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Abstract. This research investigates k-Almost Newton-Ricci solitons (k-ANRS) embedded in a metallic
Riemannian manifoldMn having the potential function ψ. Furthermore, we prove geodesic and minimal
conditions for hypersurfaces of metallic Riemannian manifolds. Beside this, we have explained some
applications of metallic Riemannian manifold admitting k-Almost Newton-Ricci solitons.

1. Background

The Ricci flow theory was developed in 1982 by Richard S. Hamilton, which he presented in his
groundbreaking work, was an exploration of a Riemannian manifold (M, 1) [36]

∂
∂t
1(t) = −2Ric(1(t)), 1(0) = 10,

in this equation, Ric indicates the Ricci tensor, while t indicates time. It is helpful in smoothing out
singularities in a metric to deform it.

Assume V represents any vector field on M and identify the Lie derivative along V with the notation
LV. Then, Ricci soliton on (M, 1) is presented by (1,V, λ) and it can be viewed as an extension of Einstein
metric and obeying

1
2
LV1 + Ric + λ1 = 0, (1)

λ is some real scalar. One also notices that a Ricci soliton becomes

• shrinking provided λ < 0,

• steady with λ = 0,
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• expanding for λ > 0.

Moreover, ψ describes any smooth function by ψ : M → R and V be standing for the gradient of potential
function −ψ. In this case, 1will be termed as gradient Ricci soliton. Also, (1) reduces to

∇∇ψ = Ric + λ1, (2)

wherein ∇∇ψ denotes the Hessian of ψ. The Einstein manifold with constant potential function [14] results
in the trivial gradient Ricci soliton [23].

According to Pigola et al. [40], in (1), taking the constant λ and rewriting it as a smooth function in
λ ∈ C∞(M) produces almost Ricci soliton on manifold (M, 1), which can be written as (1,V, λ). Cantino and
Mazzieri ([15], [16]) reported it to be evolved from the Ricci-Bourguignon flow. Equation (1) can be used
to define an almost Ricci soliton. Many geometers have conducted substantial research on the aforesaid
solitons. Researchers in [9] investigated the properties of isometric immersions in solitons of this sort and
Wylie [45] demonstrated compactness qualities. [22] examined the immersed almost Ricci soliton under
Pk (Newton transformation) with second order differential operator Lk for 0 ≤ k ≤ n, referred as k-ANRS.
In [42], Siddiqi also discussed Ricci-Bourguignon almost solitons. For further literature, we refer ([3],[15],
[17]-[19],[25],[27], [43],[41]) and the references therein.

On the other side, the very initial work about golden structure on a Riemannian manifold was carried
out in [13] and it gave birth to new ideas about golden mean. This notion was further extended to metallic
means by [35] producing golden mean as particular case. In the recent past, a plenty of good results have
been established by different researchers regarding metallic means family. For further study, one may refer
to ([4],[6],[7], [21],[30]-[32]). Also, an extensive work on warped product manifolds endowed with metallic
structure has been carried out in [5] (see also [33], [32]). The preceding literature served as inspiration for the
current article. We investigate k-almost Newton-Ricci solitons on the hypersurface of metallic Riemannian
manifolds in this framework.

2. Metallic Riemannian manifolds

([13], [28], [2]) For Riemannian manifold (M
m
, 1) and real numbers a1, . . . , an, (1, 1)-tensor field F produces

a polynomial structure when P(F) = 0, in this case

P(V) := Vn + anVn−1 + · · · + a2V + a1I, (3)

with I being used for identity transformation defined on Γ(TM).
A (1, 1)-tensor field φ defined onM yields a metallic structure such that

φ2 = pφ + qI,∀p, q ∈N∗.

The following relation also holds

1(U, φV) = 1(φU,V), ∀U,V ∈ Γ(TM). (4)

A metallic Riemannian manifoldM satisfies (4).
Using φU in place of U

1(φU, φV) = p1(U, φV) + q1(U,V).

It is noted that metallic structure reduces to golden when p = q = 1 ([13], [34]). Also, F describes an almost
product structure on (M

m
, 1) provided F2 = I with F , ±I [2] . Furthermore, (M, d) becomes almost product

Riemannian manifold provided

1(FU,V) = 1(U,FV).

