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Abstract. In this paper, we first introduce the notion of Reynolds operators on Hom-Leibniz algebras
and give some constructions. Furthermore, we define the cohomology of Reynolds operators, and use
this cohomology to study deformations of Reynolds operators. As applications, we introduce and study
NS-Hom-Leibniz algebras as the underlying structure of Reynolds operators.

1. Introduction

The study of Hom-algebras can be traced back to Hartwig, Larsson and Silvestrov’s work in [14],
where the notion of Hom-Lie algebra in the context of q-deformation theory of Witt and Virasoro algebras
[15] was introduced, which plays an important role in physics, mainly in conformal field theory. The
notion of a Leibniz algebra was introduced by Loday [16, 17] with the motivation in the study of the
periodicity in algebraic K-theory. Leibniz algebras were studied from different aspects due to applications
in both mathematics and physics. The notion of a Hom-Leibniz algebra was introduced by Makhlouf and
Silvestrov [18], generalizing both Hom-Lie algebras and Leibniz algebras. Hom-Leibniz algebras were
widely studied in the following aspects: representation and cohomology theory [5], deformation theory
[21], Hom-Leibniz cohomology [24]. For more interesting Hom-algebra structures, see [2–4, 12, 13, 19] and
references cited therein.

Our main objective is to study Reynolds operators on Hom-Leibniz algebras. The notion of Rota-Baxter
operators on associative algebras was introduced in 1960 by Baxter [1] in his study of fluctuation theory
in probability. Recently, it has been found many applications, including in Connes-Kreimer’s algebraic
approach to the renormalization in perturbative quantum field theory [7]. For further details on Rota-Baxter
operators, see [11]. The study of Reynolds operators has its origin in the well-known work of Reynolds
[22] on fluid dynamics in 1895 and has since found broad applications. It also has close relationship with
important linear operators such as algebra endomorphisms, derivations and Rota-Baxter operators. Also it
was closely related to the probability theory. For further details on Reynolds operators, see [23]. Recently,
Das [8] introduced twisted Rota-Baxter operators on Lie algebras and considers NS-Lie algebras as the
underlying structure Motivated by Uchino [25]. Later, Das and Guo [9] introduced twisted Rota-Baxter
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operators on Leibniz algebras and considers NS-Leibniz algebras as the underlying structure. In fact,
twisted Rota-Baxter operators are all generalizations of Reynolds operators.

Recently, Mishra and Naolekar [20] studied O-operators, also known as relative or generalized Rota-
Baxter operators on Hom-Lie algebras. Das and Sen [10] studied Nijenhuis operators on Hom-Lie algebras.
Later, Chtioui, Mabrouk and Makhlouf [6] introduced the cohomology theory and deformations of O-
operators on Hom-associative algebras. Zhang, Gao and Guo [26] gave the construction of free objects
of Reynolds algebras by bracketed words and rooted trees. However, so far, there is little research on
Reynolds operators on Leibniz algebras, not to mention studying about the Reynolds operators on Hom-
Leibniz algebras. In this paper, we study the deformation and cohomology theory of Reynolds operators on
Hom-Leibniz algebras. The specific structure is as follows. In Section 2, we introduce the notion of Reynolds
operators on Hom-Leibniz algebras and give some constructions. In Section 3, we define the cohomology
of Reynolds operators. In Section 4, we use this cohomology to study deformations of Reynolds operators.
In Section 5, as applications, we introduce and study NS-Hom-Leibniz algebras as the underlying structure
of Reynolds operators.

2. Preliminaries

In this paper, we work over an algebraically closed field K of characteristic 0 and all the vector spaces
are overK and finite-dimensional. We now recall some useful definitions in [5].

Definition 2.1. A Hom-Leibniz algebra is a triple (g, [·, ·]g, ϕg) consisting of a linear space g, a bilinear operation
[·, ·]g : g ⊗ g→ g and a linear map ϕg : g→ g satisfying

[ϕg(x), [y, z]g]g = [[x, y]g, ϕg(z)]g + [ϕg(y), [x, z]g]g, ∀x, y, z ∈ g.

A Hom-Leibniz algebra (g, [·, ·]g, ϕg) is said to be regular (involutive), if ϕg is nondegenerate (satisfies
ϕ2
g = Id).

Definition 2.2. A representation of a Hom-Leibniz algebra (g, [·, ·]g, ϕg) is a quadruple (V, ϕV, ρL, ρR), where V is
a vector space, ϕV ∈ 1l(V), ρL, ρR : g → 1l(V) are three linear maps such that the following equalities hold for all
x, y ∈ g:

(1) ρL(ϕg(x)) ◦ ϕV = ϕV ◦ ρ
L(x), ρR(ϕg(x)) ◦ ϕV = ϕV ◦ ρ

R(x);
(2) ρL([x, y]g) ◦ ϕV = ρ

L(ϕg(x)) ◦ ρL(y) − ρL(ϕg(y)) ◦ ρL(x);
(3) ρR([x, y]g) ◦ ϕV = ρ

L(ϕg(x)) ◦ ρR(y) − ρR(ϕg(y)) ◦ ρL(x);
(4) ρR([x, y]g) ◦ ϕV = ρ

L(ϕg(x)) ◦ ρR(y) + ρR(ϕg(y)) ◦ ρR(x).

Define the left multiplication L : g→ 1l(g) and the right multiplication R : g→ 1l(g) by Lxy = [x, y]g and
Rxy = [y, x]g respectively for all x, y ∈ g. Then (g, ϕg,L,R) is a representation of (g, [·, ·]g, ϕg), which is called
a regular representation.

