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Abstract. The main goal of this paper is to introduce and study new classes of partial orderings on a set
with Krull dimension at most 1. We show that these classes are related to door, submaximal and Whyburn
T0-spaces.

1. Introduction

A binary relation on a set X is said to be a quasi-order if it is reflexive and transitive. If, in addition,
the quasi-order is antisymmetric, it will be a partial order. In the present paper, all binary relations will be
considered orders. A poset (X,≤) is a couple of a non-empty set X and a partial order ≤ .

Given a poset (X,≤) and an element x ∈ X, we denote by (↓ x] = {y ∈ X : y ≤ x} and [x ↑) =
{y ∈ X : x ≤ y}. More generally, given a subset A of X, we denote by (↓ A] = ∪{(↓ x] : x ∈ A} and
[A ↑) = ∪{[x ↑) : x ∈ A}. The subset {y ∈ (↓ x], y 6= x} will be denoted simply by (↓ x). Writing x < y,
for some x, y ∈ X, means x ≤ y and y 6= x. A point x ∈ X is called an isolated point if [x ↑) = (↓ x] = {x}.
Iso(X) will denote the family of all isolated points in (X,≤).

A collection {x0, ..., xn} of elements of a poset (X,≤) is said to be a chain of length n if x0 < ... < xn.
The supremum of lengths of all chains is called the Krull dimension of X and it is denoted by dimK(X) [7].

In this paper, we are interested in some new classes of partial orderings on a set X with Krull dimension
at most 1. Our first aim in this manuscript is to We elaborate relations between those introduced classes
illustrated by significant examples and counterexamples.

Before this let us introduce the following definitions.

Definition 1.1. A poset (X,≤) is called a TDD-poset if and only if for every distinct points x, y ∈ X, (↓
x) ∩ (↓ y) = ∅.

Definition 1.2. A poset (X,≤) is called a submaximal poset if and only if for every x ∈ X and for every
finite set F ∈ X such that x /∈ F we have [x ↑) ∩ F = ∅ or {x} ∩ [F ↑) = ∅.

Definition 1.3. A poset (X,≤) is called a door poset if and only if for every two disjoint finite subsets F1
and F2 in X, we have [F1 ↑) ∩ F2 = ∅ or F1 ∩ [F2 ↑) = ∅.
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Definition 1.4. A poset (X,≤) is called a TY-poset if and only if for every distinct points x, y ∈ X, | (↓
x] ∩ (↓ y] |≤ 1.

Definition 1.5. A poset (X,≤) is called a Whyburn poset if and only if for every x ∈ X, |(↓ x]| ≤ 2.

In our works and when we study Alexandroff spaces, we can see that the most fundamental and needed
property is that the category of all Alexandroff spaces is isomorphic to the category of all quasi-ordered
sets. Taking a qoset (quasi-ordered set) (X,≤), the collectionB = {[x ↑) x ∈ X} forms a basis of a topology

on X, denoted by τ(≤), called the Alexandroff topology on X defined by ≤. In this case the closure {x}
τ(≤)

,
for every x ∈ X, is exactly (↓ x] which means that τ(≤) is an Alexandroff topology on X. Conversely, taking

an Alexandroff space (X, τ), the binary relation ≤τ defined by x ≤τ y if and only if x ∈ {y}
τ

is a quasi-
order on X. Now, the maps φ : Qos −→ Alx such that φ((X,≤)) = (X, τ(≤)) and ψ : Alx −→ Qos such
that ψ((X, τ)) = (X,≤τ) are inverse one of the other which means that, considering an Alexandroff space
is equivalent to consider a quasi-ordered set (For more information see [2], [1] and [5]).

Recall that a topological space (X, τ) is called a T0-space if and only if for any x, y ∈ X, we have
{x} = {y} implies x = y. It is clearly seen that an Alexandroff space (X, τ) is a T0-space if and only if
(X,≤τ) is a poset.

