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On a class of unitary operators on weighted Bergman spaces

Namita Das?, Swarupa Roy?

*P. G. Department of Mathematics, Utkal University, Vani Vihar, Bhubaneswar- 751004, Odisha, India

Abstract. In this paper we consider a class of weighted composition operators defined on the weighted
Bergman spaces L2(dA,) where D is the open unit disk in C and dA,(z) = (a + 1)(1 — |z])*dA(z), a > -1
and dA(z) is the area measure on ID. These operators are also self-adjoint and unitary. We establish here
that a bounded linear operator S from L2(dA,) into itself commutes with all the composition operators
CY, a € D, if and only if B,S satisfies certain averaging condition. Here B,S denotes the generalized
Berezin transform of the bounded linear operator S from L2(dA,) into itself, C f = (f o ¢,), f € [2(dA,) and
¢ € Aut(ID). Applications of the result are also discussed. Further, we have shown that if M is a subspace
of L®(D) and if for ¢ € M, the Toeplitz operator Tf;‘) represents a multiplication operator on a closed
subspace S C L2(dA,), then ¢ is bounded analytic on ID. Similarly if g4 € L*(ID) and 8, is a finite Blaschke
product and M;“) (Range C(z[;:) C L2(dA,), then g € H*(DD). Further, we have shown that if ¢ € Aut(D),
then N = {q € L2(dA,) : Mf,“) (Range CEZ‘)) c Lg(dAa)} = H*(D) if and only if 1 is a finite Blaschke product.
Here Mi;), Tf;), Cf;) denote the multiplication operator, the Toeplitz operator and the composition operator
defined on L2(dA,) with symbol ¢ respectively.

1. Introduction

Let H(ID) denote the collection of all holomorphic functions on the open unit disk D = {z € C : |z| < 1}
in the complex plane C. Let H*(D) be the Hardy space of ID consisting of those functions in H(D) whose
Maclaurin coefficients are square summable. The space H?*(D) is a Hilbert space [12], [24]. Let ¢ denotes
an analytic self-map of D. Then ¢ induces a bounded [24] composition operator on H>(D) defined by
Cof = f o ¢. Bourdon and Narayan [5] studied the algebraic properties of the weighted composition
operator (induced by ¢ with weight function ) Wy, on H*(D) defined by Wy f = (f o ¢)y which result
from composition with ¢ and then multiplying by a weight function i) € H(ID). Such weighted composition
operators are bounded on H*(D) when 1) is bounded on D. But the boundedness of ¢ on D is not necessary
for Wy, to be bounded [5]. In this work, we consider a class of weighted composition operator Uj,a € ID

defined on the weighted Bergman space L2(dA,) as USf = (f o qbu)k;Jr%, a > —1. These operators are self-
adjoint, involutive unitary operators. We look at the action of these unitary weighted composition operators
U%,a € ID on some bounded linear operator S defined on L2(dA,). Such studies on the Segal-Bergman space
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(Fock space), Bergman space of the disk, on the Bergman space of the right half plane were carried out in
[4], [13], [11], [23] and [18]. Applications of these results can be found in [4]. We have extended the results
to weighted Bergman spaces L2(dA,), &« > —1. We then considered the weighted composition operator
Wy, = Mg*)cf;“) on L2(dA,) where i € Aut(D) and q € L2(dA,). We showed that if Wy,,L2(dA,) C L2(dA,)
then g € H*(ID) if and only if ¢ is a finite Blaschke product.

