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Gradient Ricci-Yamabe solitons on warped product manifolds

Fatma Karacaa

aBeykent University, Department of Mathematics, 34550, İstanbul, Türkiye

Abstract. We give the necessary and sufficient conditions for a gradient Ricci-Yamabe soliton with warped
product metric. As physical applications, we consider gradient Ricci-Yamabe solitons on generalized
Robertson-Walker space-times and standard static space-times.

1. Introduction

The Ricci-Yamabe flow is a scalar combination of the Ricci flow and the Yamabe flow [15]. In 1982 and
1989, Hamilton introduced the Ricci flow and the Yamabe flow, respectively [17], [18]. Benefitting from
these flows, Güler and Crasmareanu defined the Ricci-Yamabe flow in 2019 [15]. The Ricci-Yamabe flow
can be useful in differential geometry and physics, especially in general relativity (i.e. a recent bimetric
approach of space-time geometry) [15]. Finally, using [15], Dey introduced the Ricci-Yamabe soliton in 2020
[10].

Definition 1.1. A Riemannian manifold
(
Mn, 1

)
, n > 2 is called a gradient Ricci-Yamabe soliton (briefly GRYS)((

M, 1
)
, h, λ, α, β

)
if there exists a differentiable function h : M→ R such that

Hess1h + αRic1 =
(
λ −

1
2
βscal

)
1, (1)

where Ric1 is the Ricci curvature of
(
M, 1

)
, scal is scalar curvature of

(
M, 1

)
, Hess1h is the Hessian of h and λ, α, β ∈ R

[10].
The equation (1) is called gradient Ricci-Yamabe soliton of (α, β)-type, which is a generalization of Ricci and

Yamabe solitons. We note that gradient Ricci-Yamabe solitons of type (α, 0), (0, β)-type are α-Ricci soliton and
β-Yamabe soliton, respectively [10]. Specifically, we have:

The equation (1) defines
1) gradient Ricci soliton [16] when α = 1, β = 0.
2) gradient Yamabe soliton [17] when α = 0, β = 1.
3) gradient Einstein soliton [7] when α = 1, β = −1.
4) gradient ρ-Einstein soliton [8] when α = 1, β = −2ρ.
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The gradient Ricci-Yamabe soliton
((

M, 1
)
, h, λ, α, β

)
is called shrinking, steady or expanding depending

on whether λ > 0, λ = 0 or λ < 0. Gradient Ricci-Yamabe soliton is called proper if α , 0, 1.
Let us remark that an interpolation soliton between Ricci and Yamabe solitons is considered in [8] where

the name Ricci-Bourguignon soliton corresponding to Ricci-Bourguignon flow but it depends on a single
scalar.

Bishop and O’Neill defined the warped product in [6] to construct Riemannian manifolds with negative
sectional curvature. The warped product plays an important role in differential geometry and physics.

For semi-Riemannian manifolds
(
Br, 1B

)
,
(
Fm, 1F

)
and a smooth function f : B → (0,∞), the warped

product Mn = B × f F is the product manifold M = B × F endowed with the metric tensor

1 = π∗(1B) ⊕
(

f ◦ π
)2 σ∗(1F), (2)

where π and σ are the natural projections on B and F, respectively and the function f : B → (0,∞) is the
warping function [6].

The Ricci-Yamabe flow was introduced in 2019 [15]. In [10], Dey defined the Ricci-Yamabe soliton. In
[28], Shivaprasanna et al. studied Ricci-Yamabe soliton on submanifolds of indefinite Sasakian, Kenmotsu
and trans-Sasakian manifolds concerning Riemannian connection and quarter symmetric metric connection.
In [27], Siddiqi and Akyol defined and studied η-Ricci-Yamabe soliton soliton on Riemannian submersions
from Riemannian manifolds. In [11], Dey and Majhi introduced the notion of generalized Ricci-Yamabe
soliton. In [25], Roy et al. studied the conformal Ricci-Yamabe soliton. In [31], Yoldaş studied η-Ricci-
Yamabe solitons on Kenmotsu manifolds. In [14], Feitosa et al. obtained a necessary and sufficient condition
for constructing a gradient Ricci soliton warped product. In [29], Sousa and Pina studied semi-Riemannian
warped product gradient Ricci solitons. In [30], Tokura et al. studied gradient Yamabe soliton on warped
product manifolds and obtained nontrivial examples. For recent studies about solitons on warped product
manifolds; see [9], [20], [21], [22] and [23]. By a motivation from the above studies, in the present paper, with
warped product manifolds, we consider gradient Ricci-Yamabe solitons. We obtain some characteriztions
for this kind of solitons. We also give physical applications.