For further details on metallic structures, we refer [35].
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Definition 2.1. [4] (i) The linear connection ∇ on metallic Riemannian manifold (M, 1, φ) is φ-connection if

∇φ = 0. (5)

(ii) (M, 1, φ) represents locally metallic Riemannian manifold provided the Levi-Civita connection of 1 denoted
by ∇ satisfies (5).

One has the decomposition
TxM = TxM⊕ T⊥xM, x ∈ M.

When (M = M1 × M2,F) stands for locally Riemannian product manifold, M1 and M2 possessing
constant sectional curvatures c1 and c2, resp. One can write [4]

R(v1, v2)v3 =
1
4

(c1 + c2)[1(v2, v3)v1 − 1(v1, v3)v2 + 1(Fv2, v3)Fv1

− 1(Fv1, v3)Fv2] +
1
4

(c1 − c2)[1(Fv2, v3)v1

− 1(Fv1, v3)v2 + 1(v2, v3)Fv1 − 1(v1, v3)Fv2]. (6)

In view of almost product structure and (6), we achieve [20]

R(v1, v2)v3 =
1
4

(c1 + c2)[1(v2, v3)v1 − 1(v1, v3)v2]

+
1
4

(c1 + c2)
{ 4
(2σp,q − p)2 [1(φv2, v3)φv1 − 1(φv1, v3)φv2]

+
p2

(2σp,q − p)2 [1(v2, v3)v1 − 1(v1, v3)v2]

+
2p

(2σp,q − p)2 [1(φv1, v3)v2 + 1(v1, v3)φv2

−1(φv2, v3)v1 − 1(v2, v3)φv1]
}

±
1
2

(c1 − c2)
{ 1
2σp,q − p

[1(v2, v3)φv1 − 1(v1, v3)φv2]

+
1

2σp,q − p
[1(φv2, v3)v1 − 1(φv1, v3)v2]

+
p

2σp,q − p
[1(v1, v3)v2 − 1(v2, v3)v1]

}
. (7)

Example 2.2. (Clifford algebras) Assume that
∑m

k=1

(
µk

)2
stands for the positive definite form of Rm and Cγ(n) be

the real Clifford algebra of this positive definite form [38]. Then, taking view of Clifford product, one observes that
standard base of Rm satisfies: {

E2
k = 1 , k = l

EkEl + ElEk = 0 , k , l

Taking φi =
1
2

(
p +

√
p2 + 4qEi

)
produces{

φk, metallic structure , k = l
φkφl + φlφk = p

(
φk + φl

)
−

p2

2 , k , l,

E1 and E2 are orthonormal basis vectors of R2
2 [38]:

1 = I2 , E1 ≃

(
1 0
0 −1

)
, E2 ≃

(
0 1
1 0

)
,
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and thus we obtain

(i) φ1 =
1
2

(
p +

√
p2 + 4qE1

)
=

 p+
√

p2+4q
2 0

0
p−
√

p2+4q
2


=

(
σp,q 0
0 p − σp,q

)
(ii) φ2 =

1
2

(
p +

√
p2 + 4qE2

)
=

1
2

(
p

√
p2 + 4q√

p2 + 4q p

)
.

Example 2.3. Assume (2n + m)-dimensional affine space R2n+m
n equipped with (x1, . . . , xn, y1, . . . , yn, z1, . . . , zm).

Further, let 1 and ϑ be the semi-Riemannian metric and tensor field given by

1 =

 −σp,qδi j 0 0
0 σp,qδi j 0
0 0 (p − σp,q)δi j

 ,

ϑ =
1
2

 pδi j (2σp,q − p)δi j 0
(2σp,q − p)δi j pδi j 0

0 0 σp,qδi j

 ,
σp,q =

p+
√

p2+4q
2 and ϑ defines a metallic structure on R2n+m

n .