LetdA(z) = %dxdy denotes the normalized area measure defined on ID. Let the Hilbert space L?(D, dA,), a >
—1 be the space of all Lebesgue measurable functions on ID that are absolutely square-integrable with re-
spect to the measure dA,(z) = (a + 1)(1 — [z2*)*dA(z), z € D. The weighted Bergman space L2(dA,)
is the subspace of all analytic functions of L*(D,dA,). The spaces L2(dA,) are closed subspaces of the
corresponding spaces L%(D,dA,), @ > —1 and these are all reproducing kernel Hilbert spaces. For
a = 0, we shall denote L%(dAg) = Lz(]D) as the unweighted Bergman space of ID whose reproduc-
ing kernel is given by K(z,w) = = Zﬂz, z,w € D and the normalized reproducing kernel of L2(D) is
given by k.(w) = % Assume K,(w) = K(z,w). The reproducing kernel of L?(dA,) is given by
K®(z,w) = [Kzw)]'"? = gk for z,w € D. Let K9w) = [K@)]"*? = K@O(z,w). If (-,-)a denotes
the inner product in L*(dA,) = L*(D,dA,), then (h, Kga))a = h(z), for every h € L2(dA,) and z € D. The
orthogonal projection P, from the Hilbert space L%(ID,dA,) onto the closed subspace L2(dA,) is given by

1
(Paf)(2) = < f Kg”’)>a = f f (w)mdf\a(z) for f € L?(D,dA,) and z € D. The normalized reproducing
b —

(-2 5

kernels of [2(dA,) are the functions k?% (w) = o -

orthonormal basis [24] for L2(dA,) where

The sequence of functions {e (“)} { } form as an

)/

IF'n+1Dl(a+1)

—-a-1
In+a+2) ~ 1

Voa = 2P = (@ +1) f 27" (1 = |2P*)*dA(z) =

D
Henceforth we shall suppress the subscript a while writing the inner product and assume (-, ), = (-, -) for
simplicity of notations. Let L*(ID) be the space of all essentially bounded Lebesgue measurable functions
on D. The space L*(ID) is a Banach space with the norm given by || f ||OQ = ess sup {If()}, feL”(D). Let

H>(ID) be the space of all bounded analytic functions on ID and /> (ID) be the space of all bounded harmonic
functions on ID. A finite Blaschke product 8, is a function of the form

B,(z) = [ L L2 1)

ar 1l —agz
o k

where ay #0and |ai| <1, k=1,2,...,n
For ¢ € L*(ID), we define the Toeplitz operator on the weighted Bergman space L2(dA,) with symbol
¢ by T;f‘)f = Po(¢f), f € L2(dA,). We have IIT((;Y)II < |l¢lle since the projection P, has [24] norm 1. In

fact, (Tg’) f ) (w) = %d&y(z) for f € L2(dA,) and w € D. A Toeplitz operator T((;) is an analytic
b (1-
(co-analytic) Toeplitz operator if the symbol ¢ belongs to H*(ID) (H""(]D)).

For ¢ € L*(D), the generalized Berezin transform of ¢ is defined by (B,$)(z) = <T((;)ki+%,k;+%> =
f ¢(w)|kz(w)|2+“dAa(w), z € D. For ¢ € L*(ID), we define the big Hankel operator with symbol ¢ from
D

the space L2(dA,) onto its orthogonal complement (Lg(dADt))l by ng“) f=(U=-PJ)(Pf), f € Li(dA,). We
have ”Hf;)” < |9l Let m = {? :fe Lg(dAa)}. The space L2(dA,) is a closed subspace of L?(D, dA,).
The little Hankel operator hf;‘) with symbol ¢ is defined by h:ff) f = Po(¢f), f € L2(dA,) where P, is the
orthogonal projection from the Hilbert space L?(ID,dA,) onto L2(dA,). Clearly, IIhE;)II < |9l as 1Pl < 1.
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Define ], from L*(ID,dA,) into itself by (J,f)(z) = f(z), z € ID. The operator ], is a unitary operator. For
¢ € L2(ID), define S(“) from L2(dA,) into itself by S(“) f = PaJa(¢f). The operator S(a) is a linear operator

and ||S “)|| < lPlloo- It is not difficult to verify that h a) = JaS, ‘X) Thus we shall refer in the sequel, both the

operators hf;‘) and Sfpa) as little Hankel operators on Lﬁ(dAa).
Suppose ¢ is an analytic function from D into itself. If ¢ € H*(D), f € L%(dA,), the composition
operator Cf;‘) on L2(dA,) is defined by (Cf;‘) )(z) = f(¢(z)) for all z € D. For a bounded analytic function ¢

on D, the multiplication operator ME;") on the space L*(D,dA,) is defined by Mg") f =¢f. Let L(H) be the
space of all bounded linear operators from the Hilbert space H into itself. For T € L(L(dA,)), we define
(BT)(2) = (TK"*,K"?), z € D. Notice that |(B,T)()| < |Tl| as ||k“2 || — 1forall z € D. The function B,T
is called the generalized transform of T and denote B Ty = B,¢. In particular, we shall refer BoT as the
Berezin transform of T and ByTy = B¢, the Berezin transform of the function ¢. For more details about
Berezin transform see [13].