Let (g, [·, ·]g, ϕg) be a Hom-Leibniz algebra and (V, ϕV, ρL, ρR) be a representation of it. The cohomology
of the Hom-Leibniz algebra g with coefficients in V is the cohomology of the cochain complex {C∗(g,V), ∂},
where Cn(g,V) = Hom(g⊗n,V) for n ≥ 0, and the coboundary operator ∂n : Cn(g,V)→ Cn+1(g,V) given by

(∂n f )(x1, . . . , xn+1)

=

n∑
i=1

(−1)i+1ρL(ϕn−1
g (xi)) f (x1, . . . , x̂i, . . . , xn+1) + (−1)n+1ρR(ϕn−1

g (xn+1)) f (x1, . . . , xn)

+
∑

1≤i< j≤n+1

(−1)i f (ϕg(x1), . . . , ϕ̂g(x)i, . . . , ϕg(x j−1), [xi, x j]g, ϕg(x j+1), . . . , ϕg(xn+1)),

for x1, . . . , xn+1 ∈ g. The corresponding cohomology groups are denoted by H∗(g,V).
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3. Reynolds operators on Hom-Leibniz algebras

In this section, we introduce the notion of Reynolds operators on Hom-Leibniz algebras and give some
constructions.

Definition 3.1. Let (V, ϕV, ρL, ρR) be a representation of a Hom-Leibniz algebra (g, [·, ·]g, ϕg). A Reynolds operator
on (g, [·, ·]g, ϕg) with respect to the representation (V, ϕV, ρL, ρR) is a linear map K : V → g such that

K ◦ ϕV = ϕg ◦ K,
[Ku,Kv]g = K(ρL(Ku)v + ρR(Kv)u − [Ku,Kv]g),∀u, v ∈ V.

Example 3.2. Suppose d is a derivation of a Hom-Leibniz algebra (1, [·, ·]g, ϕg) such that (id+d) : g→ g is invertible,
then (id + d)−1 is a Reynolds operator respect to the regular representation.

Example 3.3. Consider the three-dimensional Hom-Leibniz algebra (g, [·, ·]g, ϕg) given with respect to a basis
{e1, e2, e3} together with the following nonvanishing operations:

[e1, e1] = e3, ϕg(e1) = −e1, ϕg(e2) = e2, ϕg(e3) = e3.

Then K =

 a11 a12 a13
a21 a22 a23
a31 a32 a33

 is a Reynolds operator on (g, [·, ·]g, ϕg) with respect to the regular representation if and

only if

[Kei,Ke j]g = K([Kei, e j]g + [ei,Ke j]g − [Kei,Ke j]g), ∀i, j = 1, 2, 3.

Since [Ke1,Ke1]g = [a11e1 + a21e2 + a31e3, a11e1 + a21e2 + a31e3]g = a2
11e3 and

K([Ke1, e1]g + [e1,Ke1]1 − [Ke1,Ke1]g)

= K([a11e1 + a21e2 + a31e3, e1]g + [e1, a11e1 + a21e2 + a31e3]g − a2
11e3)

= (2a11 − a2
11)Ke3

= (2a11 − a2
11)a13e1 + (2a11 − a2

11)a23e2 + (2a11 − a2
11)a33e3.

Thus, by [Ke1,Ke1]g = K([Ke1, e1]g + [e1,Ke1]g − [Ke1,Ke1]g), we have

(2a11 − a2
11)a13 = 0, (2a11 − a2

11)a23 = 0, a2
11 = (2a11 − a2

11)a33.

Similarly, we obtain

a11a12 = (a12 − a11a12)a33, (a12 − a11a12)a13 = 0, (a12 − a11a12)a23 = 0;
a11a13 = (a13 − a11a13)a33, (a13 − a11a13)a13 = 0, (a13 − a11a13)a23 = 0;
a12a11 = (a12 − a11a12)a33, (a12 − a11a12)a13 = 0, (a12 − a11a12)a23 = 0;
a13a11 = (a13 − a11a13)a33, (a13 − a11a13)a13 = 0, (a13 − a11a13)a23 = 0,
a2

12 + a2
12a33 = 0, a2

12a13 = 0, a2
12a13 = 0.

Summarize the above discussion, we have the following two cases:

(1)If a11 = a12 = a13 = 0, then any K =

 0 0 0
a21 a22 a23
a31 a32 a33

 is a Reynolds operator on (1, [·, ·]g, ϕg) with respect to

the regular representation.

(2) If a12 = a13 = a23 = 0 and a11 , 0, 2, then any K =

 a11 0 0
a21 a22 0
a31 a32

a11
2−a11

 is a Reynolds operator on (g, [·, ·]g, ϕg)

with respect to the regular representation.
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Let K : V → g be a Reynolds operator. Suppose (V′, ϕV′ , ρ′L, ρ′R) is a representation of another Hom-
Leibniz algebra (g′, [·, ·]g′ , ϕg′ ). Let K′ : V′ → g′ be a Reynolds operator.

Definition 3.4. A morphism of Reynolds operators from K to K′ consists of a pair (φ,ψ) of a Hom-Leibniz algebra
morphism φ : g→ g′ and a linear map ψ : V → V′ satisfying

φ ◦ K = K′ ◦ ψ,

ψ(ρL(x)u) = ρ′L(φ(x))ψ(u), ψ(ρR(x)u) = ρ′R(φ(x))ψ(u),
ϕg′ ◦ φ = φ ◦ ϕg, ϕV′ ◦ ψ = ψ ◦ ϕV, for x ∈ g,u ∈ V.

One can construct the semidirect product algebra. More precisely, the direct sum g ⊕ V carries a Hom-
Leibniz algebra structure with the bracket given by

[(x,u), (y, v)] := ([x, y]g, ρL(x)v + ρR(y)u − [x, y]g),
(ϕg + ϕV)(x,u) := (ϕg(x), ϕV(u)), for x, y ∈ g,u, v ∈ V.

We denote this semidirect product Hom-Leibniz algebra by (g ⋉V, ϕg +ϕV). Using this semidirect product,
one can characterize Reynolds operators by their graph.