3. k-almost Newton-Ricci soliton

Let us identify by M
n+1

, any metallic Riemannian manifold and immerse an oriented and connected

hypersurface f : Mn
−→ M

n+1
intoM

n+1
. ThenMn represents an k-ANRS, for some 0 ≤ k ≤ m, provided

([16], [22])

Ric + Pk ◦Hessianψ = λ1, (8)

where ψ and λ both are smooth functions onMn and

Pk ◦Hessianψ(U,W) = 1(Pk∇U∇ψ,W), (9)

U,W ∈ X(M). Placing k = 0, (8) gives a gradient almost Ricci soliton. Pk means k-th Newton transformation
such that P0 = I (identity operator).

According to the Gauss equation,

(R̄(U,W)Z)T = 1(BW,Z)BU + R(U,W)Z − 1(BU,Z)BW (10)

∀U,W,Z ∈ X(Mn). In this situation, ()T is used to indicate the tangential components of some vector field
of X(Mn) alongMn. Moreover, the shape operator B satisfies

1(h(U,W), α) = 1(BαU,W), (11)

here αmeans the normal vector field onMn. We also fix R̄ (resp. R) to denote Riemannian curvature tensor

ofM
n+1

(resp. Mn). Further, ρ ofMn is

n∑
i, j

1(R̄(Ei,E j)E j,Ei) = ρ − n2H2 + ∥B∥2 , (12)
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∥B∥ means the Hilbert-Schmidt norm and {E1, . . . ,En} indicates orthonormal frame on T(M). Thus, for

locally Riemannian product manifoldM
n+1

, we have the identity

ρ =
1
8

(c1 + c2)
n(n − 1)
p2 + 4q

{
2p2 + 4q

+
2

n(n − 1)
[tr2φ − ||φ||2] −

4p
n

trφ
}

+
1
8

(n − 1)√
p2 + 4q

(c1 − c2)
(
4trφ − 2np

)
+

n2

2
H2
−
||B||2

2
. (13)

There exist n algebraic invariants corresponding to B ofMn, that are the elementary symmetric functions
ρk of its principal curvatures r1, . . . , rm, and are given by

ρ0 = 1, ρk =
∑

i1<...<ik

r1 . . . rn. (14)

Denote with Hk, the k-th mean curvature of the immersion and define it as (n
k )Hk = ρk. If k = 0, we have

H1 =
1
n tr(A) = H, tr stands for trace. The Newton transformation Pk : X(Mn) −→ X(Mn) ofMn is defined

by putting P0 = I, 0 ≤ k ≤ m, by

Pk =

k∑
j=0

(−1)k− j(m
j )H jAk− j, (15)

B j represents j times composition of B with itself (B0 = I). Take Lk : C∞(Mn) −→ C∞(Mn) described with

Lku = tr(Pk ◦Hessian u). (16)

If we take k = 0, then there is the Laplacian operator. L0. Also, we turn up

divM(Pk∇u) =

m∑
i=1

1((∇Ei Pk)∇u,Ei) +
m∑

i=1

1(Pk(∇Ei∇u),Ei)

= 1(divMPk,∇u) +Lku, (17)

where

divMPk = tr(∇Pk) =
m∑

i=1

(∇Ei Pk)Ei. (18)

IfM
n+1

has constant sectional curvatures, (17) has the following shape

Lku = divM(Pk∇u), (19)

because divMPk = 0 (also refer [39]).
Since the s.f.f. ofMn is trace-less, which is produced as

Φ = BHI, tr(Φ) = 0, (20)

|Φ|2 = tr(Φ2) = ∥B∥2 −mH2
≥ 0. (21)

|Φ|2 = 0⇔Mn is totally umbilical.
Let us use the maximal principle to obtain our results (for more information, check [24]). As a result,

for every s ≥ 1, we use the expression

L
s(L) =

{
u :Mn

−→ R;
∫
M

|u|s dL < +∞
}
. (22)
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Lemma 3.1. AssumeMn denotes non-compact, complete, oriented Riemannian manifold and for smooth vector field
U, divMU keeps sign onMn unchanged. Then |U| ∈ L1(M) implies divMU = 0.

Theorem 1.2 [10] is extended in the following manner.

Theorem 3.2. Consider (1, ψ, λ, k) denotes a complete k-ANRS on hypersurfaceMn of metallic Riemannian manifold

M
n+1

of constant sectional curvatures c1 and c2 and p.f. ψ :Mn
−→ R s.t.