The organization of the paper is as follows: In section 2, we consider a class of weighted composition
operators U¢ defined on the weighted Bergman spaces L2(dA,). We have shown that these operators are
involutions and unitary. Some elementary properties of these operators are also derived. In section 3,
we prove that a bounded linear operator S from L2(dA,) into itself commutes with all the composition
operators CY, a e D, if and only if B, S satisfies certain averaging condition. In section 4, we show that if
M is a subspace of L*(ID) and if for ¢ € M, the Toeplitz operator Tfﬁ‘) represents a multiplication operator

on a closed subspace S C L?(dA,), then ¢ is bounded analytic on D. Similarly if 4 € L*(D) and 8, is
a finite Blaschke product and M,(f‘) (Range Cg:) C L%(dA,), then g € H*(D). Further, we have shown that
if 1 € Aut(D), then N = {g € L2(dA,) : M\ (Range cij)) C L2(dA,)} = H™(D) if and only if y is a finite
Blaschke product. In section 5, we discuss the future scope of the work.

2. Preliminaries

In this section we considered a class of weighted composition operators UZ defined on the weighted
Bergman spaces L2(dA,). We showed that these operators are involutions and unitary. We discussed many
elementary properties of these operators which will be used in establishing the main result of the paper.

Let Aut(ID) be the Lie group of all automorphisms (biholomorphic mappings) of ID. We can define for
each a € D, an automorphism ¢, in Aut(ID) such that,
(D) (s 0 $)(2) =
(i) 4a(0) = 4, pu(a) = 0;

(iif) ¢, has a unique fixed pointin D. In fact, ¢,(w) =
measurable function on ID, we define

foralla,w € D. Given z € D, and & any

1 aw’

Ush = (ho¢)k "2

1|z
1-wz’

Using the identity 1 — ¢.(w)z =

we have k.’ qbz( w)) = ﬁ Since ¢ o ¢.(w) = w, we see that
(U*(U*h))(z) = h(z) forall z € Dand h € L2(dA,). Fora € D, define c<“ :[X(dA,) — L2(dAy) as COf = fodb,.
Lemma 2.1. The following hold:

(i) The operator U, is unitary und is an involution.

(ii) For z,w € D, Ll"‘k1+ <P ( )
(iii) For all w € D, LIZ‘f,k1+2 =1
(iv) For any z,w € ID, there exists a unitary map U € Go = {¢ € Aut(ID) : Y(0) = 0} such that ¢y o ¢, = Uy, (w)-

WIfSeL (Lﬁ(dAa)) is invertible and is an involution with polar decomposition S = VS|, then V is an involution
which is also self-adjoint.

2 - for some constant A € C with |A| = 1.
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Proof. (i) Since ¢, 0 ¢5(2) = z, we see that for h € Lz(dAa),

ugush = Ug(h o gbw)ki;r2 = (h 0y © gi)w)( qi)“) = h. Thus (U%)?* = I for all w € D and therefore
(U2)™ = U% and U is unitary on L2(dA,).

(ii) Let z,w € D and f € L2(dA,). Then

(FukS) = (U2 f, KDY = (U2 H(@) = (f 0 po) (k. (w) = (f, ki*%<w>1<;§§1w)>.