Proposition 3.5. A linear map K : V → g is a Reynolds operator if and only if its graph Gr(K) = {(Ku,u)| u ∈ V} is
a subalgebra of the semidirect product (g ⋉ V, ϕg + ϕV).

The proof of the above proposition is straightforward, hence we omit the details. Since Gr(K) is
isomorphic to V as a vector space, as a consequence, we get the following result.

Proposition 3.6. Let K : V → g be a Reynolds operator. Then the vector space V carries a Hom-Leibniz algebra
structure with the bracket

[u, v]K := ρL(Ku)v + ρR(Kv)u − [Ku,Kv]g, for u, v ∈ V.

4. Cohomology of Reynolds operators

In this section, we define the cohomology of a Reynolds operator K as the cohomology of the Hom-
Leibniz algebra (V, [·, ·]K, ϕV) that is constructed in Proposition 3.6 with coefficients in a suitable represen-
tation on g.

Proposition 4.1. Let K : V → g be a Reynolds operator. Define maps ρL, ρR : V → 1l(g) by

ρL(u)x = [Ku, x]g − K(ρR(x)u) + K[Ku, x]g and ρR(u)x = [x,Ku]g − K(ρL(x)u) + K[x,Ku]g,

for u ∈ V and x ∈ g. Then (g, ϕg, ρ
L, ρR) is a representation of the Hom-Leibniz algebra (V, [·, ·]K, ϕV).

Proof. For u, v ∈ V and x ∈ g , we have

ρL(ϕV(u))ρL(v)x − ρL(ϕV(v))ρL(u)x

= ρL(ϕV(u))([Kv, x]g − K(ρR(x)v) + K[Kv, x]g) − ρ
L(ϕV(v))([Ku, x]g − K(ρR(x)u) + K[Ku, x]g)

= [KϕV(u), [Kv, x]g]g − [KϕV(u),K(ρR(x)v)]g + [KϕV(u),K[Kv, x]g]g − K(ρR([Kv, x])ϕV(u))

+ K(ρR(KρR(x)v)ϕV(u)) − K(ρR(K[Kv, x]g)ϕV(u)) + K[KϕV(u), [Kv, x]g]g

− K[KϕV(u),K(ρR(x)v)]g + K[KϕV(u),K[Kv, x]g]g

− [KϕV(v), [Ku, x]g]g + [KϕV(v),K(ρR(x)u)]g + [KϕV(v),K[Ku, x]g]g + K(ρR([Ku, x])ϕV(v))

− K(ρR(KρR(x)u)ϕV(v)) + K(ρR(K[Ku, x]g)ϕV(v)) − K[KϕV(v), [Ku, x]g]g
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+ K[KϕV(v),K(ρR(x)u)]g − K[KϕV(v),K[Ku, x]g]g

= [[Ku,Kv]g, ϕg(x)]g − K(ρR(ϕg(x))ρL(Ku)v) − K(ρR(ϕg(x))ρR(Kv)u)

+ K(ρR(ϕg(x))[Ku,Kv]g) + K[K[u, v]K, ϕg(x)]g

= [K[u, v]K, ϕg(x)]g − K(ρR(ϕg(x))[u, v]K) + K[K[u, v]K, ϕg(x)]g

= ρL([u, v]K)ϕg(x).

Thus, we deduce that
ρL([u, v]K) ◦ ϕg = ρ

L(ϕV(u))ρL(v) − ρL(ϕV(v))ρL(u).

Also

ρL(ϕV(u))ρR(v)x − ρR(ϕV(v))ρL(u)x

= ρL(ϕV(u))([x,Kv]g − K(ρL(x)v) + K[x,Kv]g) − ρ
R(v)([Ku, x]g − K(ρR(x)u) + K[Ku, x]g)

= [KϕV(u), [x,Kv]g]g − [KϕV(u),K(ρL(x)v)]g + [KϕV(u),K[x,Kv]g]g − K(ρR([x,Kv]g)ϕV(u))

+ K(ρR(KρL(x)v)ϕV(u)) − K(ρR(K[x,Kv]g)ϕV(u)) + K[KϕV(u), [x,Kv]g]g

− K[KϕV(u),K(ρL(x)v)]g + K[KϕV(u),K[x,Kv]g]g

− [[Ku, x]g,KϕV(v)]g + [K(ρR(x)u),KϕV(v)]g − [K[Ku, x]g,KϕV(v)]g

+ K(ρL([Ku, x])ϕV(v)) − K(ρL(KρR(x)u)ϕV(v)) + K(ρL(K[Ku, x]g)ϕV(v)) − K[[Ku, x]g,KϕV(v)]g

+ K[K(ρR(x)u),KϕV(v)]g − K[K[Ku, x]g,KϕV(v)]g

= [ϕg(x), [Ku,Kv]g]g − K(ρL(ϕg(x))ρL(Ku)v) − K(ρL(ϕg(x))ρR(Kv)u)

+ KρL(ϕg(x))[Ku,Kv]g) + K[ϕg(x),K[u, v]K]g

= [ϕg(x),K[u, v]K]g − K(ρL(ϕg(x))[u, v]K) + K[ϕg(x),K[u, v]K]g

= ρR([u, v]K)ϕg(x),

which shows that

ρR([u, v]K) ◦ ϕg = ρ
L(ϕV(u))ρR(v) − ρR(ϕV(v))ρL(u).

Similarly, we can show that

ρR([u, v]K) ◦ ϕg = ρ
R(ϕV(v)) ◦ ρR(u) + ρL(ϕV(u)) ◦ ρR(v).