∣∣∣∇ψ∣∣∣ ∈ L1(M). When

1. λ > 0,c1 + c2 ≤ 0,c1 − c2 ≤ 0 =⇒Mn can not be minimal,
2. c1 − c2 < 0,λ ≥ 0, c1 + c2 < 0 =⇒Mn can not be minimal,
3. Mn is minimal, c1 − c2 = 0, λ ≥ 0,c1 + c2 = 0 =⇒ M

n will be isometric to Rn.

Proof. Since c1 and c2 are the constant sectional curvatures of the ambient space, then from (19) we can see
that the operator Lk is of the divergent kind. Furthermore, B is bounded onMn, so (15) indicates Pk has a
bounded norm implying∣∣∣Pk∇ψ

∣∣∣ ≤ |Pk|
∣∣∣∇ψ∣∣∣ ∈ L1(M). (23)

To prove (1) and (2), consider on contrary that Mn is minimal. In that situation, (13) together with
c1 − c2 ≤ 0, c1 + c2 ≤ 0 and c1 − c2 < 0, c1 + c2 < 0 shows that ρ ≤ 0 (ρ < 0). Thus, contraction on (8) produces
Lrψ = nλ − ρ > 0 in both cases, and that contradicts Lemma 3.1 establishing assertions (1) and (2).

Next, since c1 and c2 are the constant sectional curvatures of the ambient space andMn is minimal, then
equation (13) becomes

ρ = −
∥B∥2

2
≤ 0. (24)

Next, λ ≥ 0 =⇒ Lr(ψ) = nλ − ρ ≥ 0. Taking Lru = divM(Pk∇u) and
∣∣∣Pk∇ψ

∣∣∣ ∈ L1(M), Lemma (3.1)
contributed once more Lrψ = 0 onMn. Therefore 0 ≥ ρ = nλ ≥ 0, =⇒ ρ = λ = 0 establishing ∥B∥2 = 0.
Hence k-ANRSMn is geodesic and flat.

Recall the following result corresponding to Theorem 3 of [48].

Lemma 3.3. Assume Mn stands for complete Riemannian manifold with non-negative smooth subharmonic function
u. Assume u ∈ Ls(M), then u is constant ∀s > 1.

Thus, one writes:

Theorem 3.4. When (1, ψ, λ, k) denotes complete k-ANRS on hypersurfaceMn ofM
n+1

, Pk is bounded from above
(in the sense of quadratic forms) and ψ ∈ Ls(M), ∀s > 1. Then

1. KM ≤ 0,λ > 0 =⇒ M
n is not minimal,

2. λ ≥ 0,KM < 0 =⇒ M
n will not be minimal,

3. Mn is minimal, λ ≥ 0, KM ≤ 0 =⇒ M
n will be flat and totally geodesic.

Proof. LetMn is minimal. Then, (12) with given hypothesis results ρ ≤ 0 and contraction of (8) implies

Lkψ = nλ − ρ > 0. (25)

Since Pk has been considered bounded from above, therefore

ω∆ψ ≥ Lkψ > 0, (26)

in above case, ω indicates any positive constant. As a result of Lemma 3.3, ψ is constant, which is not
appropriate, establishing (1). (2) and (3) are simply found in light of the evidence of Theorem 3.2.

The next result extends Theorem 1.5 [9] for U = ∇ψ. We also provide the terms for an k-ANRS on
hypersurface of metallic Riemannian manifold to be totally umbilical, provided s.f.f. of Mn is bounded.
Thus, one has
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Theorem 3.5. If (1, ψ, λ, k) be a complete k-ANRS on hypersurfaceMn ofM
n+1

of sectional curvatures c1 and c2,
with bounded s.f.f. and potential function ψ :Mn

−→ R s.t.
∣∣∣∇ψ∣∣∣ ∈ L1(M). Therefore, for

1. λ ≥
(n−1)(c1+c2)D1

√
p2+q2−(n−1)(c1−c2)D2(p2+q2)

8n(p2+q2)
√

p2+q2
,Mn is totally geodesic with λ =

(c1+c2)D1

√
p2+q2−(c1−c2)D2(p2+q2)

