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Hyperbolic Navier-Stokes equations in three space dimensions
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Abstract. We consider in this paper a hyperbolic quasilinear version of the Navier-Stokes equations in
three space dimensions, obtained by using Cattaneo type law instead of a Fourier law. In our earlier work
[2], we proved the global existence and uniqueness of solutions for initial data small enough in the space
H4(R3)3

× H3(R3)3. In this paper, we refine our previous result in [2], we establish the existence under a
significantly lower regularity. We first prove the local existence and uniqueness of solution, for initial data
in the space H

5
2+δ(R3)3

×H
3
2+δ(R3)3, δ > 0. Under weaker smallness assumptions on the initial data and the

forcing term, we prove the global existence of solutions. Finally, we show that if ε is close to 0, then the
solution of the perturbed equation is close to the solution of the classical Navier-Stokes equations.

1. Introduction

The classical Navier-Stokes equations describe the evolution of Newtonian incompressible viscous fluids

(NS)


vt − ν∆v + (v.∇)v = −∇p + f ,
div v = 0,
v(0, y) = v0,

(1.1)

with ν > 0 being the viscosity, for the velocity vector v = v(t, y) : (0,∞) × R3
→ R3 of a fluid, p = p(t, y) :

(0,∞) ×R3
→ R the pressure and f the forcing term.

This equation arise from the momentum equations

∂tv + v.∇v = divS, (1.2)

and the Fourier law for the tensor S,

S(t) = −p(t)Id + ν(∇u(t) + (∇u)T(t)). (1.3)

However, the system (NS) gives a velocity with infinite propagation speed, which is contradict with the
physical. In order to avoid this, Cattaneo replace the Fourier law (1.3) by the retarded equation

S(t + ε) = −p(t)Id + ν(∇u(t) + (∇u)T(t)), (1.4)
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Using Taylor approximation of S(t+ε) ≃ S(t)+ε∂tS(t) and applying the operator (ε∂t+ Id) to the momentum
equations (1.2), we obtain the following quasilinear hyperbolic version of Navier-Stokes equations:

(HNS)ε


εuεtt − ν∆uε + uεt + ε(u

ε.∇)uεt + ((εuεt + u).∇)uε = −∇p + f ε,
div uε = 0,
(uε,uεt )(0, y) = (uε0,u

ε
1).

(1.5)

This resulting system has finite propagation speed, so compatible with physical law.
In literature, there exist several examples of hyperbolic perturbation of Navier Stokes equations. We remark
that, if we neglect ε(uε.∇)uεt + ε(u

ε
t .∇)uε, we obtain the hyperbolic version of Navier-Stokes equations:

εuεtt − ν∆uε + uεt + (uε.∇)uε = −∇p + f ε,
div uε = 0,
(uε,uεt )(0, y) = (uε0,u

ε
1).

(1.6)

Brenier, Natalini and Puel in [4] obtained also this system (1.6) after relaxation of the Euler equations and
rescaling variables. Moreover, they proved the global existence and uniqueness of solution to the system
(1.6), in a two-dimensional space under smallness condition of the initial data in H2(R2)2

× H1(R2)2 and
without a forcing term. Paicu and Raugel in [17, 18] improved this result. They stated the global existence
and uniqueness under significantly improved regularity for the initial data by using the Strichartz estimate.
In [17], they obtained the global existence under suitable smallness assumptions on the initial data in the
space H1(R2)2

× L2(R2)2. In [18], the authors proved global existence and uniqueness in three-dimensional
space under a smallness condition of the initial data in H1+δ(R3)3

× Hδ(R3)3, for δ > 0. Hachicha [13]
obtained the global existence and uniqueness under suitable assumptions on the initial data in the space
H

n
2+δ(Rn)×H

n
2−1+δ(Rn)n, n = 2, 3 by using a modulated energy method. Also, she proves the convergence of

solution of hyperbolic version of Navier-Stokes to a solution of the classical Navier Stokes equations.
The purpose of this paper is to study the quasilinear hyperbolic perturbation of Navier Stokes equations