2. Gradient Ricci-Yamabe Solitons

Assume that M = B × f F is a warped product manifold endowed with the metric tensor 1 = 1B ⊕ f 21F,
where f : B→ (0,∞).

Now, we can state:

Proposition 2.1. If (M = B × f F, 1, h, λ, α, β) is a GRYS with h : M→ R , then h : B→ R i.e., h depends only on
the base.

Proof. Let (M = B× f F, 1, h, λ, α, β) be a GRYS with h : M→ R.From scal = scalB+ scalF
f 2 −2m∆B f

f −m(m−1)∥
1radB f∥

2

f 2

([6]) and the equation (1), we have

Hess1h (X,V) + αRic1 (X,V)

=

λ − 1
2
β

scalB +
scalF

f 2 − 2m
∆B f

f
−m(m − 1)

∥∥∥1radB f
∥∥∥2

f 2


 1 (X,V) (3)

for X ∈ χ (B) and V ∈ χ (F).
As Ric1 (X,V) = 0 ([6], [24]), we find

X( f )
f
1(1rad1h,V) = 0, (4)

for X ∈ χ (B) and V ∈ χ (F). Then, we can write

1(1rad1h,V) = 1(υ
(
1rad1h

)
,V) + 1(Ĥ

(
1rad1h

)
,V), (5)
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where Ĥ
(
1rad1h

)
and υ

(
1rad1h

)
are the horizontal part and vertical part of 1rad1h, respectively.

Using (4) and (5), we obtain h = hB ◦ π. This proves the proposition.

Using Proposition 2.1, we can state:

Theorem 2.2. (M = B × f F, 1, h, λ, α, β) is a GRYS with scalF = c and m > 1 if and only if f , h, , λ, α, β satisfy:

αRicB − α
m
f

HessB( f ) +HessBhB

=

λ − 1
2
β

scalB +
c
f 2 − 2m

∆B f
f
−m(m − 1)

∥∥∥1radB f
∥∥∥2

f 2


 1B. (6)

F is an Einstein manifold with RicF =
µ
α1F, where

µ = λ f 2
−

1
2
β
(

f 2scalB + c − 2m f∆B f −m(m − 1)
∥∥∥1radB f

∥∥∥2
)

−α
(
(m − 1)

∥∥∥1radB f
∥∥∥2
− f∆B f

)
− f1radBhB

(
f
)
. (7)

Proof. (1) Assume that (M = B × f F, 1, h, λ, α, β) is a GRYS and the fiber F is with constant scalar curvature
scalF = c, m > 1. From Ric1(X,Y) = RicB(X,Y) − m

f Hess f (X,Y) ( [6], [24]) and the equation (1), we obtain (6)

for X,Y ∈ χ (B). Similarly, using Ric1 (V,W) = RicF (V,W) −
[
−∆B f

f + (m − 1) ∥1radB f∥
2

f 2

]
1 (V,W) ( [6], [24]) and

the equation (1), we obtain

Hessh(V,W) + αRicF (V,W) − α

−∆B f
f
+ (m − 1)

∥∥∥1radB f
∥∥∥2

f 2

 f 21F (V,W)

=

λ − 1
2
β

scalB +
c
f 2 − 2m

∆B f
f
−m(m − 1)

∥∥∥1radB f
∥∥∥2

f 2


 f 21F (V,W) (8)

for V,W ∈ χ (F). From the definition of Hessian of a function, we obtain

Hessh (V,W) = f1radBhB
(

f
)
1F (V,W) . (9)

Substituting the equation (9) in (8), we find

RicF (V,W) =
1
α

[
λ f 2
−

1
2
β
(

f 2scalB + c − 2m f∆B f −m(m − 1)
∥∥∥1radB f

∥∥∥2
)

α
(
− f∆B f + (m − 1)

∥∥∥1radB f
∥∥∥2

)
− f1radBhB

(
f
)]
1F (V,W) .

Therefore, F is an Einstein manifold. This proves the theorem.