Therefore, (g, ϕg, ρ
L, ρR) is a representation of the Hom-Leibniz algebra (V, [·, ·]K, ϕV). □

It follows from the above proposition that we may consider the cohomology of the Hom-Leibniz algebra
(V, [·, ·]K, ϕV) with coefficients in the representation (g, ϕg, ρ

L, ρR). More precisely, we define

Cn
K(V, g) := Hom(V⊗n, g), for n ≥ 0

and the differential ∂K : Cn
K(V, g)→ Cn+1

K (V, g) by

(∂K f )(u1, . . . ,un+1)

=

n∑
i=1

(−1)i+1[Kϕn−1
V (ui), f (u1, . . . , ûi, . . . ,un+1)]g −

n∑
i=1

(−1)i+1K(ρR( f (u1, . . . , ûi, . . . ,un+1))ϕn−1
V (ui))

+

n∑
i=1

(−1)i+1K[Kϕn−1
V (ui), f (u1, . . . , ûi, . . . ,un+1)]g + (−1)n+1[ f (u1, . . . ,un),Kϕn−1

V (un+1)]g

+ (−1)nK(ρL( f (u1, . . . ,un))ϕn−1
V (un+1)) − (−1)nK[ f (u1, . . . ,un),Kϕn−1

V (un+1)]g

+
∑

1≤i< j≤n+1

(−1)i f (ϕV(u1), . . . , ϕ̂V(ui), . . . , ϕV(u j−1), ρL(Kui)u j + ρ
R(Ku j)ui

− [Kui,Ku j]g, ϕV(u j+1), . . . , ϕV(un+1)),
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for f ∈ Cn
K(V, g) and u1, . . . ,un+1 ∈ V. Then {C∗K(V, g), ∂K} is a cochain complex. We denote by

Zn
K(V, g) = { f ∈ Cn

K(V, g) | ∂K f = 0} and Bn
K(V, g) = {∂K1 | 1 ∈ Cn−1

K (V, g)},

the spaces of n-cocycles and n-coboundaries, respectively. The corresponding quotients

Hn
K(V, g) :=

Zn
K(V, g)

Bn
K(V, g)

, for n ≥ 0

are called the cohomology of the Reynolds operator K.

5. Deformations of Reynolds operators

In this section, we will apply the classical deformation theory of Reynolds operators on Hom-Leibniz
algebras.

5.1. Linear deformations
Let (g, [·, ·]g, ϕg) be a Hom-Leibniz algebra, (V, ϕV, ρL, ρR) be a representation of it. Suppose K : V → g is

a Reynolds operator.

Definition 5.1. A linear map K1 : V → g is said to generate a linear deformation of the Reynolds operator K if for all
t ∈ C, the sum Kt = K + tK1 is still a Reynolds operator. In this case, Kt = K + tK1 is said to be a linear deformation
of K.

Suppose K1 generates a linear deformation of K. Then we have

Kt ◦ ϕV = ϕg ◦ Kt,

[Ktu,Ktv]g = Kt

(
ρL(Ktu)v + ρR(Ktv)u − [Ktu,Ktv]g

)
, for u, v ∈ V.

This is equivalent to the following conditions

K1 ◦ ϕV = ϕg ◦ K1, (5. 1)

[Ku,K1v]g + [K1u,Kv]g = K1(ρL(Ku)v + ρR(Kv)u − [Ku,Kv]g) (5. 2)

+ K(ρL(K1u)v + ρR(K1v)u − [K1u,Kv]g − [Ku,K1v]g),

[K1u,K1v]g = K1(ρL(K1u)v + ρR(K1v)u − [Ku,K1v]g − [K1u,Kv]g) − K[K1u,K1v]g, (5. 3)
K1([K1(u),K1(v)]g) = 0. (5. 4)

Note that Eq. (4.2) means that K1 is a 1-cocycle in the cohomology of K. Hence K1 induces an element
in H1

K(V, g).

Definition 5.2. Two linear deformations Kt = K + tK1 and K′t = K + tK′1 of K are said to be equivalent if there exists
an element x ∈ g such that ϕg(x) = x and

(ϕt = Idg + tLx, ψt = IdV + t(ρL(x) − [x,K−]g)

is a morphism of Reynolds operators from Kt to K′t .

The condition that ϕt = Idg + tLx is a Hom-Leibniz algebra morphism of (g, [·, ·]g, ϕg) is equivalent to

[[x, y]g, [x, z]g]g = 0, for y, z ∈ g. (5. 5)

Further, the conditions ψt(ρL(y)u) = ρL(ϕt(y))ψt(u) and ψt(ρR(y)u) = ρR(ϕt(y))ψt(u), for y ∈ g,u ∈ V are
respectively equivalent to[x,K(ρL(y)u)]g = ρL(y)[x,Ku]g,

ρL([x, y])(ρL(x)u − [x,Ku]g) = 0,
(5. 6)
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ρR([x, y])(ρL(x)u − [x,Ku]g) = 0.
(5. 7)

Similarly, the conditions ψt([y, z]g) = [ϕt(y), ϕt(z)]g and ϕt ◦ Kt = K′t ◦ ψt are respectively equivalent to{
− ρL(x)[y, z]g + [x,K[y, z]g]g = −[x, [y, z]g]g − [y, [x, z]g]g,
[[x, y]g, [x, z]g]g = 0,

(5. 8)

K1(u) + [x,Ku]g = K(ρL(x)u − [x,Ku]g) + K′1(u),

[x,K1u]g = K′1(ρL(x)u − [x,Ku]g).
(5. 9)

It follows from the first identity in (5. 9) that K1(u) − K′1(u) = ∂K(x)(u). Hence we obtain the following
result.

Theorem 5.3. If two linear deformations Kt = K + tK1 and K′t = K + tK′1 of a Reynolds operator K are equivalent,
then K1 and K′1 are in the same cohomology class of H1

K(V, g).

Definition 5.4. A linear deformation Kt = K + tK1 of a Reynolds operator K is said to be trivial if Kt is equivalent to
the undeformed deformation K′t = K.

We will now define Nijenhuis elements associated with a Reynolds operator K in a way that a trivial
deformation of K induces a Nijenhuis element.