(HNS)ε. This model has already been studied by Racke and Saal [20, 21]. They have shown the local
existence and the uniqueness of solution, when the initial data belong to Hm+2(Rn)n

×Hm+1(Rn)n, for m > n
2

integer. Under smallness assumption on the initial data in the space Hm+2(Rn)n
× Hm+1(Rn)n, for m ≥ 12

integer, they proved the global existence of solution. Schöwe in [23, 24] improved this result. More precisely,
in three dimensional case, he obtained the global existence under smallness condition on the initial data in
the space Hm+2(R3)3

×Hm+1(R3)3, for m ≥ 4 integer. In our previous work [2], we proved the global existence
and uniqueness where the initial data are small enough in the space H4(R3)3

×H3(R3)3 and we proved that
if ε is close to 0, then the solution of the perturbed system (HNS)ε is close to the solution of the classical
Navier stokes equations (NS). Recently, Couloud Hachicha and Raugel [10] investigated to this equation
in two dimensional space. They proved the local existence in the space Hη+2(R2)2

× Hη+1(R2)2, 0 < η < 1,
and under suitable smallness assumption on the initial data they proved the global existence.

The aim of this paper is to improve the results of [2, 20, 21, 23, 24]. First, we show the local existence
and uniqueness of solution to the equation (HNS)ε in the space H

5
2+δ(R3)3

×H
3
2+δ(R3)3, δ > 0. In addition,

under suitable smallness assumptions on the initial data and forcing term, we prove the global existence to
these equations. Finally, we prove that if ε is close to 0 then the solution of (HNS)ε is close to the solution
of the classical Navier-Stokes equations (NS).
The main interesting point in our result is the significantly improved regularity for the initial data. We
claim that the space H

5
2+δ(R3)3

× H
3
2+δ(R3)3, δ > 0 is the minimum regularity in the Sobolev space needed

to establish the existence results.
As staded above, we first adapt the Friedrichs method to our equation and prove the local well-posedness

result of the system (HNS)ε in H
5
2+δ(R3)3

×H
3
2+δ(R3)3, δ > 0.

Theorem 1.1. Let δ > 0, (uε0,u
ε
1) ∈ H

5
2+δ(R3)3

× H
3
2+δ(R3)3 and the forcing term f ε ∈ C0((0,+∞),H

3
2+δ(R3)3).

There exist a positive time T and a unique local weak solution uε ∈ C1([0,T],H
3
2+δ(R3)3) ∩ C([0,T],H

5
2+δ(R3)3) of

the System (HNS)ε.
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Our second goal in this paper is to refined our earlier work [2]. We prove the global existence and
uniqueness of solution for the system (HNS)ε under suitable smallness assumptions on the initial data in
the space H

5
2+δ(R3)3

×H
3
2+δ(R3)3.

Theorem 1.2. Let δ > 0, There exist positive constants ε0, R such that for all 0 < ε ≤ ε0, if we assume that the initial
data (uε0,u

ε
1) ∈ H

5
2+δ(R3)3

×H
3
2+δ(R3)3 and the forcing term f ε ∈ L1((0,+∞),H

3
2+δ(R3)3)∩ L2((0,+∞),H

3
2+δ(R3)3)

satisfy, for all θ ∈ [0, 1]

ε
1+δ

2 −θ( 3
4+
δ
2 )
(
∥uε0∥

θ
L2 |uε0|

1−θ
3
2+δ
+ ε

1
2 ∥∇uε0∥

θ
L2 |∇uε0|

1−θ
3
2+δ
+ ε∥uε1∥

θ
L2 |uε1|

1−θ
3
2+δ

)
≤ R, (1.7)

ε
1+δ

2 −θ( 3
4+
δ
2 )
(∥∥∥∥∥ f ε∥θL2 | f ε|1−θ3

2+δ

∥∥∥∥
L1(0,+∞)

+ ε
1
2

∥∥∥∥∥ f ε∥θL2 | f ε|1−θ3
2+δ

∥∥∥∥
L2(0,+∞)

)
≤ R, (1.8)

then there exists a unique global solution uε ∈ C1(R+,H
3
2+δ(R3)3) ∩ C(R+,H

5
2+δ(R3)3) to the System (HNS)ε.