As an interesting class of Alexandroff spaces, there is the class of functional Alexandroff spaces called
also primal spaces. Shirazi and Golestani [25] and Echi [10] , working independently, have explicitly intro-
duced a class of Alexandroff spaces called by Echi primal spaces and called by Shirazi and Golestani func-
tional Alexandroff spaces. In this paper, we will use the terminology "primal" to designate those spaces.
Given a map f : X −→ X, we define the quasi-ordered set (X,≤ f ) by y ≤ f x if and only if y = f n(x) for
n ∈ N. Hence the corresponding topological space (X, τ(≤ f )) is exactly the primal space (X,P( f )). Since
their recent introduction, primal spaces have been further investigated in [8, 11–14, 17–20, 25].

The second goal of this paper is to applied the obtained new classes of partial orderings in the case of
the corresponding specialization order ≤τ of a T0 topology τ. Consequently, the particular case ≤ f of a
given T0-primal topology (X,P( f )) is studied.

Hence, in the first section of this paper, we characterize TDD, door, TY and submaximal posets. We
prove that

(X,≤) is a TDD − poset

��

(X,≤) is door +3 (X,≤) is a TY − poset +3 (X,≤) is submaximal

Figure 1

In the second section, we apply the results given in the first section in the particular case of the partial
order ≤τ , for a given T0 topology τ. We prove that the class of submaximal poset (resp, door poset) is
isomorphic to the class of submaximal (resp, door) topological spaces.

In the third section we prove that in the particular case of ≤ f , the axioms TY, Whyburn and submaximal
coincides. We find the following diagram.
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(X,≤ f ) is a TDD − poset

��

(X,≤ f ) is door +3 (X,≤ f ) is submaximal

Figure 2

Along this paper, we use the Hass-diagram for orders. When the next situation express that a < b :

•
a

•
b

•
a

•
b

•
a

•
b

Figure 3

2. Posets of Krull dimension at most 1

Using the definition of TDD-posets, the following characterization is immediate.

Proposition 2.1. Let (X,≤) be a poset. Then (X,≤) is a TDD-poset set if and only if for every distinct points
x, y ∈ X, (↓ x] ∩ (↓ y] ∈ {∅, {x}, {y}}.

Now, we give another characterization of TDD-posets.

Proposition 2.2. Let (X,≤) be a poset. Then (X,≤) is a TDD-poset if and only if for every x ∈ X, | [x ↑) |≤ 2.

Proof. Assume | [x ↑) |> 2, then there exist y 6= z such that x < y and x < z. So x ∈ (↓ y) ∩ (↓ z),
contradicting the fact that X is a TDD-poset.

Conversely, suppose that for every x ∈ X, | [x ↑) |≤ 2. Let a 6= b be in X. If there exists c ∈ (↓ a)∩ (↓ b),
then a, b, c ∈ [c ↑), a contradiction. As a result (↓ a) ∩ (↓ b) = ∅, and X is a TDD-poset.

The graph of X \ Iso(X) of a TDD-poset is a disjoint union of components of type:

· · ·

•

• • •• · · ·

Figure 4

Proposition 2.3. Let (X,≤) be a poset. Then, the following statements are equivalent.
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(i) (X,≤) is a submaximal poset;

(iii) dimK(X,≤) ≤ 1.

Proof. (i) =⇒ (ii) Suppose dimK(X,≤) ≥ 2; then there exists a chain x < y < z in X. Hence, taking
F = {x, z}, we have y /∈ F, z ∈ [y ↑) ∩ F and y ∈ [F ↑), contradicting the fact that X is a submaximal poset.

(ii) =⇒ (i) Assume that X is not a submaximal poset. Hence, there exist a finite subset F and x /∈ F
with x ∈ [F ↑) and F ∩ [x ↑) 6= ∅. Thus there exist y, z ∈ F such that x < z. So that y < x < z, contradicting
that assumption dimK(X,≤) ≤ 1.