Thus U2K = k2 (), )K) . This implies

¢=(w)"
al+5 _ " (w) () ” K@ ” (w) e |lg@
z ™M - 0 2z 2
”Kg)X)H ||K @) || ¢=(w) ”K(X)H ¢ (@) || ¢=(w)
kZ E(w) || UK (“)H k1+2 Ak1+2
2 (w) 2 (w)
KN pele el
for some constant A € C with |A| = 1. This is so, since U is unitary and ||k1+2 ” = ”k;i =1.
(iii) Notice that 1 — qbw(z)w 11 ‘ZL Hence kw ((j)w(z)) w for alweDandzeD.

(iv) Let U = ¢y © P2 © Qo (w), then U(0) = ¢y © ¢, (qbz(w)) = (pw(w) = 0; thus U € Gy is unitary.
(v) We know that R, T € £(L3(dA,)) and RT = TR then VRVT = VT VR. Hence (S*S)(S5") = (S5°)(S*S)
implies that |S||S*| = |S*||S|. Thus, it follows that

(SIS = ISTPISP = (SS7)(S™S) = I.

Now since the product of two commuting positive operators will be positive, we obtain from the [12]
uniqueness of the square root of a positive operator that |S||S*| = |S*[|S| = I. Further, S*(5*S) = (§5)S" implies
S*IS| = |S*|S*. Now since V = §*|S|, we obtain V? = (|S*|S*) (S*|S]) = |S*|IS| = . Since V is unitary and V? =1,
we have V* =V and V is self-adjoint. [

The operators Uj, satisfy the following intertwining properties with Toeplitz, multiplication, Hankel
and little Hankel operators defined on L2(dA,).

Lemma 2.2. The following is valid for ¢p € L*(ID):
(i) Us T(a) ua — T(U()

O =
a 17(@) 7 700 a
(ii) l,IwHqb us H¢°<Z>u

(iii) U“M(“) ue = MW

(bo(bw
( ) _ 1,(@
(iv) U“h s = hq‘fm

1 1
Proof. Notice that U, (L2(@A,)) € [2(dA,) and US, ((Lg(dAa)) ) ¢ (L2(dA,))" . Hence P,UZ = USP,. Now
let f € L2(dA,). Then from Lemma 2.1, it follows that
USTUSf = USTS ((F 0 pulky ) = UsPa (6 © pudk *) = Pallly (6(f © by *)
1+4 144 a
=P, (<q> ° Bu)(f © b 0 du) (k™ © pu) k" F) = Pu (¢ 0 pu)f) = Tho, f-
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Hence (i) follows. Again let f € L2(dA,). Then from Lemma 2.1, it follows that

UGHU f = UGHS[(f 0 pulky | = UL [0 = Pa) (9(F 0 puky ™)
= (1= PO [6(f 0 pulk | = (1= P [(© 0 0u)(F © P 0 ) (k™ © )|
= (I-Po) [(@ 0 p)f| = HS2, f.
Thus (ii) follows. The proof of (iii) and (iv) are similar. [J

Lemma 2.3. Fixa > -1. IfS,Te L (Lg(dAa)) and (BoS)(z) = (BoT)(z) forallz € D, then S = T.

Proof. Assume ((S - T)k."*,k."*) = 0 forall z € D. Then ((5 - T)K', K"} = K®W(z,2) (S - TIK. ", kL") =
K@®(z,2z)-0 = 0. Let A =S —T and define G(x,y) = <AK¥X),K(;)>. The function G is holomorphic in x
and y and G(x,y) = 0 if x = y. It can now be verified that such functions must vanish identically. Let
x=u+iv, y =u—iv. Let F(u,v) = G(x, y). The function F is holomorphic and vanishes if u and v are real.
Hence G(x,y) = F(u,v) = 0. Thus even (AKi“),KEJa)> = 0 for any x,y € ID. Since the linear combinations of
K,((a), x € ID, are dense in Lg(dAa), it follows that A = 0. Thatis,S=T. [

Lemma 2.4. If f € LY(D,dA,), then f(z) = f F(@)KD(z, w)dA(w) for all z € D and
D

1

KO, w)ll % ————.
1 —fwP)'*?

Proof. It follows from [24] that

} 1-2)" : )
||K<“>(-,w>||z=( fD |K<“>(z,w>|2dAa(z>) =[ fD %M(z) (a+1)
— Wz

D

For any f € L*(ID,dA,), we define a function B, f on D by

kl+% 2
@) daa).