Remark 1.3. 1. With respect to our earlier work [2], the improvement in Theorem 1.2 lays in the lower regularity
of the initial data. Indeed, the initial data in our previous work [2] belongs to the space H4(R3)3

× H3(R3)3.
However, in this paper, we do better, we obtained the global existence and uniqueness result for initial data in
H

5
2+δ(R3)3

×H
3
2+δ(R3)3, δ > 0.

2. The smallness assumption (1.7)-(1.8) on the initial data and forcing terms can be reduced to the choice of a
sufficiently small ε.

The third result in this paper is dedicated to the convergence of solution from the relaxed system to the
classical Navier-Stokes equations.

Theorem 1.4. Let δ > 0, v0 ∈ H3(R3)3 be a divergence-free vector field.
Let (uε0,u

ε
1) ∈H

5
2+δ(R3)3

×H
3
2+δ(R3)3 the initial data and f ε ∈L1(R+,H

3
2+δ(R3)3) ∩ L2(R+,H

3
2+δ(R3)3) the forcing

term verify (1.7), (1.8). Assume, moreover, that there exist positive constants ε1, M such that for all 0 < ε ≤ ε1,

ε−1
∥uε0 − v0∥L2 + ε−

1
2 ∥∇(uε0 − v0)∥L2 + ∥uε1 − v1∥L2 ≤M, (1.9)

∥ f εt ∥
2
L2(Ḣ−1) + ε∥ f εt ∥

2
L2(L2) ≤M, (1.10)

where v1 := ν∆v0 − P(v0.∇)v0 + P f ε(0, y).
Then the global solution uε of the system (HNS)ε obtained in Theorem 1.2 close to the solution of the incompressible
Navier-Stokes equations with v0 as initial data, when ε close to 0, in the space L∞loc(R

+,H1(R3)3).
Moreover, for all positive time T, there exists a positive constant K(T, v), depending only on T and v, such that for all
0 ≤ t ≤ T

∥uε(t) − v(t)∥L2 + ε
1
2 ∥∇(uε(t) − v(t)∥L2 ≤ εK(T, v).

Remark 1.5. 1. As a consequence of the assumptions in (uε0,u
ε
1), (1.7)- (1.9), we obtain the smallness condition of

initial data v0, which is a necessary condition to the existence of global solutions to the Navier-Stokes equations
in R3.

2. We will not give the proof of Theorem 1.4, because the convergence result is obtained by a simple modification
of the proof of Theorem 1.2 in [2] page 222 − 224.

The structure of this paper is as follows: in Section 2, we introduce notation and some preliminary
results. The Section 3 is dedicated to the proof of the local existence Theorem 1.1. Finally, in section 4, we
prove the global existence of the system (HNS)ε, namely the proof of Theorem 1.2.

2. Notation and preliminary results

In the beginning of this section, We introduce several function space and recall some estimates.
We designate by Lp(R3), 1 ≤ p ≤ ∞, the Lebesgue space with norm ∥.∥Lp . For p = 2, we note (., .) the scalar
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product.
Also, we introduce the inhomogeneous Sobolev spaces, for s ∈ R

Hs(R3) = {u ∈ S′(R3); û ∈ L2
loc(R

3) and (1 + |ξ|2)
s
2 û ∈ L2(R3)},

equipped with the norm

∥u∥2Hs =

∫
R3

(1 + |ξ|2)s
|̂u|2dξ,

where û is the Fourier transform of u, given by

û(ξ) = Fu(ξ) =
∫
R3

u(x)e−ixξdx.

Also, for s ≥ 0, we introduce the operator Ds by

Dsu = F−1((1 + |ξ|2)
s
2 û(ξ)).

We remark that
∥u∥s = ∥Dsu∥L2 .

We will need also to introduce the homogenous Sobolev spaces, for s ≥ 0,

Ḣs(R3) = {u ∈ S′(R3); û ∈ L2
loc(R

3) and |ξ|sû ∈ L2(R3)},

with the seminorm

∥u∥2Ḣs = |u|
2
s =

∫
R3
|ξ|2s
|̂u|2dξ.