Proposition 2.4. A poset (X,≤) is a TY-poset if and only if it is submaximal and for every x, y in X |(↓ x) ∩ (↓
y)| ≤ 1.

Proof. For the direct implication, using Proposition 2.3, it suffices to verify that dimK(X,≤) ≤ 1. Indeed, if
there exists a chain x < y < z in X, then |(↓ z] ∩ (↓ y]| ≥ 2, a contradiction.

For x 6= y in X, as (↓ x) ∩ (↓ y) ⊆ (↓ x] ∩ (↓ y], we deduce that |(↓ x) ∩ (↓ y)| ≤ 1.
Conversely, assume that (X,≤) is a submaximal poset and for every x, y in X, |(↓ x) ∩ (↓ y)| ≤ 1. We

consider two cases.
Case 1. If x, y are comparable ( for instance x < y), then in this case (↓ x) ∩ (↓ y) = (↓ x). But as

dimK(X,≤) ≤ 1, we get (↓ x) = ∅. It follows that (↓ x] ∩ (↓ y] = {x}.
Case 2. If x, y are incomparable, then in this case (↓ x] ∩ (↓ y] = (↓ x) ∩ (↓ y), and we are done.
Therefore (X,≤) is a TY-poset.

The following diagrams represent the possible components of X \ Iso(X) of a TY-poset:

· · ·

•

• • •• · · ·

· · ·

•

• • •• · · ·
· · ·

•

•

•

•
· · ·

Figure 5

Proposition 2.5. For a poset (X,≤), the following diagram for implications holds.

(X,≤) is a TDD − poset

��

(X,≤) is door +3 (X,≤) is a TY − poset +3 (X,≤) is submaximal

Figure 6

Proof. According to Proposition 2.4, only two implications deserve proofs.
(i)](X,≤) is door =⇒ (X,≤) is a TY poset.
Let (X,≤) be a door poset and suppose that X is not TY. Let x, y be two distinct elements such that

| (↓ x] ∩ (↓ y] |≥ 2. Let z and t be two distinct points in X with {z, t} ⊆ (↓ x] ∩ (↓ y]. Since x and y are
distinct, then {z, t} 6= {x, y}. There are two cases:
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First case Exactly one of z, t is equal to x or y. Hence in this case we can suppose that (↓ x] ∩ (↓ y]
contain {x, z}. So let F1 = {x} and F2 = {z, y}. Clearly, F1 and F2 are two disjoint subsets of X but
[F1 ↑) ∩ F2 = {y} and [F2 ↑) ∩ F1 = {x}, contradiction.

Second case x, y, z, t are mutually distinct points. So let F1 = {z, y} and F2 = {x, t}. Clearly, F1 and F2
are two disjoint subsets of X but [F1 ↑) ∩ F2 = {x} and [F2 ↑) ∩ F1 contain at least y, contradiction.

(ii)] (X,≤) is TDD =⇒ (X,≤) is a TY.
Let (X,≤) be a TDD-poset. By Proposition 2.1 any distinct points x and y satisfies (↓ x] ∩ (↓ y] ∈

{∅, {x}, {y}} and thus | (↓ x] ∩ (↓ y] |≤ 1. Therefore (X,≤) is a TY-poset.

Remark 2.6. One may check easily that none of the implications in the previous proposition is reversible.

Let us close this section by the following remark.
=

Remark 2.7. Let (X,≤) ∈ {T1, TDD, door, TY, submaximal}, then (X,≤) is a submaximal poset and thus by
Proposition 2.3, dimK(X,≤) ≤ 1. Therefore, the graph of (X,≤) has no chain of length greater than 2.

3. Door and submaximal Alexandroff spaces

A topological space X is called submaximal if every dense subspace of X is open in X. Some authors add
the condition that X has no isolated points to the definition of such spaces. Hewitt [15] calls submaximal
spaces without isolated points MI-spaces. The significance of considering submaximal spaces is provided
by the theory of maximal spaces. A topological space X is called maximal if it is dense-in-itself and no
larger topology on the set X is dense-in-itself.