8(p2+q2)
√

p2+q2

[
(n−1)

n

]
,

and ρ =
n(n−1)(c1+c2)D1

√
p2+q2−(n−1)(c1−c2)D2(p2+q2)

8n(p2+q2)
√

p2+q2
,

2. Mn is compact and λ ≥
(c1+c2)D1

√
p2+q2−(n−1)(c1−c2)D2(p2+q2)+ H2

2

8n(p2+q2)
√

p2+q2
,Mn is isometric to a Euclidean sphere,

3. λ ≥
[(c1+c2)D1

√
p2+q2−(n−1)(c1−c2)D2(p2+q2)+ H2

2 ]

8(p2+q2)
√

p2+q2

[
(n−1)

n

]
, Mn is totally umbilical. Particularly, ρ = n(n − 1)KM is

constant, KM =
(c1+c2)D1

√
p2+q2−(n−1)(c1−c2)D2(p2+q2)+ H2

2

8n(p2+q2)
√

p2+q2
is the sectional curvature ofMn.

Proof. Using (8) and (13), one derives

Lrψ = nλ −

 (c1 + c2)D1
√

p2 + q2 − (c1 − c2)D2(p2 + q2)

8(p2 + q2)
√

p2 + q2

 [ (n − 1)
n

]
−

n2

2
H2 +

∥B∥2

2
, (27)

where D1 = (p2 + 4q)[2p2 + 4q 2
n(n−1) (tr

2φ − ||φ||2) − 4p
n trφ] and

D2 =
(
4trφ − 2np

)
.

On λ, simply obtain that Lrψ is non-negative function on Mn. Lemma 3.1 implies Lkψ vanishes
identically. Thus, (27) makesMn totally geodesic and we turn up to

λ =
(c1 + c2)D1

√
p2 + q2 − (c1 − c2)D2(p2 + q2)

8(p2 + q2)
√

p2 + q2

[
(n − 1)

n

]
. (28)

Additionally, (13) implies

ρ =
(c1 + c2)D1

√
p2 + q2 − (c1 − c2)D2(p2 + q2)

8(p2 + q2)
√

p2 + q2

[
(n − 1)

n

]
,

completing proof of (1). If Mn is compact, being totally geodesic results ambient space must be Sn+1

isometric toM
n+1

, completing (2). From equation (27), we have

Lkψ = n

λ − (n − 1)
(c1 + c2)D1

√
p2 + q2 − (n − 1)(c1 − c2)D2(p2 + q2)

8n(p2 + q2)
√

p2 + q2


+ |Φ|2 . (29)

Now, Theorem (3.5) (1) entails.

Corollary 3.6. When (1, ψ, λ, k) be complete k-ANRS on hypersurface Mn of M
n+1

, then Mn admits the steady
k-ANRS.

As a result of our assumption on λ, we get Lkψ ≥ 0. We get Lkψ = 0 from Lemma (3.1). This demonstrates
thatMn is completely umbilical. As a result, it implies that κ be constant, soMn has a constant sectional
curvature.

KM =
(c1 + c2)D1

√
p2 + q2 − (n − 1)(c1 − c2)D2(p2 + q2) + H2

2

8n(p2 + q2)
√

p2 + q2
.
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This relation together with (29) gives

λ =
[(c1 + c2)D1

√
p2 + q2 − (n − 1)(c1 − c2)D2(p2 + q2) + H2

2 ]

8(p2 + q2)
√

p2 + q2

[
(n − 1)

n

]
= (n − 1)KM, (30)

establishing ρ = n(n − 1)KM.

Theorem 1.6 [9] states that if a minimal immersed nontrivial almost Ricci soliton Mn in Sn+1 satisfies
ρ ≥ n(n ≥ 2) and ||B|| obtains its maximum, then Sn will be isometric. Now, with help of Theorem 3.5, one
obtains

Corollary 3.7. Assume that the data (1, ψ, λ, k) be complete k-ANRS on hypersurfaceMn of metallic Riemannian

manifoldM
n+1

of constant sectional curvatures c1 and c2. Then

1. λ ≥ (n−1)H2

2 =⇒ Lm will be isometric to Sm.