For more details see [1].
In order to perform energy estimates, we need to estimate the product of two vectors. For the reader’s
convenience, we recall the following elementary laws

Lemma 2.1. 1. Let s ≥ 1, there exists a positive constant C0 = C0(s), such that, for all u ∈ Hs+1 and v ∈ Hs−1,
we have

∥[Ds,u]v∥L2 ≤ C0(s)∥Ds∇u∥L2∥Ds−1v∥L2 . (2.11)

2. For any s ≥ 0, there exists a positive constant C1 = C1(s), such that, for all f , 1 ∈ Hs(R3) ∩ L∞(R3), the
following holds

∥ f1∥s ≤ C1(s)(∥ f ∥L∞∥1∥s + ∥ f ∥s∥1∥L∞ ).

3. For any s ≥ 0, there exists a positive constant C2 = C2(s), such that, for all f , 1 ∈ Hs+1(R3)∩ L∞(R3), we have

∥ f∇1∥s ≤ C2(s)(∥ f ∥L∞∥1∥s+1 + ∥ f ∥s+1∥1∥L∞ ).

Remark 2.2. 1. For the proof of item 1), we refer the reader to Lemma 2.4 in [26]. Items 2) and 3) are stated in
[3, 8, 18]

2. Using Sobolev embedding H
3
2+δ(R3) ↪→ L∞(R3), we write item 2) as follows

∥ f1∥ 3
2+δ
≤ C∥ f ∥ 3

2+δ
∥1∥ 3

2+δ
, ∀ f , 1 ∈ H

3
2+δ(R3), (2.12)

and

∥ f∇1∥ 3
2+δ
≤ C∥ f ∥ 3

2+δ
∥∇1∥ 3

2+δ
, ∀ f ∈ H

3
2+δ(R3), 1 ∈ H

5
2+δ(R3). (2.13)
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In the study of equation dependent of ε with fixed initial data, it is convenient to perform a change of
variables, which fix the equation and transform the ε-dependence into the initial data. For this end, we
introduce the diffusive scaling:

uε(τ, y) =
1
√
ε

u(
τ
ε
,

y
√
ε

), pε(τ, y) =
1
ε

p(
τ
ε
,

y
√
ε

), f ε(τ, y) =
1
ε
√
ε

f (
τ
ε
,

y
√
ε

),

and we set t =
τ
ε
, x =

y
√
ε

.

This scaling transforms the System (HNS)ε into the following System of equations with initial data which
depend on ε:

utt − ν∆u + ut + (u.∇)ut + (ut.∇)u + (u.∇)u = −∇p + f ,
div u = 0,
(u,ut)(0, x) = (u0,u1)(x) = (

√
εuε0(
√
εx), ε

3
2 uε1(
√
εx)).

(2.14)

An elementary calcul shows that, by this scaling, we have the following equality of norms

|u|s = ε
s
2−

1
4 |uε|s, |ut|s = ε

s
2+

3
4 |uεt |s, ∀s ∈ R,

∥u∥Lp = ε−
3
2p+

1
2 ∥uε∥Lp , ∀p > 1,

and
∥ f ∥Lp(Ḣs) = ε

3
4+

s
2−

1
p ∥ f ε∥Lp(Ḣs),∀s ∈ R, p ≥ 1.

We introduce P the Leray projector over divergence-free vector fields which maps L2(R3)3 into L2
σ(R3)3 =

{ f ∈ L2(R3)3; div f = 0}. Therefore, if we apply P to (HNS), we obtain the following equation

(HNS)


utt − ν∆u + ut = −P(u.∇)u − P(u.∇)ut − P(ut.∇)u + P f ,
div u = 0,
(u,ut)(0, y) = (u0,u1) ∈ H

5
2+δ ×H

3
2+δ.

(2.15)

As usual, the pressure p may be computed from the velocity field.