Definition 5.5. Let K be a Reynolds operator. An element x ∈ g such that ϕg(x) = x is called a Nijenhuis element
associated with K if x satisfies

[x, ρR(u)(x)]g = 0, for u ∈ V

and Equations (5. 5), (5. 6), (5. 7), (5. 8) hold.

The set of all Nijenhuis elements associated with K is denoted by Nij(K). As mentioned earlier that a
trivial deformation induces a Nijenhuis element. In the next subsection, we give a sufficient condition for
the rigidity of a Reynolds operator in terms of Nijenhuis elements.

5.2. Formal deformations

Let C[[t]] be the ring of power series in one variable t. For any C-linear space V, let V[[t]] denote the
vector space of formal power series in t with coefficients in V. Moreover, if (g, [·, ·]g, ϕg) is a Hom-Leibniz
algebra over C, then one can extend the Hom-Leibniz bracket on g[[t]] by C[[t]]-bilinearity. Furthermore,
if (V, ϕV, ρL, ρR) is a representation of the Hom-Leibniz algebra (g, [·, ·]g, ϕg), then there is a representation
(V[[t]], ϕV, ρL, ρR) of the Hom-Leibniz algebra g[[t]]. Here, ρL and ρR are also extended by C[[t]]-bilinearity.

Let K : V → g be a Reynolds operator on the Hom-Leibniz algebra (g, [·, ·]g, ϕg) with respect to the
representation (V, ϕV, ρL, ρR). We consider a power series of the form

Kt =

+∞∑
i=0

Kiti, for Ki ∈ Hom(V, g) with K0 = K.

Extend Kt to a linear map from V[[t]] to g[[t]] by C[[t]]-linearity, which we still denote by Kt.

Definition 5.6. A formal deformation of K is given by a formal power series Kt =
∑+∞

i=0 Kiti with K0 = K satisfying

Kt ◦ ϕV = ϕg ◦ Kt, (5. 10)

[Ktu,Ktv]g = Kt

(
ρL(Ktu)v + ρR(Ktv)u − [Kt(u),Kt(v)]g

)
, for u, v ∈ V. (5. 11)
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It follows that Kt is a Reynolds operator on the Hom-Leibniz algebra g[[t]] with respect to the represen-
tation V[[t]].

Remark 5.7. If Kt =
∑+∞

i=0 Kiti is a formal deformation of the Reynolds operator K on the Hom-Leibniz algebra
(g, [·, ·]g, ϕg) with respect to the representation (V, ϕV, ρL, ρR), then [·, ·]Kt defined by

[u, v]Kt :=
+∞∑
i=0

(
ρL(Kiu)v + ρR(Kiv)u −

∑
j+k=i

[K ju,Kkv]g
)
ti, for u, v ∈ V,

is a formal deformation of the associated Hom-Leibniz algebra (V, [·, ·]K, ϕV).

By expanding the identity (5. 11) and comparing coefficients of various powers of t, we obtain for n ≥ 0,∑
i+ j=n

[Kiu,K jv]g =
∑

i+ j=n

Ki(ρL(K ju)v + ρR(K jv)u) −
∑

i+ j+k=n

Ki[K j(u),Kk(v)]g,

for u, v ∈ V. It holds for n = 0 as K is a Reynolds operator. For n = 1, we obtain

[Ku,K1v]g + [K1u,Kv]g = K1(ρL(Ku)v + ρR(Kv)u − [Ku,Kv]g)

+ K(ρL(K1u)v + ρR(K1v)u − [K1(u),Kv]g − [K(u),K1v]g).

This condition is equivalent to (∂K(K1))(u, v) = 0, for u, v ∈ V.
Next, we define an equivalence between two formal deformations of a Reynolds operator.

Definition 5.8. Two formal deformations Kt =
∑+∞

i=0 Kiti and K′t =
∑+∞

i=0 K′i t
i of a Reynolds operator K are said to be

equivalent if there exists an element x ∈ g such that ϕg(x) = x, linear maps ϕi ∈ 1l(g) and ψi ∈ 1l(V) for i ≥ 2 such
that the pair

(
ϕt = Idg + tLx +

+∞∑
i=2

ϕiti, ψt = IdV + t(ρL(x) − [x,K−]g) +
+∞∑
i=2

ψiti
)

is a morphism of Reynolds operators from Kt to K′t .

By equating coefficients of t from both sides of the identity ϕt ◦ Kt = K′t ◦ ψt, we obtain

K1(u) − K′1(u) = K(ρL(x)u − [x,Ku]g) − [x,Ku]g = ∂K(x)(u), for u ∈ V.

As a summary, we get the following result.

Theorem 5.9. The linear term of a formal deformation of a Reynolds operator K is a 1-cocycle in the cohomology of
K, and the corresponding cohomology class depends only on the equivalence class of the deformation of K.

Definition 5.10. A Reynolds operator K is said to be rigid if any formal deformation of K is equivalent to the
undeformed deformation K′t = K.

In the next theorem, we give a sufficient condition for the rigidity of a Reynolds operator in terms of
Nijenhuis elements.

Theorem 5.11. Let K be a Reynolds operator. If Z1
K(V, g) = ∂K(Nij(K)), then K is rigid.

Proof. Let Kt =
∑+∞

i=0 Kiti be any formal deformation of K. I t follows from Theorem 5.9 that the linear
term K1 is a 1-cocycle in the cohomology of K, i.e., K1 ∈ Z1

K(V, g). Thus, by the hypothesis, there is a Nijenhuis
element x ∈ Nij(K) such that K1 = −∂K(x). We take

ϕt = Idg + tLx and ψt = IdV + t(ρL(x) − [x,K−]g),
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and define K′t = ϕt ◦ Kt ◦ ψ−1
t . Then K′t is a formal deformation equivalent to Kt. For u ∈ V, we observe that

K′t(u) = (Idg + tLx)(Kt(u − tρL(x)u + t[x,Ku]g + power of t≥2))

= K(u) + t(K1u − KρL(x)u + K[x,Ku]g + [x,Ku]g) + power of t≥2.