In [20] and [1, Proposition 2.2] the authors give a characterization of submaximal spaces in the class of
Alexandroff spaces as follows.

Theorem 3.1. Let (X,≤) be a poset; then (X, τ(≤)) is a submaximal space if and only if dimK(X,≤) ≤ 1.

Combining Theorem 3.1 and Proposition 2.3, we obtain the following result, justifying the introduction
of submaximal posets.

Theorem 3.2. Let (X,≤) be a poset. Then, the following statements are equivalent:

(i) (X,≤) is a submaximal poset;

(ii) (X, τ(≤)) is a submaximal space.

A topological space is a door space if and only if every set is either open or closed. Check that a door
space is submaximal. Considering Alexandroff door spaces, the following Theorem was proved in [20].

Theorem 3.3. Let (X,≤) be a poset; then (X, τ(≤)) is a door space if and only if dimK(X,≤) ≤ 1 and the poset
(Y = X \ Iso(X)) is either empty or has one of the following forms:

· · ·

•
m

• • •• · · ·

type I

· · ·

•
M

• • •• · · ·

type II

Figure 7

The following result gives a a relation between door spaces and door posets.

Proposition 3.4. Let (X,≤) be a poset. The following statements are equivalent:
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(i) (X, τ(≤)) is a door space;

(ii) (X,≤) is a door poset.

Proof. (i) =⇒ (ii) Suppose that (X, τ(≤)) is a door space. Then by Theorem 3.3, Y = X \ Iso(X) has one
of the following forms:

· · ·

•
m

• • •• · · ·

type I

· · ·

•
M

• • •• · · ·

type II

Figure 8

Now, let F1 and F2 be two disjoint subsets. Then, for i = 1, 2 Fi = (Fi ∩ Iso(X)) ∪ (Fi ∩ Y) and [Fi ↑) =
(Fi ∩ Iso(X)) ∪ ([Fi ↑) ∩ Y). So, [F1 ↑) ∩ F2 = ∅ (resp, [F2 ↑) ∩ F1 = ∅) means that ([F1 ↑) ∩ F2) ∩ Y = ∅

(resp, ([F2 ↑) ∩ F1) ∩ Y = ∅ ). Thus, we can suppose that X is without isolated point.
If X is of type I, then for every subset F, we have [F ↑) = F if m /∈ F and [F ↑) = X if not. Since F1 and

F2 are disjoint subsets, then either [F1 ↑) ∩ F2 = F1 ∩ F2, or [F2 ↑) ∩ F1 = F2 ∩ F1 and thus one of them is
empty.

If X is of type I I, then [F ↑) = F if M belongs to F and [F ↑) = F ∪ {M} if not. Hence suppose that
[F1 ↑) ∩ F2 6= ∅. Then (F1 ∪ {M})∩ F2 6= ∅ and thus {M} ∩ F2 6= ∅ which implies that M ∈ F2. In this case
[F2 ↑) = F2 and consequently, [F2 ↑) ∩ F1 = ∅.

(ii) =⇒ (i) Let (X,≤) be a door poset. By Remark 2.7, the graph of the specialization order ≤ has no
chains of length greater than 2. Assume, the existence of two chains of length 2 without common point.
That is, there exist four pairwise distinct points a, b, c, d such that the unique non trivial relations are b < a
and d < c. Hence if we set F1 = {a, d} and F2 = {b, c}, then neither [F1 ↑) ∩ F2 = ∅ nor [F2 ↑) ∩ F1 =]∅.
Therefore all chains of length 2 contain a common point, which is necessarily a maximal point or a minimal
point.

A topological space X is called a Whyburn space [23] if for every non-closed subset A of X and for
every x ∈ A\A, there exists B ⊆ A such that B\A = {x}. It is called weakly Whyburn [24] if for every
non-closed subset A of X there exists B ⊆ A such that B\A is a one point set. Clearly, every Whyburn space
is weakly Whyburn. The characterization of Whyburn spaces and weakly Whyburn spaces in the class of
Alexandroff spaces was given by [20] as follow.

