < 0.

We know that Reeb vector field is minimal and also note that both ||∇ξh|| and ||h|| are constants. From
Theorem 4.4 of Perrone [21] we conclude that M is locally isometric to a simply connected unimodular
Lie group G equipped with a left invariant almost coKähler structure. More precisely, G is the universal
covering Ẽ(2) of the group of rigid motions of the Euclidean 2-space if p̄ > 0, the Heisenberg group H3 if
p̄ = 0 or the group E(1, 1) of rigid motions of the Minkowski 2-space if p̄ < 0.

Conversely, on non-coKähler almost coKähler structures defined on the above Lie groups, from Perrone
[20] one can easily check that r is constant and hence equation (9) holds true. This completes the proof.

Now, we give the coKähler version of Theorem 3.6 as follows:

Theorem 3.7. The ∗-Ricci operator of three-dimensional coKähler manifold is of Codazzi-type if and only if the
manifold is locally isometric to the product space R × N2(c), where N2(c) denotes a Kähler surface of constant
curvature c (c = 0 means that M is locally the flat Euclidean space R3).

Proof. The authors in [17], gave the expression of ∗-Ricci operator Q∗ on three-dimensional coKähler mani-
fold in the following form:

Q∗X =
r
2

X −
r
2
η(X)ξ.
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But, we know that the expression of Ricci operator is of the form QX = r
2 X − r

2η(X)ξ. This together with
above equation shows that Q∗ = Q. Consequently, M becomes a manifold whose Ricci operator is of
Codazzi-type (Riemannian curvature tensor is harmonic). According to Theorem 5.1 of Wang [25], we state
that the manifold M is locally isometric to the product spaceR×N2(c), where N2(c) denotes a Kähler surface
of constant curvature c (c = 0 means that M is locally the flat Euclidean spaceR3). The converse part can be
proved easily.

Now, we characterize three-dimensional almost coKähler manifold whose ∗-Ricci operator satisfy Q∗ ·R =
0 and this curvature condition is defined by

(Q∗ · R)(X,Y)Z = Q∗(R(X,Y)Z) − R(Q∗X,Y)Z
−R(X,Q∗Y)Z − R(X,Y)Q∗Z, (33)

for any vector fields X,Y,Z.
We prove the following outcome.

Lemma 3.8. A three-dimensional non-coKähler almost coKähler manifold M satisfies the curvature condition Q∗ ·R =
0 if and only if Reeb vector field is an eigenvector field of the Ricci operator and the scalar curvature r = −4λ2.

Proof. Let us suppose that M satisfies the curvature condition Q∗ · R = 0, then setting X = Z = e and Y = φe
into (33), recalling (10) and (18) gives

σ(e)σ(φe) = 0, (
r
2
+ 2λ2)σ(φe) = 0, 2

( r
2
+ 2λ2

)2
− (σ(φe))2 = 0. (34)

Similarly, taking X = e and Y = Z = φe into (33), applying (10) and (19) we obtain( r
2
+ 2λ2

)
σ(e) = 0, (σ(e))2

− 2
( r

2
+ 2λ2

)2
= 0, σ(φe)σ(e) = 0. (35)

Setting X = e, Y = φe and Z = ξ into (33), according to (10) and (18) one can get( r
2
+ 2λ2

)
σ(e) = 0,

( r
2
+ 2λ2

)
σ(φe) = 0. (36)

Substituting X = Z = e and Y = ξ into (33), as a result of (10), (13) and (18) gives

(σ(φe))2
− 2λ(λ + 2 f )

( r
2
+ 2λ2

)
= 0, λ(λ + 2 f )σ(e) = 0,

λ(λ + 2 f )σ(φe) + 2
( r

2
+ 2λ2

)
σ(φe) = 0.

(37)

Setting X = e and Y = Z = ξ into (33), utilization of (10) and (11)-(19) yields

σ(φe)ξ(λ) − λ(λ + 2 f )σ(e) = 0, (σ(φe))2 = 0, σ(e)σ(φe) = 0. (38)

Taking X = e, Y = ξ and Z = φe into (33), applying (10) and (11)-(19) we obtain

2
( r

2
+ 2λ2

)
ξ(λ) − σ(e)σ(φe) = 0,

σ(e)ξ(λ) + 2
( r

2
+ 2λ2

)
σ(φe) = 0, σ(φe)ξ(λ) = 0.

(39)

Substituting X = φe, Y = ξ and Z = e into (33), recalling (10) and (11)-(19) gives

2ξ(λ)
( r

2
+ 2λ2

)
− σ(e)σ(φe) = 0, σ(e)ξ(λ) = 0,

σ(φe)ξ(λ) + 2
( r

2
+ 2λ2

)
σ(e) = 0.

(40)
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Switching X = Z = φe and Y = ξ into (33) and making use of (10) and (11)-(19) we obtain

(σ(e))2
− 2λ(λ − 2 f )

( r
2
+ 2λ2

)
= 0, λ(λ − 2 f )σ(φe) = 0,

λ(λ − 2 f )σ(e) + 2σ(e)
( r

2
+ 2λ2

)
= 0.

(41)

Setting X = φe and Y = Z = ξ into (33), utilization of (10) and (11)-(19) we have

σ(e)ξ(λ) − λ(λ − 2 f )σ(φe) = 0, σ(e)σ(φe) = 0, (σ(e))2 = 0. (42)

The relation σ(e) = σ(φe) = 0 follows directly from third term of (42) and second term of (38). This together
with second term of equation (35) shows that the scalar curvature r = −4λ2. Convesely, if the conditions
r = −4λ2 and σ(e) = σ(φe) = 0 holds, then it is not hard to show that M satisfies Q∗ · R = 0.

Proposition 3.9. If three-dimensional non-coKähler almost coKähler manifold M satisfies the curvature condition
Q∗ · R = 0, then the ∗-Ricci tensor vanishes.

Theorem 3.10. Let M be a three-dimensional non-coKähler almost coKähler manifold whose Reeb vector field ξ is
strongly normal unit vector field with ξ(∥∇ξh∥) = 0. Then M satisfies the curvature condition Q∗ · R = 0 if and only
if it is locally isometric to a simply connected unimodular Lie group equipped with a left invariant almost coKähler
structure. More precisely, we have the following classifications:

• In case f = 0, then M is locally isometric to the group E(1, 1) of rigid motions of the Minkowski 2-space.

• In case f > 0, then M is locally isometric to either the universal covering Ẽ(2) of the group of rigid motions of
the Euclidean 2-space if f > λ, the Heisenberg group H3 if f = λ or the group E(1, 1) of rigid motions of the
Minkowski 2-space if f < λ.

• In case f < 0, then M is locally isometric to either the universal covering Ẽ(2) of the group of rigid motions of
the Euclidean 2-space if f < −λ, the Heisenberg group H3 if f = −λ or the group E(1, 1) of rigid motions of the
Minkowski 2-space if f > −λ.

Proof. The proof of this theorem follows the same steps and arguments as followed in Theorem 3.6.

Remark 3.11. From Lemma 3.4 and Lemma 3.8, we can state that in a three-dimensional non-coKähler almost
coKähler manifold M the following conditions are equivalent:

• ∗-Ricci operator is Codazzi-type.

• M satisfies Q∗ · R = 0.

• Reeb vector field is an eigenvector field of the Ricci operator and the scalar curvature r = −4λ2.
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