= K(u) + t2K′2(u) + · · · (as K1 = −∂K(x)).

Hence the coefficient of t in the expression of K′t is trivial. Applying the same process repeatedly, we get
that Kt is equivalent to K. Therefore, K is rigid. □

6. NS-Hom-Leibniz algebras

In this section, we introduce NS-Hom-Leibniz algebras as the underlying structure of Reynolds opera-
tors. We study some properties of NS-Hom-Leibniz algebras and give some examples.

Definition 6.1. An NS-Hom-Leibniz algebra is a quintuple (A, ϕA, ▷, ◁, ⋄) consisting of a vector space A together
with three bilinear operations ▷, ◁, ⋄ : A ⊗ A → A and an algebra homomorphism ϕA : A → A satisfying for all
x, y, z ∈ A,

(A1) ϕA(x) ▷ (y ∗ z) = (x ▷ y) ▷ ϕA(z) + ϕA(y) ◁ (x ▷ z),
(A2) ϕA(x) ◁ (y ▷ z) = (x ◁ y) ▷ ϕA(z) + ϕA(y) ▷ (x ∗ z),
(A3) ϕA(x) ◁ (y ◁ z) = (x ∗ y) ◁ ϕA(z) + ϕA(y) ◁ (x ◁ z),
(A4) ϕA(x) ◁ (y ⋄ z) + ϕA(x) ⋄ (y ∗ z) = (x ⋄ y) ▷ ϕA(z) + (x ∗ y) ⋄ ϕA(z)

+ϕA(y) ◁ (x ⋄ z) + ϕA(y) ⋄ (x ∗ z),

where x ∗ y = x ▷ y + x ◁ y + x ⋄ y.

NS-Hom-Leibniz algebras are more general than NS-Leibniz algebras introduced in [9]. More precisely,
an NS-Hom-Leibniz algebra (A, ϕA, ▷, ◁, ⋄) in which ϕA = Id is an NS-Leibniz algebra.

In the following, we show that NS-Hom-Leibniz algebras split Hom-Leibniz algebras.

Proposition 6.2. Let (A, ϕA, ▷, ◁, ⋄) be an NS-Hom-Leibniz algebra. Then the vector space A with the bilinear
operation

[·, ·]∗ : A ⊗ A→ A, [x, y]∗ := x ∗ y

is a Hom-Leibniz algebra.

Proof. By summing up the left hand sides of the identities (A1)-(A4), we get [ϕA(x), [y, z]∗]∗. On the
other hand, by summing up the right hand sides of the identities (A1)-(A4), we have [[x, y]∗, ϕA(z)]∗ +
[ϕA(y), [x, z]∗]∗. Hence the result follows. □

Proposition 6.3. Let (A, ϕA) be a Hom-associative algebra and P : A → A be a linear map satisfying P(x)P(y) =
P(P(x)y) = P(xP(y)) and ϕA ◦ P = P ◦ ϕA, for any x, y ∈ A. Define bilinear operations ▷, ◁, ⋄ : A ⊗ A→ A by

x ▷ y = −yP(x), x ◁ y = P(x)y, and x ⋄ y = 0, for x, y ∈ A.

Then (A, ϕA, ▷, ◁, ⋄) is an NS-Hom-Leibniz algebra.

Proof. For any x, y, z ∈ A, we have

(x ▷ y) ▷ ϕA(z) + ϕA(y) ◁ (x ▷ z) = ϕA(z)P(yP(x)) − P(ϕA(y))(zP(x))
= (zP(y))P(ϕA(x)) − (P(y)z)P(ϕA(x))
= ϕA(x) ▷ (y ∗ z).
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Also, we have

ϕA(x) ◁ (y ▷ z) − (x ◁ y) ▷ ϕA(z) = −P(ϕA(x))(zP(y)) + ϕA(z)P(P(x)y)
= −P(x)(zP(y)) + (zP(x))P(ϕA(y))
= ϕA(y) ▷ (x ∗ z).

Thus (A1) and (A2) hold. Similarly, we can check that (A3) and (A4) hold obviously. This completes the
proof. □

NS-Hom-Leibniz algebras also arise from weighted Rota-Baxter operators on Hom-Leibniz algebras.
Let (g, [·, ·]g, ϕg) be a Hom-Leibniz algebra. A linear map T : g → g is said to be a Rota-Baxter operator of
weight λ on the Hom-Leibniz algebra if T satisfies

T ◦ ϕg = ϕg ◦ T,
[Tx,Ty]g = T([Tx, y]g + [x,Ty]g + λ[x, y]g), for x, y ∈ g.

Note that the identity map Id : g→ g is a Rota-Baxter operator of weight -1. If T is a Rota-Baxter operator
of weight λ, then −λId − T is so. In the following result, we show that Rota-Baxter operators of weight λ
induce NS-Hom-Leibniz algebras.

Proposition 6.4. Let T : g → g be a Rota-Baxter operator of weight λ on the Hom-Leibniz algebra (g, [·, ·]g, ϕg).
Then there is an NS-Hom-Leibniz algebra structure on the vector space g with bilinear operations

x ▷ y = [x,Ty]g, x ◁ y = [Tx, y]g and x ⋄ y = λ[x, y]g, for x, y ∈ g.

Proof. For any x, y, z ∈ g, we have

(x ▷ y) ▷ ϕg(z) + ϕg(y) ◁ (x ▷ z) = [[x,Ty]g,Tϕg(z)]g + [Tϕg(y), [x,Tz]g]g
= [ϕg(x), [Ty,Tz]g]g
= [ϕg(x),T(y ∗ z)]g
= ϕg(x) ▷ (y ∗ z).