Let
(
M =

(
Rr, φ−21R

)
× f F, 1 = φ−21R + f 21F

)
be a warped product manifold where

(
Rr, φ−21R

)
is confor-

mal to r-dimensional semi-Euclidean space,
(
1R

)
i, j = ϵiδi, j is the canonical semi-Riemannian metric and φ is

the conformal factor. We define the function ξ (x1, x2, ..., xr) =
r∑

i=1
θixi, θi ∈ R where x = (x1, x2, ..., xr) ∈ Rr.

Now, we give the following theorem:
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Theorem 2.3. (M = Rr
× f F, 1 = φ−21R + f 21F, h, λ, α, β) is a GRYS with scalF = c and f = f ◦ ξ, h = h ◦ ξ,

φ = φ ◦ ξ defined in
(
Rr, φ−21R

)
if and only if the functions f , h, φ satisfy:

α(r − 2)
φ′′

φ
− αm

f ′′

f
− 2αm

f ′

f
φ′

φ
+ h′′ + 2

φ′

φ
h′ = 0, (10)

−βm f ′′

f
−

(
αm + βm(r − 2)

) φ′
φ

f ′

f
−

1
2
βm (m − 1)

(
f ′

f

)2

+
(
α + β (r − 1)

) φ′′
φ
−

[
α (r − 1) +

1
2
βr(r − 1)

] (φ′
φ

)2

−
φ′

φ
h′

 ∥θ∥2
=

1
φ2

(
λ −

1
2
β

c
f 2

)
, (11)

and

f 2φ2

−1
2
β

(r − 1)

2
φ′′

φ
− r

(
φ′

φ

)2 − 2m
(

f ′′

f
− (r − 2)

φ′

φ

f ′

f

)
−m(m − 1)

(
f ′

f

)2
+α

(
f ′′

f
− (r − 2)

φ′

φ

f ′

f

)
+ α(m − 1)

(
f ′

f

)2

−
f ′

f
h′

 ∥θ∥2
= µ − λ f 2 +

1
2
βc. (12)

Proof. Let h(ξ), f (ξ) and φ (ξ) be functions of ξ, where ξ : Rr
→ R given by ξ (x1, x2, ..., xr) =

r∑
i=1
θixi, θi ∈ R.

Hence, we have

hxi = h′θi, fxi = (bs)
′ θi, φxi = φ

′θi
hxix j = h′′θiθ j, fxix j = (bs)

′′ θiθ j, φxix j = φ
′′θiθ j.

(13)

It is well-known that h = hB ◦π, φ = φB ◦π, f = fB ◦πwhere
(
B, 1B

)
=

(
Rr, φ−21R

)
. In [5], the Ricci curvature

with 1B = φ−21R is given by

RicB =
1
φ2

{
(r − 2)φHess1R

(
φ
)
+

[
φ∆1Rφ − (r − 1)

∥∥∥1rad1Rφ
∥∥∥2

]
1R

}
. (14)

From (13) and (14), we easily see that the scalar curvature with 1B = φ−21R is obtained

scalB = (r − 1)
[
2φ∆1Rφ − r

∥∥∥1rad1Rφ
∥∥∥2

]
. (15)

Using
(
Hess1R

(
φ
))

i, j
= φ′′θiθ j, ∆1Rφ = φ

′′
∥θ∥2 and

∥∥∥1rad1Rφ
∥∥∥2
=

(
φ′

)2
∥θ∥2, we find

(RicB) (Xi,X j) =
1
φ

(r − 2)φ′′
(
θiθ j

)
, (16)

for ∀i , j = 1, 2, ..., r and

(RicB) (Xi,Xi) =
1
φ2

{
(r − 2)φφ′′ (θi)

2 + ϵi
[
φφ′′ − (r − 1)

(
φ′

)2
]
∥θ∥2

}
, (17)
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for ∀i = 1, 2, ..., r. Using (15), we obtain

(scalB)i, j = 0, (18)

for ∀i , j = 1, 2, ..., r and

(scalB)i,i = (r − 1)
[
2φφ′′ − r

(
φ′

)2
]
∥θ∥2 , (19)

for ∀i = 1, 2, ..., r. Then, the Christoffel symbols Γk
i j for distinct i, j, k are given by