2. ||B|| obtains maximum, λ ≥ (n−1)H2

2 , ρ ≥ n(n − 2) =⇒ M
n will be isometric to Sn.

Proof. (2) We turn up through Simon’s formula [44].

∆ ∥B∥2 − ∥∇B∥2 = (2n − ∥B∥2)∥B∥2 ≥ 0. (31)

In addition, for ρ ≥ m(m − 2), the immersion is minimal, therefore (13) turns to be

∥B∥2

2
= n(n − 1) − ρ ≤ n.

We can deduce from Hopf’s strong maximum principle and equation (31) that ∇B = 0 on M
n+1

. Thus,
Proposition 1 [37] deduces thatMn is compact, and the result follows from Theorem 3.5.

Theorem 3.8. Let (1, ψ, λ, k) be complete k-ANRS on hypersurfaceMn of metallic Riemannian manifoldM
n+1

of
constant sectional curvatures c1 and c2 and ψ ∈ Ls(M), ∀s > 1. For

1. λ ≥
(c1+c2)D1

√
p2+q2−(c1−c2)D2(p2+q2)

8(p2+q2)
√

p2+q2

[
(n−1)

n

]
,Mn is totally geodesic with λ =

(n−1)(c1+c2)D1

√
p2+q2−(n−1)(c1−c2)D2(p2+q2)

8n(p2+q2)
√

p2+q2
,

and the scalar curvature ρ =
n(c1+c2)D1

√
p2+q2−(c1−c2)D2(p2+q2)

8(p2+q2)
√

p2+q2

[
(n−1)

n

]
,

2. λ ≥ (n − 1)
[(c1+c2)D1

√
p2+q2−(n−1)(c1−c2)D2(p2+q2)+ H2

2 ]

8n(p2+q2)
√

p2+q2
, Mn is totally umbilical. Particularly, ρ = n(n − 1)KM is

constant, where KM =
(c1+c2)D1

√
p2+q2−(n−1)(c1−c2)D2(p2+q2)+ H2

2

8n(p2+q2)
√

p2+q2
is the sectional curvature ofMn.

Proof. The hypothesis on λ and equation (27) give

Lrψ = nλ −

 (c1 + c2)D1
√

p2 + q2 − (c1 − c2)D2(p2 + q2)

8(p2 + q2)
√

p2 + q2

 (n − 1)
n

−
n2

2
H2 +

∥B∥2

2
≥ 0. (32)

As Pk is bounded from above, therefore ω∆ψ ≥ Lkψ ≥ 0 in the case of a positive constant ω We conclude
that ψ is constant using Lemma 3.3. As a result, Lnψ = 0, and equation (32) proves that Mn is totally
geodesic.

λ =
(c1 + c2)D1

√
p2 + q2 − (c1 − c2)D2(p2 + q2)

8(p2 + q2)
√

p2 + q2

[
(n − 1)

n

]
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and the scalar curvature

ρ =
n(c1 + c2)D1

√
p2 + q2 − (c1 − c2)D2(p2 + q2)

8(p2 + q2)
√

p2 + q2

[
(n − 1)

n

]
establishing (1). Assertion (2) follows through process of Theorem 3.5.

4. Some Applications

As an application, we obtain the following results for golden Riemannian manifoldM (p = q = 1,σ =
1+
√

5
2 ([20],[35])).

Theorem 4.1. Consider complete k-ANRS (1, ψ, λ, k) on hypersurfaceMn of golden Riemannian manifoldM
n+1

of
constant sectional curvatures c1 and c2 with bounded B and p.f. ψ :Mn

−→ R s.t. that
∣∣∣∇ψ∣∣∣ ∈ L1(M). We have

1. λ > 0, c1 + c2 ≤ 0, c1 − c2 ≤ 0 =⇒ M
n is not minimal,

2. c1 − c2 < 0, λ ≥ 0, c1 + c2 < 0 =⇒ M
n will not be minimal.