Theorem 3.5. Let (X, τ) be an Alexandroff space. Then the following statements are equivalent:

(i) X is Whyburn;

(ii) X is weakly Whyburn;

(iii) The closure of each element of X has at most 2 points, that is, |(↓ x]| ≤ 2.

Remark 3.6. Regarding Theorem 3.5, every connected component in a Whyburn space is either a 2-cycle
(i.e: a pair (a, b), a 6= b, a ≤τ b and b ≤τ a), a single point or a component of type I of Figure 8 (we can
consider single point as a particular case of type I, when there is no points below m).

Theorem 3.5 enables us to introduce the following concept.

Definition 3.7. We say that (X,≤) is a Whyburn poset if for every x ∈ X, |(↓ x]| ≤ 2.

Remark 3.8. Let (X,≤) be a poset.
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(1) (X,≤) is a Whyburn poset if and only if (X, τ(≤)) is a Whyburn space.

(2) Since (X,≤) is a poset, then if it is Whyburn there is no 2-cycles and every connected component is of
type:

· · ·

•

• • • • • • • · · ·

Figure 9

Proposition 3.9. Every Whyburn poset is a TY-poset.

Proof. Let (X,≤) be a Whyburn poset. For any distinct points x and y, |(↓ x]| ≤ 2 and |(↓ y]| ≤ 2, then
|(↓ x] ∩ (↓ y]| ≤ 2 and it is exactly 2 if and only if (↓ x] = (↓ y] and thus x = y which is not the case.
therefore | (↓ x] ∩ (↓ y] |≤ 1.

Remark 3.10. (1) A Whyburn poset need not be a door poset.

(2) A Whyburn poset need not be a TDD-poset.

(3) A door poset (resp, TDD-poset) need not be a Whyburn poset.

4. Primal posets

Let X be a set and f : X −→ X be a map. We define the quasi-ordered set (X,≤ f ) (called primal quasi-
ordered set) by for any x, y ∈ X, y ≤ f x if and only if y = f n(x) for some n ∈ N. Hence, the corresponding
topological space (X, τ≤ f

) is exactly the primal space (X,P( f )). Recall that an element x ∈ X is said to be
a periodic point if f n(x) = x for some positive integer n > 1. It is called a fixed point if f (x) = x. The
following result is an immediate consequence of [10, Proposition 2.5].

Lemma 4.1. Let (X,≤ f ) be a primal quasi-ordered set.

(i) (X,≤ f ) is an equality poset if and only if f is the identity map.

(ii) (X,≤ f ) is a poset if and only if f is without periodic point.

Now, since in our study all given binary relations are partial orders, then all considered functions f are
without periodic points.

Let us start by characterizing TDD-poset.

Proposition 4.2. A primal poset (X,≤ f ) is a TDD-poset if and only if the following properties hold.

(i) f 2 = f .

(ii) For all a 6= b ∈ X, if f (a) = f (b) then a or b is a fixed point.

Proof. Suppose that there exists x ∈ X such that f ( f (x)) 6= f (x), then f 2(x) < f f (x) < f x and conse-
quently f 2(x) ∈ (↓ x) ∩ (↓ f (x)) contradicting the fact that (X,≤ f ) is a TDD poset.

Conversely, assume the properties (i) and (ii) hold. Let x 6= y in X. If we suppose that (↓ x) ∩ (↓ y) 6=
∅, then there exists z ∈ X such that z < f x and z < f y. As f 2 = f , we have f (x) = z = f (y). Hence x or y
is a fixed point, this leads to x = z or y = z, a contradiction.
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Remark 4.3. A TDD-poset need not be a primal poset.

The following proposition follows immediately from combining [9, Proposition 4.1] and Theorem 3.2.