Γk
i j = 0, Γi

i j = −
φx j

φ
, Γk

ii = ϵiϵk
φxk

φ
and Γi

ii = −
φxi

φ
. (20)

By the use of the equation (20) and the definition of Hessian function, we find

(HessB (h))i j = hxix j −

r∑
k=1

Γk
i jhxk

= h′′θiθ j +
(
2θiθ j − δi jϵi ∥θ∥

2
)
φ−1φ′h′. (21)

Then, the Laplacian of f with 1B = φ−21R is

∆B f =
∑

k

φ2ϵk
(
HessB

(
f
))

kk

= φ2
∥θ∥2

[
f ′′ − (r − 2)φ−1φ′ f ′

]
. (22)

Moreover, we obtain 1radB f (h) = φ2
∥θ∥2 f ′h′,∥∥∥1radB f

∥∥∥2
= φ2

∥θ∥2
(

f ′
)2 .

(23)

Replacing the equations (17), (19), (21), (22) and (23) for i = j in (6), we find (11). Similarly, using (16), (18),
(21), (22) and (23) for i , j in (6), we have[

α(r − 2)
φ′′

φ
− αm

f ′′

f
− 2αm

f ′

f
φ′

φ
+ h′′ + 2

φ′

φ
h′

]
θiθ j = 0. (24)

From (24), if there exist i, j for i , j such that θiθ j , 0, then we find (10). Finally, using the equations (19)
,(22) and (23) in (7), we find (12). Hence, we obtain the desired result.

Remark 2.4. • If we take α = 1, β = 0 in Theorem 2.3, then we obtain Theorem 1.3 in [29]. Thus, the gradient
Ricci-Yamabe soliton turns into the gradient Ricci soliton.

• If we take α = 0, β = 1 in Theorem 2.3, then we obtain Theorem 1.6 in [30]. Thus, the gradient Ricci-Yamabe
soliton turns into the gradient Yamabe soliton.

Let
(
M =

(
Rr, φ−21R

)
× f

(
Rm, τ−21R

)
, 1 = φ−21R + f 2τ−21R

)
be a warped product manifold where

(
Rr, φ−21R

)
and

(
Rm, τ−21R

)
are conformal to r-dimensional and m-dimensional semi-Euclidean spaces, φ and τ are the

conformal factors of base and fiber, respectively. Similarly, we define the function ζ (xr+1, xr+2, ..., xr+m) =
ar+1xr+1 + ... + ar+mxr+m,with an arbitrary choice of non-zero vectors a = (ar+1, ..., ar+m) and y = (xr+1, ..., xr+m)
∈ Rm.

Now, we can state:
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Theorem 2.5. (M = Rr
× f R

m, 1 = φ−21R + f 2τ−21R, h, λ, α, β) is a GRYS with scalF = c and f = f ◦ ξ, h = h ◦ ξ,
φ = φ ◦ ξ, τ = τ ◦ ζ defined in

(
Rr, φ−21R

)
and

(
Rm, τ−2

s 1R

)
if and only if the functions f , h, φ, τ satisfy:

α(r − 2)
φ′′

φ
− αm

f ′′

f
− 2αm

f ′

f
φ′

φ
+ h′′ + 2

φ′

φ
h′ = 0, (25)

−βm f ′′

f
−

(
αm + βm(r − 2)

) φ′
φ

f ′

f
−

1
2
βm (m − 1)

(
f ′

f

)2

+
(
α + β (r − 1)

) φ′′
φ
−

[
α (r − 1) +

1
2
βr(r − 1)

] (φ′
φ

)2

−
φ′

φ
h′

 ∥θ∥2
=

1
φ2

(
λ −

1
2
β

c
f 2

)
, (26)

f 2φ2

−1
2
β

α

(r − 1)

φ′′φ − r
(
φ′

φ

)2 − 2m
(

f ′′

f
− (r − 2)

φ′

φ

f ′

f

)
−m (m − 1)

(
f ′

f

)2
(

f ′′

f
− (r − 2)

φ′

φ

f ′

f

)
+ (m − 1)

(
f ′

f

)2

−
1
α

f ′

f
h′

 ∥θ∥2 + λα f 2 +
1
2
β

α
c

=
[
ττ′′ − (m − 1) (τ′)2

]
∥a∥2 , (27)

and

(m − 2)
τ′′

τ
= 0. (28)