(Buf)(@) = fD F(:(@)dAy ) = fD fw)

@
[KOew] _ 1 < C, forallzand win ID.

From [1],[24] it follows that there exists a constant C such that = ) = KOGo@) =

It thus follows that |B, f(z)| < C f |f(w)l |K("‘>(z, w)| dA,(w). This implies that the transform B,, is a bounded
D

linear operator on L%(D, dA,).

3. Main results

In this section, we proved that a bounded linear operator S from L2(dA,) into itself commutes with
all the composition operators CY, a € D, if and only if B,S satisfies certain averaging condition. That

is, if and only if S =S where S = f Uy SU;dA,(a). Since the mapping a +— u® is strong operator
D



N. Das, S. Roy / Filomat 37:7 (2023), 2013-2026 2018

continuous, we can define for each bounded linear operator S on L2(dA,), a bounded linear operator g(an

averaging operation) on the space by S = f Uy SU;dA,(a) where the integral is taken in the sense that
D

<( f Uy SU;dA (a)) f g> f (UysuUy f,g) dA.(a). Notice that the integrand of f Uy SU;dA(a) is strongly

continuous in 2 and uniformly bounded for each fixed S. For a discussion of such integrals see [6] and [7].
The idea of averaging an operator against some unitary operators were considered by many authors [4],
[14]. We will also present some applications of Theorem 3.1 in form of corollaries at the end of this section.

Theorem 3.1. A bounded linear operator S € L (Lﬁ(dAa)) commutes with all the composition operators CW,aeD,
if and only if

(BaS)(2) = fD (BaS)(0(2)dAu(a)
forallz e D.

Proof. Suppose (B,S)(z) = f]D(BaS)((pu(z))dAa(a) for all z € ID. Then by Lemma 2.1, there exists a constant A
with |A| = 1 such that for all z € ID,

(BaS)(@) = (S 1) = f (BaS)(u(2))dAn(a) = f (skrd K )ad@
D D
- fD (ASUSK"®, AUSKL? ) dAy(a) = f (u2suzkl™ k") dAu(a)
D

<(f USUdAq(a )) ke k“2>=(§k§+‘2',k§+3>
= (B.S) (@)
where § = fD USSU®dA4(a). Thus by Lemma 2.3, S = 5. Hence for all f, g € L2(dAq), (Sf, ) = (Sf, 7). That
is,
[ sp@rEae - [ surupiao. o)

The boundedness of S and the antianalyticity of K(z,a) in a imply that for each z € D, the function,
S (K<+(a)) (2)K@(z, ) is antianalytic in a. Therefore, by the mean value property of harmonic functions, we
have [19]

f - ~ f X B
L S ( Ko, a)) (@)K V(z,a)dA(a) = S (—K@ C 0)) K9(z,0) = Sf(z). 3)

Thus, from (3), it follows that

(Sf,9) = f @ f ( T )<z>K<“><z,a)dAa(mdAa(z).

Using Fubini’s theorem [22] , we get (S5f,g) = f f S (K(+(a)) (z)ﬁl((“)(z, a)dA,(z)dA,(a). Now since
D JD r

k;+%(z) = KYGa ang (k;Jr% o gba) (z)ki+%(z) =1forall g,z € ID, we obtain

VK@ (a,a)
Sf.p = f f (ki;) 9@k (2)dAu(2)dAu(a)

Lo

1+2(z)| dA(2)dA(a).



N. Das, S. Roy / Filomat 37:7 (2023), 2013-2026 2019

Finally, as (¢ © ¢q)(2) =z and Jy, ) = = 0 we obtain using Lemma 2.1 that

(1-az)*

(Sf,q) = fD fD s[kﬂg](@(z»ki*‘?(z)g(qba(z))dAa(z)dAam).