3. Mn be minimal, λ ≥ 0, c1 − c2 = 0, c1 + c2 = 0 =⇒ M
n will be isometric to Rn.

This generalizes Theorem 1.2 of [10] to golden Riemannian manifold. Next, we have:

Theorem 4.2. Assume (1, ψ, λ, k) be complete k-ANRS on hypersurfaceMn of golden Riemannian manifoldM
n+1

and ψ ∈ Ls(M),∀s > 1. If

1. λ > 0, KM ≤ 0, =⇒ M
n is not minimal,

2. KM < 0, λ ≥ 0 =⇒ M
n will not be minimal,

3. Mn be minimal, λ ≥ 0, KM ≤ 0 =⇒ M
n will be flat and totally geodesic.

Next result generalizes the Theorem 1.5 of [9] for U = ∇ψ.

Theorem 4.3. If (1, ψ, λ, k) be complete k-ANRS on hypersurface Mn of golden Riemannian manifold M
n+1

of
constant sectional curvatures c1 and c2, with bounded s.f.f. and ψ :Mn

−→ R satisfies
∣∣∣∇ψ∣∣∣ ∈ L1(M). When

1. λ ≥ (c1+c2)D1
√

2−2(c1−c2)D2

16
√

2

[
(n−1)

n

]
,Mn is totally geodesic with

λ = (c1+c2)D1
√

2−2(c1−c2)D2

16
√

2

[
(n−1)

n

]
,

and ρ = n(c1+c2)D1
√

2−2(c1−c2)D2

16
√

2

[
(n−1)

n

]
,

2. Mn is compact and λ ≥ (c1+c2)D1
√

2−2(n−1)(c1−c2)D2+
H2
2

16n
√

2
,Mn will be isometric to a Euclidean sphere,

3. λ ≥ [(c1+c2)D1
√

2−2(n−1)(c1−c2)D2+
H2
2 ]

16n
√

2
(n− 1),Mn is totally umbilical. Particularly, ρ = n(n− 1)KM is constant, in

this case, KM =
(c1+c2)D1

√
2−2(n−1)(c1−c2)D2+

H2
2

16n
√

2
is the sectional curvature ofMn.

Theorem (4.3) (1) produces the following.

Corollary 4.4. If (1, ψ, λ, k) be complete k-ANRS on hypersurfaceMn of golden Riemannian manifoldM
n+1

, then
M

n admits the steady k-ANRS.

Corollary 4.5. Let (1, ψ, λ, k) denotes complete k-ANRS on hypersurfaceMn of golden Riemannian manifoldM
n+1

of constant sectional curvatures c1 and c2. We notice

1. λ ≥ (n−1)H2

2 =⇒ Lm will be isometric to Sm,
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2. ||B|| obtains its maximum, ρ ≥ n(n − 2), λ ≥ (n−1)H2

2 =⇒ M
n is isometric to Sn.

Theorem 4.6. Assume (1, ψ, λ, k) be complete k-ANRS on hypersurfaceMn ofM
n+1

of constant sectional curvatures
c1 and c2 and ψ ∈ Ls(M), ∀s > 1. For

1. λ ≥ (c1+c2)D1
√

2−2(c1−c2)D2

16
√

2

[
(n−1)

n

]
,Mn is totally geodesic with

λ = (c1+c2)D1
√

2−2(c1−c2)D2

16
√

2

[
(n−1)

n

]
,

and ρ = n(c1+c2)D1
√

2−2(c1−c2)D2

16
√

2

[
(n−1)

n

]
,

2. λ ≥ [(c1+c2)D1
√

2−2(n−1)(c1−c2)D2+
H2
2 ]

16
√

2

[
(n−1)

n

]
, Mn is totally umbilical. Particularly, ρ = n(n − 1)KM will be

constant, where KM =
(c1+c2)D1

√
2−2(n−1)(c1−c2)D2+

H2
2

16n
√

2
is the sectional curvature ofMn.

Remark. The following cases can also be analyzed in the same manner [35]:

• the silver ratio (p = 2, q = 1, σ2,1 = 1 +
√

2)

• the bronze ratio (p = 3, q = 1,σ3,1 =
3+
√

13
2 )

• the copper ratio (p = 1, q = 2,σ1,2 = 2)

• the nickel ratio (p = 1, q = 3,σ1,3 =
1+
√

13
2 )

• the subtle mean (p = 4, q = 1,σ4,1 = 2 +
√

5) etc.
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