Proof. Let h(ξ), f (ξ) , φ (ξ) and τ (ζ) be functions of ξ and ζ, where ξ : Rr
→ R and ζ : Rm

→ R. In [5], the
Ricci curvature with 1F = τ−21R is given by

RicF =
1
τ2

{
(m − 2)τHess1R (τ) +

[
τ∆1Rτ − (m − 1)

∥∥∥1rad1Rτ
∥∥∥2

]
1R

}
. (29)

Using
(
Hess1R (τ)

)
i, j
= τ′′i aia j, ∆1Rτ = τ

′′
∥a∥2 and

∥∥∥1rad1Rτ
∥∥∥2
= (τ′)2

∥a∥2, we obtain

(RicF) (Xi,X j) =
1
τ

(m − 2)τ′′
(
aia j

)
, (30)

for ∀i , j = 1, 2, ...,m and

(RicF) (Xi,Xi) =
1
τ2

{
(m − 2)ττ′′ (ai)

2 + ϵi
[
ττ′′ − (m − 1) (τ′)2

]
∥a∥2

}
, (31)

for ∀i = 1, 2, ...,m. Firstly, substituting the equations (16), (18), (21), (22) and (23) in (6) for i , j and using
the same method in the proof of Theorem 2.3, we find (25). Then, substituting the equations (17), (19), (21),
(22) and (23) in (6), for i = j,we obtain (26).

From Theorem 2.2, F is an Einstein manifold with RicF =
µ
α1F, we have

RicF = ρ1F, (32)

where

ρ =
λ
α

f 2
−

1
2
β

α

(
f 2scalB + c − 2m f∆B f −m(m − 1)

∥∥∥1radB f
∥∥∥2

)
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−

(
(m − 1)

∥∥∥1radB f
∥∥∥2
− f∆B f

)
−

1
α

f1radBhB
(

f
)
. (33)

Using (19), (22) and (23) in (33), we find

f 2φ2

−1
2
β

α

(r − 1)

φ′′φ − r
(
φ′

φ

)2 − 2m
(

f ′′

f
− (r − 2)

φ′

φ

f ′

f

)
−m (m − 1)

(
f ′

f

)2
(

f ′′

f
− (r − 2)

φ′

φ

f ′

f

)
+ (m − 1)

(
f ′

f

)2

−
1
α

f ′

f
h′

 ∥θ∥2 + λα f 2 +
1
2
β

α
c = ρ (34)

Substituting the equations (31) and (34) in (32) for i = j, we obtain (27). Then, using the equations (30) and
(34) in (32) for i , j,we have[

(m − 2)
τ′′

τ

]
aia j = 0. (35)

From the equation (35), if there exist i, j for i , j such that aia j , 0, then we have (28). This proves the
theorem.

3. Applications

Applications of warped products have been increased in recent years, especially in differential geometry
and physics [4]. There are two well-known examples of warped products, namely generalized Robertson-
Walker space-times and standard static space-times. Generalized Robertson-Walker space-times are clearly
a generalization of Robertson-Walker space-times and standard static space-times are a generalization of
the Einstein static universe [12].

Let
(
F, 1F

)
be m-dimensional Riemannian manifold and I be an open, connected interval endowed

with the negative definite metric
(
−dt2

)
. Let f : I → (0,∞) be a positive smooth function. Generalized

Robertson-Walker space-time M = I × f F is the product manifold I × F endowed with the metric tensor

1 = (−dt2) ⊕ f 21F, (36)

[13], [26].
Let

(
B, 1B

)
be r-dimensional Riemannian manifold and f : B → (0,∞) be positive smooth function.

Standart static space-time M = B × f I is the product manifold B × I endowed with the metric tensor

1 = 1B + f 2(−dt2), (37)

[2], [6], [19].
Let

(
M = I × f F, 1 = (−dt2) ⊕ f 21F

)
be a generalized Robertson-Walker space-time. From Proposition 2.1,

we have:

Theorem 3.1. (M = I× f F, 1 = (−dt2)⊕ f 21F, h, λ, α, β) is a GRYS with scalF = c and m > 1 if and only if f , h, λ, α, β
satisfy:

h′′ − αm
f ′′

f
=

1
2
β

 c
f 2 + 2m

f ′′

f
m(m − 1)

(
f ′

f

)2 − λ, (38)