We now introduce the concept of weak solution of (HNS)

Definition 2.3. Let δ > 0. A vector filed (u,ut) in the space C0
w([0,T],H

5
2+δ(R3)3

×H
3
2+δ(R3)3) is a weak solution

of (HNS) if div u = 0, (u,ut)t=0 = (u0,u1) and for any smooth function φ of compact support and divergence-free, we
have ∫

R3
(utt − ν∆u + ut)(t, x)φ(x)dx = −

∫
R3
P
(
(u.∇)u + (u.∇)ut + (ut.∇)u

)
(t, x)φ(x)dx −

∫
R3
P f (t, x)φ(x)dx.

3. Local existence in H
5
2+δ(R3)3 × H

3
2+δ(R3)3

In this section, we show local existence and uniqueness of a weak solution to the system (HNS) in the
space H

5
2+δ(R3)3

×H
3
2+δ(R3)3. More precisely, we prove Theorem 1.1. For this end, we apply the Friedrichs

method, which relies on 3 parts:

• First, we introduce a regularised ordinary differential system (HNS)n dependent on a parameter n.
By using the Cauchy-Lipschitz Theorem to this ordinary differential equation, we prove the existence
of unique solution (un, ∂tun). The crucial interest of this approximation that we obtain a very regular
solution.
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• Second, we perform energy estimate on the solutions (un, ∂tun) of the regularised system, in order
to prove that (un, ∂tun) is bounded in the space H

5
2+δ(R3)3

× H
3
2+δ(R3)3, on [0,T], which the time T is

independent on n.

• Finally the conclusion is obtained by passing to the limit, we prove that the solution of the regularised
system (HNS)n converges to a solution (u, ∂tu) of (HNS).

Note that, the proof is very close to that in Couloud, Hachicha and Raugel [10] in two space dimensions,
except in our situation, three space dimensions, where we replace the space by H

5
2+δ×H

3
2+δ. For this reason,

we sketch briefly the proof, for more details, we refer the interested reader to section 3 in [10].

3.1. Approximate system

First, we approximate (HNS) by a sequence of ordinary differential equations, which depends on a
parameter n ∈N:

(HNS)n


∂2

t un + ∂tun − Jn∆Jnun
+PJn(Jnun.∇Jnun) + PJn(Jnun.∇Jn∂tun) + P(Jn∂tun.∇Jnun) = PJn f

divun = 0
(un(0), ∂tun(0)) = (Jnu0, Jnu1),

where Jn is the Fourier cut-off operator defined by

Jn(u) = F−1(χnû),

and χn is the cut-off function, given by

χn(ξ) =
{

1, if |ξ| ≤ n,
0, if |ξ| > n.

The crucial role of this operator is its regularising effect. We have, for all u ∈ Hs,

∥Jnu∥σ ≤ Cnσ−s
∥Jnu∥s ≤ Cnσ−s

∥u∥s, ∀σ ≥ s,

Cns−σ
∥(I − Jn)u∥σ ≤ ∥(I − Jn)u∥s, ∀σ ≤ s,

and
Jn(u)→ u strongly in Hs, when n→∞.

If we consider vn = (un, ∂tun), then the equation (HNS)n is equivalent to the following first order ordinary
differential equation

∂tvn = F(t, vn), vn(0) = (Jnu0, Jnu1). (3.16)

Thanks to the continuity properties of Jn, we easily prove that F : [0,+∞[×JnH
5
2+δ×JnH

3
2+δ → JnH

5
2+δ×JnH

3
2+δ

is continuous and locally lipschitz in vn. For more details, we refer the interested reader to [10].
This leads to apply Cauchy-Lipschitz’s Theorem, thus we obtain for every (u0,u1) ∈ H

5
2+δ × H

3
2+δ with a

divergence free, there exists a positive maximal time Tn and a unique solution (un, ∂tun) ∈ C1([0,Tn],H
5
2+δ ×

H
3
2+δ). We deduce by uniqueness of solution that

Jnun = un, and Jn∂tun = ∂tun.