By our hypothesis, and using (3) we have (Sf, g) = f (Suy f, Uy g)dA,(a). Using Lemma 2.1, we obtain
D

(SULf Uag) = <5[1{fi]r(go<pa)k§+§>
k 2 O(P”

a

= <S[ 1{@ °¢a]f(go¢u)k;+g>
k, ?
K ( /
D

Thus we obtain for all f, g € L2(dA,),

°¢a](z)g(¢a(2))k (2)dAq(2)-

f [f @](z)g(qba @k, (2)dAa(2) = f (f;)(qba(z»k;*?(z)g(@(z))dAa(z).
p \k D \k, 2

Hence for all f, g € L2(dA,), a € D, we have

<s(%o¢a],usg>=<5( 1{a)°%uﬁ”9>'
k2 ka”

Since U¢ € L(Lz(dAa)) is unitary, we obtain S ( “T © %) = S( ) o ¢, for all f € L2(dA,) and a € D.

Thus SC(“)( ) C(”)S( ) Since (k +%)_ € H*(ID), hence SC® = C¥'S for all 2 € ID. Now to prove

the converse, assume that C,(I“)S = Cff‘) for all @ € ID. That is, for all f € L%(dA,), a € D, we have
(Sf) © pa = S(f © ¢,). Hence by Lemma 2.1, we obtain for all f € L2(dA,),

suzf = 5((F o puks™) = [ en ]: S[( f“] i S(ki‘f)o%

° Pq ka a

_K9@a)

VK@ (a,a)

Now since k;+% (2) = for all 4,z € D and by using Lemma 2.1, we get for all £, g € L2(dA,),

(SUz f, Uz g) = (Ga(2)(7 © D)@y (D)AAn(2)

wn

a 2
‘@ 44

@@ (k" o) @ |6

@)@k, 2 dAL(2)

1
S 5 5 5
\"\

S(wa;,a))(z)@fda)@r DA,c).



N. Das, S. Roy / Filomat 37:7 (2023), 2013-2026 2020

By using Fubini’s theorem, we obtain

fD(SUff, U gydA,(a) = f f S (K("‘JZ- )) (z)ﬁ]((a)(z, a)dAq(z)dA,(a)

- (@, [ (it | oxocaino.

In the first part of the proof, we have already checked that for all z € D, f (

K@, )) (2)K(z,a)dA(a) =

S( f )(z)K(“)(z, 0) = Sf(z). Thus f(SU?f, U gydAy(a) = f Sf(z)g(z)dAa(z) =(Sf,g). Taking f =g =
D D

K@(-,0)
ki+§,z € D, we obtain by Lemma 2.1 that

(BuS)(&) = (Sk: 7, k") = f (Sugk:™, ugk.™ ) dAa(o)

D
= [ (st ki ase = [ E5i0EAw, @
D
This completes the proof. [J

Example 3.2. The operator B, defined on L*(D,dA,) commutes with the composition operators CW,aeD. To
verify this, let f € L*(ID,dA,). By a change of variable,

(Baf)(a(2) = “dA o(w)

2(w>] dA o (w).

(P (z) °¢“

f Fn

Applying Lemma 2.1, we obtain an unitary U with ¢y, © ¢a = UPp,0p,:) = UQ,. Taking the real Jacobian

a 2 a 2
K@) = E @)

« 2
determinants of the above equation, we obtain |kq1,)+é) o qbﬂ(w)|
Therefore,

for all a,z and w in D.

K @) dAa(@) = Ba(f 0 000

600 = [ s
This implies that B,C® = CWB, on L**(D) and hence By = B,.
For ¢ € L*(D), define the functions
0.0 = [ $ouMA ),
and
B0 = [ 9l6-oMdA ),

Now we present some applications of our main result Theorem 3.1.

Corollary 3.3. If ¢ € L*(ID), then there exists a constant 6 of modulus 1 such that

f f ¢ (9,0 (@) dAa ()AL (@) = f f ¢ (560 (®)) dAa(@)d A (a0).
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Proof. From (4) it follows that

| (1) ontoninn = [ (1965 K7E Dasnto

f <¢k ok é>>dA“(“)

_ fD Ba))(¢4(2)dAx(@)
- [ [ s(os0@)drmiao.
D JD

Let f,g € L2(dA,). Then by Lemma 2.1 and Fubini’s theorem, we obtain

[ (wrouzs gjaso - [ aaw f GENf 0 gk (T o G ()Ae(2)
f 444 (a) f (e
_ f 444 (@) f (ha(0)) F )T AL ()
D D
- f )7 @A) f S (Gu(w))dA4 (@)
D D
- fD (Dah) (@) F)F@)d A (0).