Proposition 4.4. Let (X,≤ f ) be a primal poset. Then, the following statements are equivalent:

(i) (X,≤ f ) is a submaximal poset;

(ii) (X,P( f )) is a submaximal topological space;

(iii) f 2 = f .

Remark 4.5. A submaximal poset need not be primal.

The following proposition is an immediate consequence of [9, Proposition 4.3] and Proposition 2.3.

Proposition 4.6. Let (X,≤ f ) be a primal poset. Then, the following statements are equivalent.

(i) (X,≤ f ) is a door poset;

(ii) (X,P( f )) is a door topological space;

(iii) There exist at most one element a ∈ X such that |[↑ a)| > 1.

Remark 4.7. A door poset need not be primal.

Proposition 4.8. Let (X,≤ f ) be a primal poset.

(i) (X,≤ f ) is a TY-primal poset if and only if (X,≤ f ) is a submaximal poset.

(ii) (X,≤ f ) is a Whyburn-primal poset if and only if (X,≤ f ) is a submaximal poset.

Proof. (i) Using Proposition 2.4 it is enough to see that every submaximal primal poset satisfies: for all
x, y ∈ X, x 6= y, | (↓ x) ∩ (↓ y) |≤ 1 is. So, Let x and y be two distinct points. If x or y is fixed, then
(↓ x) ∩ (↓ y) is empty and thus | (↓ x) ∩ (↓ y) |= 0 ≤ 1. If not (↓ x) ∩ (↓ y) = { f (x)} ∩ { f (y)} and also
| (↓ x) ∩ (↓ y) |≤ 1.

(ii) Let (X,≤ f ) be a primal poset. By definition (X,≤ f ) is a Whyburn-primal poset if and only (X,P( f ))

is a Whyburn space. Using [22, Corollary 4], (X,P( f )) is a Whyburn space if and only if f 2(x) ∈ {x, f (x)}.But
≤ f is an order, then f is without periodic point and thus f 2(x) = f (x) for every x. Finally, Proposition 4.4
complete the proof.

Corollary 4.9. Let (X,≤ f ) be a primal poset. Then the following statements are equivalent:

(i) (X,≤ f ) is a submaximal primal poset;

(ii) (X,≤ f ) is a TY-primal poset;

(iii) (X,≤ f ) is a Whyburn primal poset;

(iv) f 2 = f .

The following table give the possible diagrams of X \ Iso(X) for our primal posets:
Primal poset Diagram

TDD-primal •

•

•

•
· · ·

•

•

submaximal primal, TY-primal, Whyburn primal •

•

•

• •

•

• • •

•

• • • •
· · ·

door primal

· · ·

•

• • • • • • • · · ·
(One component)

The following chart shows the ordering relations between our main separation axioms.
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(X,≤ f ) is a TDD − poset

��

(X,≤ f ) is door +3 (X,≤ f ) is submaximal

Figure 10

Example 4.10. (i) Let f : Z −→ Z defined by, for every n ∈ Z, f (n) = (−1)n. It is clear that f is without
periodic point and Thus (X,≤ f ) is a primal poset. But we have the sequence −1 < 1 < 0, which implies
that (X,≤ f ) is not a submaximal primal poset.

Such situation can be illustrated by the following figure.

•
−1

•
−3

•
−2

•
1

•
3

· · · · · ·

•
−2

•
0

•
2

•
4

· · · · · ·

Figure 11

(ii)] Let f : Z −→ Z defined by, for every n ∈ Z, f (n) =| n |. It is clear that (X,≤ f ) is a submaximal
primal poset which is not door. This example show also that this set is TDD which is not door. Such
situation can be illustrated by the following figure.

•0

•
−1

•
1

•
−2

•
2

· · ·

•
−k

•
k

· · ·

Figure 12

(iii) Let f : N −→ N the constant map zero. (X,≤ f ) is a door primal poset which is not TDD. This
example show also that this poset is submaximal which is not TDD. Such situation can be illustrated by the
following figure.
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•
0

•
1

•
2

•
3

•
4

· · ·

Figure 13
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