Thus, the solution (un, ∂tun) is as regular as wanted. This is the crucial tool in the next steps.
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3.2. A priori estimate
Let us consider the energy

En(t) =
1
2

(∥un + ∂tun∥
2
3
2+δ
+ ∥∂tun∥

2
3
2+δ

) + ∥∇un∥
2
3
2+δ
,

see e.g. [9, 22, 27]. In order to obtain a priori estimate of (un, ∂tun) in the space H
5
2+δ(R3)3

× H
3
2+δ(R3)3, we

apply the operator D 3
2+δ

to the equation (HNS)n and we take the L2-inner product with D 3
2+δ

(un + 2∂tun),
we obtain

dEn(t)
dt

+ ∥∂tun∥
2
3
2+δ
+ ν∥∇un∥

2
3
2+δ

= −

(
D 3

2+δ
((un.∇)un + (un.∇)∂tun + (∂tun.∇)un + PJn f ,D 3

2+δ
(un + 2∂tun)

)
.

Using several integration by parts, Hölder inequality and estimates (2.12), (2.13), we show that for all
t ∈ [0,Tn]

dEn(t)
dt

≤ G(t)E2
n(t), (3.17)

where G is a locally integrable function depends only on f .

3.3. Pass to the limit
Thanks to estimate (3.17), we can choose a positive time T, independent of n, such that (un(t), ∂tun(t)) is

uniformly bounded in the space H
5
2+δ(R3)3

×H
3
2+δ(R3)3, with respect to n, ∀t ∈ [0,T].

Hence, there exist a subsequence (un, ∂tun) ∈ L∞([0,T],H
5
2+δ(R3)3

×H
3
2+δ(R3)3) and (u, ∂tu) ∈ L∞([0,T],H

5
2+δ(R3)3

×

H
3
2+δ(R3)3) such that

(un(t), ∂tun(t))⇀ (u(t), ∂tu(t)) weakly in H
5
2+δ(R3)3

×H
3
2+δ(R3)3, for all t ∈ [0,T].

To establish strong convergence between (un, ∂tun) and (u, ∂tu), we use compactness embedding results of
the Sobolev spaces and Arzela-Ascoli Theorem.
Consequently, we can pass to the limit, when n goes to 0, in the following equation∫

R3
(∂2

t un − ν∆un + ∂tun)(t, x)φ(x)dx

=−

∫
R3
P
(
(un.∇)un + (un.∇)∂tun + (∂tun.∇)un

)
(t, x)φ(x)dx−

∫
R3
PJn f (t, x)φ(x)dx.

We deduce that, (u, ∂tu) is a local weak solution of (HNS).
Finally, we prove the uniqueness and the time continuity of the obtained solution.

4. Global existence in H
5
2+δ(R3)3 × H

3
2+δ(R3)3

This section is devoted to proof the global existence for (HNS)ε in the space H
5
2+δ(R3)3

×H
3
2+δ(R3)3, with

a considerably relaxed assumptions on the regularity and with a ε-dependent assumption of initial data.
One of the main tools in the proof, we use a specific energy E(t) and an additional related quantity Y(t).

4.1. Energy estimate
Let E(t) the energy functional defined as follows

E(t) =
1
2

(∥u + ut∥
2
3
2+δ
+ ∥ut∥

2
3
2+δ

) + ν∥∇u∥23
2+δ
,

and we introduce Y(t) by
Y(t) = ∥ut∥

2
3
2+δ
+ ν∥∇u∥23

2+δ
.

The energy estimate of (u,ut) in H
5
2+δ(R3)3

×H
3
2+δ(R3)3 is given by the following lemma
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Lemma 4.1. There exist positives constants C and K such that, for all t ∈ [0,T], the following energy estimate holds.

E(t) +
∫ t

0

(1
2
− C(∥u(s)∥ 3

2+δ
+ Y

1
2 (s))
)
Y(s)ds ≤ E(0) +

1
2

sup
s∈[0,t]

E(s) + K
(
∥ f ∥2

L1([0,t],H
3
2 +δ)
+ ∥ f ∥2

L2([0,t],H
3
2 +δ)

)
.