B @) da(w)

9@ (k" o ¢u)

Thus BoTO ) a(2)dAn(a) = | (UeTOUk™ s k2 dAL ()
¢ at¢ Ta
D D

- f (Da)(a0) K
D

_ f f (6 0 a0 2)(W)AAa(@dAn(a0).
D JD

2
dAo(a0) = fD (Dah)(b=())dAn ()

Hence by Theorem 3.1, we obtain

[ [ slonom)iatnsim= [ [ oo opmiamiao,

Let U = ¢ © ¢, © ¢y (). Then U € Aut(ID) and U(O) ¢Pa © P2(P2(a)) = Pa(a) = 0 and Uy, @) = Pa © P.. Itis
well known [9] that if qb € Aut(ID), then ¢(z) = €' =L — for some 0 € R and p € ID. Furthermore, ¢(0) = 0 if
and only if ¢(z) = ¢¥z. Thus Uz = ¢z and ¢, o (pz = U(% @ = €9Po.@ = 0¢¢.@), where § = €9, 0 € R. Hence

it follows that f]D fD ) (Pou () dAa(w)dAn(a) = fD f]D ¢ (5. (0)(w)) dAa(@)dAn(w). O

Notice that one can define U on L*(D, dA,) also. Suppose ¢ € L*(D), f,g € L*(D,dA,). Then by using
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Fubini’s theorem and making a change of variable, we obtain
[ {ouzruganso = [ 440 [ oe1ro 6K GoaIER @A
D D D
- [ 1@ [ otoutens@i@iaw)
D D
- [ i@ | sniae
D D
- fD (D)) (@) f@)g@dAq(w) = (D) g)- ©)

Define ], : L>(D,dA,) — L*(D,dA,) as J,f(z) = f(z). The map J, is an unitary operator and J;, = J,. Let
L2(dA) = {f : f € L2(dA,)). Define h') : [2(dA,) — LA(dA,) such that hg;‘> f = Pu(¢f), where P, is the

orthogonal projection from L?(ID,dA,) onto L2(dA,). The operator hfff‘) is called the little Hankel operator
on L2(dA,).

In Corollary 3.4, we show that ﬁ(“) H(g p” /h\(a) hg‘) o Afg) T(a . Thus T((;), H(“) h(“ commutes with
all ™, a € D if and only if Dy = ¢.
Corollary 3.4. If ¢ € L°(D), f € L2(dA,), then

(i) f ua HOUSS, g> dAy(a) = <H§g> of g> forall g € (L2(@A,))" .
(ii) f uah(a) usf, g dA.(a) = <h(g)a Nz g>for all g € L2(dA,).
(m)j]‘3 uy (;‘)U[‘ff, g> dA,(a) = < s (p)f g>for all g € L2(dA,).

Proof. (i) If f € L2(dA,), g € (Lg(dAa)) , then from (5), it follows that

f}D <<15U2‘f/ Uff!]) dA,(a) = <(Da¢)f, g>,

This implies that f (QUZf, U3 - Pa)g) dAa(@) = ((Dagp)f, (I - Pa)g) . Hence since USP, = PoUI¢, we obtain

[ (wa-rowuzn.g)ane = [ (ouss,a-rouge)ase
= (1= P)(Dat)f), )
Therefore, we get f <U‘)‘H(a)ua f g> dA,(a) = < O @f 9>

(i) If f € L3(dA,), g € Lﬁ(dAa), then from the above discussion it follows that f <¢)U,‘; f llffg> dA,(a) =
((Da@)f, g). This implies v
[ (puzp.s, wPi)dase = 0uopaf, Pao)
D

Since Py = J4PaJa, hence we obtain f (qbllZ‘Pa 1 UZ’]aPa]ag> dAy(a) = {(Da)Paf, JaPalag). Now UgP, =
D
P,U4. Thus we obtain

fD (U TuPaJapPalll f, g) dAa(a) = fD (OUIPaf, JoPalallsg) dAa(a)
= <]apa]a(Daqb)Po‘f’ !]> ’
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Thus fD <ugh<“>ug £, g> A4 (a) = <h§§j o g>.
(iii) If £, g € L2(dA,), then from equation (5), it follows that

[ (ouzs, uzg)anno = (0.1, 9).