Also,

ϕg(x) ◁ (y ▷ z) − (x ◁ y) ▷ ϕg(z) = [Tϕg(x), [y,Tz]g]g − [[x,Ty]g,Tϕg(z)]g
= [ϕg(y), [Tx,Tz]g]g
= [ϕg(y),T(x ∗ z)]g
= ϕg(y) ▷ (x ∗ z).

Similarly, we have

ϕg(x) ◁ (y ◁ z) − ϕg(y) ◁ (x ◁ z) = [Tϕg(x), [Ty, z]g]g − [Tϕg(y), [Tx, z]g]g
= [[Tx,Ty]g, ϕg(z)]g
= [T(x ∗ y), ϕg(z)]g
= (x ∗ y) ◁ ϕg(z).

Moreover, we have

(x ⋄ y) ▷ ϕg(z) + (x ∗ y) ⋄ ϕg(z) + ϕg(y) ◁ (x ⋄ z) + ϕg(y) ⋄ (x ∗ z)
= λ[[x, y]g,Tϕg(z)]g + λ[[Tx, y]g, ϕg(z)]g + λ[[x,Ty], ϕg(z)] + λ2[[x, y], ϕg(z)]
+λ[Tϕg(y), [x, z]] + λ[ϕg(y), [Tx, z]g]g + λ[ϕg(y), [x,Tz]] + λ2[ϕg(y), [x, z]g]g

= λ[Tϕg(x), [y, z]g]g + λ[ϕg(x), [y,Tz]]g]g + λ[ϕg(x), [Ty, z]g]g + λ2[ϕg(x), [y, z]g]g
= ϕg(x) ◁ (y ⋄ z) + ϕg(x) ⋄ (y ∗ z).

This completes the proof. □
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The Hom-Leibniz algebra (A, [·, ·]∗, ϕA) of the above proposition is called the subadjacent Hom-Leibniz
algebra of (A, ϕA, ▷, ◁, ⋄) and (A, ϕA, ▷, ◁, ⋄) is called a compatible NS-Hom-Leibniz algebra structure on
(A, [·, ·]∗, ϕA).

Proposition 6.5. Let (g, [·, ·]g, ϕg) be a Hom-Leibniz algebra and N : g→ g be a Nijenhuis operator on it. Then the
bilinear operations

x ▷ y = [x,Ny]g, x ◁ y = [Nx, y]g and x ⋄ y = −N[x, y]g, for x, y ∈ g

defines an NS-Hom-Leibniz algebra structure on g.

Proof. For any x, y, z ∈ g, we have

ϕg(x) ▷ (y ∗ z) = [ϕg(x),N(y ∗ z)] = [ϕg(x), [Ny,Nz]]
= [[x,Ny],Nϕg(z)] + [Nϕg(y), [x,Nz]]
= (x ▷ y) ▷ ϕg(z) + ϕg(y) ◁ (x ▷ z).

Hence the identity (A1) of Definition 6.1 holds. Similarly, we get

ϕg(x) ◁ (y ▷ z) = [Nϕg(x), [y,Nz]] = [[Nx, y],Nϕg(z)] + [ϕg(y), [Nx,Nz]]
= (x ◁ y) ▷ ϕg(z) + ϕg(y) ▷ (x ∗ z),

and

ϕg(x) ◁ (y ◁ z) = [Nϕg(x), [Ny, z]] = [[Nx,Ny], ϕg(z)] + [Nϕg(y), [Nx, z]]
= (x ∗ y) ◁ ϕg(z) + ϕg(y) ◁ (x ◁ z).

Therefore, the identities (A2) and (A3) also hold. To prove the identity (A4), we first recall from [5] that the
given Hom-Leibniz bracket [·, ·]g and the deformed Hom-Leibniz bracket [·, ·]N are compatible in the sense
that their sum also defines a Hom-Leibniz bracket on g. This is equivalent to the fact that

[ϕg(x), [y, z]g]N + [ϕg(x), [y, z]N]g
= [[x, y]g, ϕg(z)]N + [[x, y]N, ϕg(z)]g + [ϕg(y), [x, z]g]N + [ϕg(y), [x, z]N]g, (6. 1)

for x, y, z ∈ g. The identity (A4) of Definition 6.1 simply follows from (6. 1). Hence (g, ϕg, ▷, ◁, ⋄) is an
NS-Hom-Leibniz algebra. □

Let (A, ϕA, ▷, ◁, ⋄) be an NS-Hom-Leibniz algebra. Define two linear maps L◁ : A→ 1l(A), R▷ : A→ 1l(A)
by

L◁(x)y = x ◁ y, R▷(x)y = y ▷ x and [x, y]∗ = −x ⋄ y, for x, y ∈ A.

With these notations, we have the following result.

Proposition 6.6. Let (A, ϕA, ▷, ◁, ⋄) be an NS-Hom-Leibniz algebra. Then (A, ϕA,L◁,R▷) is a representation of the
subadjacent Hom-Leibniz algebra (A, [·, ·]∗, ϕA). Moreover, the identity map Id : A → A is a Reynolds operator on
the Hom-Leibniz algebra (A, [·, ·]∗, ϕA) with respect to the representation (A, ϕA,L◁,R▷).

Proof. For any x, y, z ∈ A, we have

L◁([x, y]∗)ϕA(z) = [x, y]∗ ◁ ϕA(z)
(A3)
= ϕA(x) ◁ (y ◁ z) − ϕA(y) ◁ (x ◁ z)

=
(
L◁(ϕA(x)) ◦ L◁(y) − L◁(ϕA(y)) ◦ L◁(x)

)
z.