Proof. Applying the operator D 3
2+δ

to the equation (HNS) and taking the L2-inner product of the resulting
equation with D 3

2+δ
(u + 2ut), we find

dE(t)
dt
+ Y(t) =

4∑
i=1

(
D 3

2+δ
Ai,D 3

2+δ
(u + 2ut)

)
, (4.18)

where A1 = −P(u.∇)u, A2 = −P(u.∇)ut, A3 = −P(ut.∇)u, and A4 = P f .
For the first term, if we write D 3

2+δ
(u.∇)u = [D 3

2+δ
,u]∇u + uD 3

2+δ
∇u, then since divu = 0 we obtain by

integration by parts (
D 3

2+δ
A1,D 3

2+δ
u
)
=
(
[D 3

2+δ
,u]∇u,D 3

2+δ
u
)
.

Thanks to item 1) of Lemma 2.1 and Sobolev embedding, we see that(
D 3

2+δ
A1,D 3

2+δ
u
)
≤ c∥u∥ 3

2+δ
Y(t).

Besides, Hölder inequality and estimate (2.13) yields(
D 3

2+δ
A1,D 3

2+δ
ut

)
≤ c∥u∥ 3

2+δ
∥∇u∥ 3

2+δ
∥ut∥ 3

2+δ
≤ c∥u∥ 3

2+δ
Y(t).

Consequently, we have(
D 3

2+δ
A1,D 3

2+δ
(u + 2ut)

)
≤ c∥u∥ 3

2+δ
Y(t), (4.19)

For the second term, we remark that D 3
2+δ

(u.∇ut) = D 3
2+δ
∇(u ⊗ ut). Using integrate by part, we obtain

(D 3
2+δ

A2,D 3
2+δ

u) =
(
D 3

2+δ
(u ⊗ ut),D 3

2+δ
∇u
)
.

Applying Hölder inequality and the inequality (2.12), we get

(D 3
2+δ

A2,D 3
2+δ

u) ≤ c∥u∥ 3
2+δ
∥ut∥ 3

2+δ
∥∇u∥ 3

2+δ
≤ c∥u∥ 3

2+δ
Y(t). (4.20)

Next, we decompose A2 as follows −D 3
2+δ

A2 = [D 3
2+δ
,u]∇ut + uD 3

2+δ
∇ut. Besides, by integrations by parts

and divu = 0, we obtain
−(D 3

2+δ
A2,D 3

2+δ
ut) = ([D 3

2+δ
,u]∇ut,D 3

2+δ
ut)

Now, we use Hölder inequality and estimate (2.11), we find that

(D 3
2+δ

A2,D 3
2+δ

ut) ≤ ∥[D 3
2+δ
,u]∇ut∥L2∥ut∥ 3

2+δ
≤ c∥∇u∥ 3

2+δ
∥ut∥

2
3
2+δ
≤ cY

3
2 (t). (4.21)

Thus, we infer from the inequalities (4.20) and (4.21), that(
D 3

2+δ
A2,D 3

2+δ
(u + 2ut)

)
≤ c(∥u∥ 3

2+δ
+ Y

1
2 (t))Y(t) (4.22)

Let us now estimate the term A3. Also, applying Hölder inequality and estimate (2.12), we obtain(
D 3

2+δ
A3,D 3

2+δ
(u + 2ut)

)
≤ c∥ut.∇u∥ 3

2+δ
(∥u∥ 3

2+δ
+ ∥ut∥ 3

2+δ
)

≤ c∥ut∥ 3
2+δ
∥∇u∥ 3

2+δ
(∥u∥ 3

2+δ
+ ∥ut∥ 3

2+δ
)

≤ c(∥u∥ 3
2+δ
+ Y

1
2 (t))Y(t). (4.23)
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For the last term, we deduce from the Hölder inequality and the Young inequality that(
D 3

2+δ
A4,D 3

2+δ
(u + 2ut)

)
=
(
D 3

2+δ
f ,D 3

2+δ
(u + ut)

)
+
(
D 3

2+δ
f ,D 3

2+δ
ut

)
≤ ∥ f ∥ 3

2+δ
E(t)

1
2 + c∥ f ∥23

2+δ
+

1
2

Y(t). (4.24)

By summing up the above estimates (4.19)-(4.24), we get

d
dt

E(t) +
(1
2
− C
(
∥u∥ 3

2+δ
+ Y

1
2 (t)
))

Y(t) ≤ ∥ f ∥ 3
2+δ

E(t)
1
2 + c∥ f ∥23

2+δ
.