F is an Einstein manifold with RicF =
µ
α1F, where

µ = λ f 2
−

1
2
β
(
c + 2m f f ′′ +m(m − 1)

(
f ′
)2
)

−α
(

f f ′′ − (m − 1)
(

f ′
)2
)
+ f f ′h′. (39)
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Proof. By substituting 1radB f = − f ′, HessB f ( ∂∂t ,
∂
∂t ) = f ′′, ∆B f = − f ′′, 1B( ∂∂t ,

∂
∂t ) = −1,

∥∥∥1radB f
∥∥∥2
= −

(
f ′
)2 in

Theorem 2.2, we have the equations (38) and (39). Hence, we obtain the desired result.

Let
(
M = B × f I, 1 = 1B + f 2(−dt2)

)
be a standard static space-time. From Proposition 2.1, we can state:

Theorem 3.2. (M = B × f I, 1 = 1B + f 2(−dt2), h, λ, α, β) is a GRYS if and only if f , h, λ, α, β satisfy:

αRicB −
α
f

HessB f +HessBhB =

[
λ −

1
2
β

(
scalB − 2

∆B f
f

)]
1B (40)

and

1radBhB
(

f
)
+ α∆B f = λ f −

1
2
β f

[
scalB − 2

∆B f
f

]
. (41)

Proof. Using the same method in the proof of Theorem 2.2 for m = 1, we find the equation (40). From
definition of Hessian, we find

Ric1(
∂
∂t
,
∂
∂t

) = − f∆B f (42)

and

Hess1h(
∂
∂t
,
∂
∂t

) = − f1radBhB
(

f
)
. (43)

By the use of (42) and (43) in (1) for m = 1, we have the equation (41). This completes the proof.

4. Conclusion

Ricci-Yamabe solitons are very useful in differential geometry and relativity theory. Recently, a bi-metric
approach of the space-time geometry is used in [1] and [3]. The application of Ricci-Yamabe solitons do
not only play an important and significant role in differential geometry but also they have a motivational
contribution in relativity theory. On the other hand, the warped product is a great importance in relativity
theory. So, we considered a GRYS with the structure of warped product manifold. Firstly, we find the
main relations for a warped product manifold to be a gradient Ricci-Yamabe soliton in Theorem 2.2. Then,
we obtain some characteriztions for this kind of solitons in Theorem 2.3 and Theorem 2.5. Finally, we also
obtained the main relations for generalized Robertson-Walker space-times and standard static space-times
to be gradient Ricci-Yamabe solitons in Theorem 3.1 and Theorem 3.2.

Acknowledgment: The author is thankful to the referee(s) for several useful remarks which improve
substantially the presentation and the contents of this paper.
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[2] D.E. Allison, B. Ünal, Geodesic structure of standard static space–times, J. Geom. Phys 46 (2) (2003), 193-200.
[3] W. Boskoff, M. Crasmareanu, A Rosen type bi-metric universe and its physical properties, Int. J. Geom. Methods Mod. Phys. 15

(2018), 1850174 .
[4] J. K. Beem, P. Ehrlich, T. G. Powell, Warped product manifolds in relativity, Selected Studies: A volume dedicated to the memory

of Albert Einstein (1982), 41-66.
[5] A. L. Besse, Einstein manifolds, Springer Science & Business Media (2007).
[6] R.L. Bishop, B. O’Neill, Manifolds of negative curvature, Transactions of the American Mathematical Society 145 (1969), 1-49 .
[7] G. Catino, L. Mazzieri, Gradient Einstein solitons, Nonlinear Anal. 132 (2016), 66-94,.
[8] G. Catino, L. Cremaschi, Z. Djadli, C. Mantegazza, L. Mazzieri, The Ricci-Bourguignon flow, Pacific J. Math. 28 (2017), 337-370.



F. Karaca / Filomat 37:7 (2023), 2199–2207 2207

[9] H. D. Cao, X. Sun, Y. Zhang, On the structure of gradient Yamabe solitons, arXiv preprint arXiv:1108.6316 (2011).
[10] Dey, D., Almost Kenmotsu metric as Ricci-Yamabe soliton, arXiv preprint arXiv:2005.02322, (2020).
[11] D. Dey, P. Majhi, Sasakian 3-Metric as a Generalized Ricci-Yamabe soliton, Quaest. Math. (2021), 1-13.
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