Similarly, we get

R▷([x, y]∗)ϕA(z) = ϕA(z) ▷ [x, y]∗
(A2)
= ϕA(x) ◁ (z ▷ y) − (x ◁ z) ▷ ϕA(y)
= L◁(ϕA(x)) ◦ R▷(y))z − R▷(ϕA(y)) ◦ L◁(x)z,
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and

R▷([x, y]∗)ϕA(z) = ϕA(z) ▷ [x, y]∗
(A1)
= (z ▷ x) ▷ ϕA(y) + ϕA(x) ◁ (z ▷ y)

=
(
R▷(ϕA(y)) ◦ R▷(x) + L◁(ϕA(x))R▷(y)

)
z.

Therefore, (A, ϕA,L◁,R▷) is a representation of the subadjacent Hom-Leibniz algebra (A, [·, ·]∗, ϕA). Finally,
we have

Id(L◁(Id x)y + R▷(Id y)x − [Id x, Id y]∗) = x ◁ y + x ▷ y + x ◦ y = [Id x, Id y]∗,

which shows that Id : A→ A is a Reynolds operator on the Hom-Leibniz algebra (A, [·, ·]∗, ϕA) with respect
to the representation (A, ϕA,L◁,R▷). □

Proposition 6.7. Let (g, [·, ·]g, ϕg) be a Hom-Leibniz algebra and (V, ϕV, ρL, ρR) be a representation. Let K : V → g
be a Reynolds operator. Then there is an NS-Hom-Leibniz algebra structure on V with bilinear operations given by

u ▷ v := ρR(Kv)u, u ◁ v := ρL(Ku)v and u ⋄ v := −[Ku,Kv]g, for u, v ∈ V.

Proof. For any u, v,w ∈ V, we have

ϕV(u) ▷ (v ∗ w) = ρR(K(v ∗ w))ϕV(u) = ρR([Kv,Kw])ϕV(u)

= ρL(KϕV(v))ρR(Kw)u + ρR(KϕV(w))ρR(Kv)u
= ϕV(v) ◁ (u ▷ w) + (u ▷ v) ▷ ϕV(w).

Similarly, we get

ϕV(u) ◁ (v ▷ w) = ρL(KϕV(u))ρR(Kw)v = ρR([Ku,Kz])ϕV(v) + ρR(KϕV(w))ρL(Ku)v
= ϕV(v) ▷ (u ∗ w) + (u ◁ v) ▷ ϕV(w),

and

ϕV(u) ◁ (v ◁ w) = ρL(KϕV(u))ρL(Kv)(w) = ρL([Ku,Kv])ϕV(w) + ρL(KϕV(v))ρL(Ku)w
= (u ∗ v) ◁ ϕV(w) + ϕV(v) ◁ (u ◁ w).

Hence (A1), (A2) and (A3) of Definition 6.1 hold. Since (∂[·, ·]g)(Ku,Kv,Kz) = 0, i.e.,

ρL(KϕV(u))[Kv,Kw]g − ρL(KϕV(v))[Ku,Kw]g − ρR(KϕV(w))[Ku,Kv]g
− [[Ku,Kv]g,KϕV(w)]g − [KϕV(v), [Ku,Kw]g]g + [KϕV(u), [Kv,Kw]g]g = 0.

This is equivalent to the condition (A4) of Definition 6.1. Hence the proof is completed. □

Remark 6.8. The subadjacent Hom-Leibniz algebra of the NS-Hom-Leibniz algebra constructed in Proposition 6.7
is given by

[u, v]∗ = ρL(Ku)v + ρR(Kv)u − [Ku,Kv]g, for u, v ∈ V.

This Hom-Leibniz algebra structure on V coincides with the one given in Proposition 3.6.

In the following, we give a necessary and sufficient condition for the existence of a compatible NS-Hom-
Leibniz algebra structure on a Hom-Leibniz algebra.

Proposition 6.9. Let (g, [·, ·]g, ϕg) be a Hom-Leibniz algebra. Then there is a compatible NS-Hom-Leibniz algebra
structure on g if and only if there exists an invertible Reynolds operator K : V → g on gwith respect to a representation
(V, ϕV, ρL, ρR). Furthermore, the compatible NS-Hom-Leibniz algebra structure on g is given by

x ▷ y := K(ρR(y)K−1x), x ◁ y := K(ρL(x)K−1y) and x ⋄ y = −K[x, y]g, for x, y ∈ g.
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Proof. Let K : V → g be an invertible Reynolds operator on g with respect to a representation
(V, ϕV, ρL, ρR). By Proposition 6.7, there is an NS-Hom-Leibniz algebra structure on V given by

u ▷̄ v := ρR(Kv)u, ◁̄ v := ρL(Ku)v and u ⋄̄ v := −[Ku,Kv]g, for u, v ∈ V.

Since K is an invertible map, the bilinear operations

x ▷ y := K(K−1x ▷̄ K−1y) = K(ρR(y)K−1x),
x ◁ y := K(K−1x ◁̄ K−1y) = K(ρL(x)K−1y),
x ⋄ y := K(K−1x ⋄̄ K−1y) = −K[x, y]g, for x, y ∈ g,

defines an NS-Hom-Leibniz algebra on g. Moreover, we have

x ▷ y + x ◁ y + x ⋄ y

= K(ρR(y)K−1x) + K(ρL(x)K−1y) − K[x, y]g
= K(ρR(K ◦ K−1y)K−1x) + K(ρL(K ◦ K−1x)K−1y) − K[K ◦ K−1x,K ◦ K−1y]g
= [K ◦ K−1x,K ◦ K−1y]∗ = [x, y]∗.

Conversely, let (g, ϕg, ▷, ◁, ⋄) be a compatible NS-Hom-Leibniz algebra structure on g. By Proposition 6.6,
(g, ϕg,L◁,R▷) is a representation of the Hom-Leibniz algebra (g, [·, ·]g, ϕg), and the identity map Id : g→ g is a
Reynolds operator on the Hom-Leibniz algebra (g, [·, ·]g, ϕg) with respect to the representation (g, ϕg,L◁,R▷).
Hence the proof is finished. □
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