Integrating the above inequality between 0 and t, we obtain

E(t) +
∫ t

0

(1
2
− C(∥u(s)∥ 3

2+δ
+ Y

1
2 (s))
)
Y(s)ds ≤ E(0) + c sup

s∈[0,t]
E

1
2 (s)
∫ t

0
∥ f ∥ 3

2+δ
+ c∥ f ∥2

L2([0,t],H
3
2 +δ)
.

Using Young inequality we obtain the desired energy estimate. This concludes the proof of Lemma 4.1.

4.2. Proof of Theorem 1.2

Let Tmax be the maximal time of existence of (u,ut) in the space H
5
2+δ(R3)3

× H
3
2+δ(R3)3. We will prove

that, if we assume Tmax is finite and the initial data and forcing small enough, then ∥u(t)∥ 5
2+δ
+ ∥ut(t)∥ 3

2+δ
is

uniformly bounded on the time, which contradicts the fact that Tmax is finite.
For this end, we claim first that ∥u(t)∥ 3

2+δ
+ Y

1
2 (t) is uniformly bounded on the time. First, we remark that

C(∥u(t)∥ 3
2+δ
+ Y

1
2 (t)) ≤ K(ν)E

1
2 (t). (4.25)

Thus, if we choose K(ν)E
1
2 (0) ≤ 1

4 , and due to continuity of (u,ut), we allow that there exists T > 0 such that
for all 0 ≤ t ≤ T

K(ν)E
1
2 (t) ≤

1
2
,

and

C(∥u(t)∥ 3
2+δ
+ Y

1
2 (t)) ≤

1
2
. (4.26)

Now, we introduce T̃ the maximal time such estimate (4.26) hold:

T̃ = sup
{
t, C(∥u(t)∥ 3

2+δ
+ Y

1
2 (t)) ≤

1
2

}
. (4.27)

If we assume that T̃ < Tmax, then by Lemma 4.1, we obtain

sup
t∈[0,T̃]

E(t) ≤ 2E(0) + 2C0(∥ f ∥2
L1(H

3
2 +δ)
+ ∥ f ∥2

L2(H
3
2 +δ)

). (4.28)

If we assume the initial data (u0,u1) and the forcing term f satisfy(
E(0) + C0(∥ f ∥2

L1(H
3
2 +δ)
+ ∥ f ∥2

L2(H
3
2 +δ)

)
) 1

2
≤

1
4K(ν)

,

then by estimate (4.25), we find that for all 0 ≤ t ≤ T̃

C(∥u(t)∥ 3
2+δ
+ Y

1
2 (t)) <

1
2
.

we have a contradiction from (4.27).
We conclude that T̃ ≥ Tmax and ∥u(t)∥ 5

2+δ
+ ∥ut(t)∥ 3

2+δ
is uniformly bounded on the interval time [0,Tmax),

which contradict the fact that Tmax is finite. This finishes the proof of Theorem 1.2.



B. Abdelhedi / Filomat 37:7 (2023), 2209–2218 2218

Acknowledgment:

This work is supported by the Ministry of Higher Education and Scientific Research, Tunisia.
Project PEJC2017, 18PJEC05-03.

References

[1] R. A. Adams, J.J.F. Fournier Sobolev spaces. Second edition. Pure and Applied Mathematics (Amsterdam) 140. Elsevier/Academic
Press, Amsterdam, 2003.

[2] B. Abdelhedi, Global existence of solutions for hyperbolic Navier Stokes equations in three space dimensions. Asymptotic Analysis, 112
(2019), 213-225.
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[14] E. Hopf, Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen, Math. Nachrichten, 4 (1951), 213-231.
[15] J. Leray, Sur le mouvement d’un liquide visqueux emplissant l’espace, Acta Math., 63 (1934), 193-248.
[16] G. P. Galdi, An Introduction to the Mathematical Theory of the Navier-Stokes Equations. Steady-State Problems,” 2nd edition”, Springer

Monographs in Mathematics, Springer, New York, 2011.
[17] M. Paicu and G. Raugel, A hyperbolic singular perturbation of the Navier-Stokes equations in R2, manuscript.
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