Hence we obtain f <¢U2‘ £, Pa U;‘g> dA,(a) = <(Da¢) 1, Pag> . Thus
D

fD (UsPa(@US f), ) dAa(a) = fD (Pu(pUL ), USg) dAn(a) = ((Dat)f, Pag)
= <Pa((Da¢)f)/ g> :

It follows therefore that L <U§‘T((;) u; f, g> dA,(a) = <ng)a ol g> . O

Example 3.5. Let o = 0 and consider the Berezin transform By. Notice that if g is harmonic on ID, then g is the sum
of an analytic function and the conjugate of another analytic function. It follows from [1], [10], [13] that Bog = g

and Dog = g(0) — %';—Z(O)z - %g—Z(O)Z. Let g(z) = 2 c,z" € H®(ID). Then from [1], [13], [10] that Bog = g and
n=0

Doy = co— 3 z. Hence if g(z) = 3—2z+72* —52%,z € D, then Bog = g but Dog = 3—z. Hence?éo) = T(D()Zg # T;,O). By

Theorem 3.1, T;O) does not commute with all c;‘”,a € D. Now let f(z) = -2z -7 Z%. Then By f = fbut(Dof)(z) =z

g0 _ O _ 0 0) i 70 _ 10 _ 10 ) ©) ©)
Thus Hf = HDUf =H" # Hf and similarly hf = hDof =h' # hf . By Theorem 3.1, Hf and hf does not

commute with all Cflo),a e D.

4. Bounded analytic functions and composition operators

Itis not difficult to verify that Mfg‘) L2(dA,) C L3(dA,)if and only if ¢ € H*(ID). In section 3, we considered

the weighted composition operator US f = (f o gbu)kﬂH%, f € L2(dA,). Here ¢}, = —k, € H*(D) and observe
that the inducing function of the weighted composition operator belongs to Aut(ID) and the weight function
belongs to H*(D). Now consider the weighted composition operator Wy, , on L2(dA,) where g € L2(dA,)
and ¢ € Aut(D). If Wy, ,[2(dA,) C L2(dA,) then what will be the relation between g and . In this section we
have shown that g € H*(ID) if and only if ¢ is a finite Blaschke product. More specifically, we established the

following. We showed thatif M is a subspace of L*(ID) and if for ¢p € M, the Toeplitz operator T;,)”) represents
a multiplication operator on a closed subspace S C L2(dA,), then ¢ is bounded analytic on D. Similarly
if g € L(ID) and 8B, is a finite Blaschke product and M{" (Range C};)) C L2(dAy), then q € H*(ID). Further,
we have shown that if ¢ € Aut(D) and g € L2(dA,), then N = {q € L2(dA,) : M,(ia) (Range Cf;‘)) c Lg(dAa)} =
H*(DD) if and only if ¢ is a finite Blaschke product. Akeroyd and Ghatage (2008,[2]) showed that if ¢ is

univalent, analytic self-map of the disk, then Cy has closed range on the Bergman space L(D) if and only
if ¢ is a conformal automorphism of the disk.

Theorem 4.1. (i) Let M be a subspace of L™ (ID) such that for ¢ € M, there exists a closed subspace S of L2(dA,)
for which T f = ¢, for all f € S. Then M. H*(D).

(ii) Let g € L*(ID) and B, is a finite Blaschke product as defined in (1). If M,(;X) (Range Cg’)) C L2(dA,), then
g € H*(D).
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T f(z
Proof. (i) Suppose Tf;‘) f=¢f, feScLidA,). Then ¢(z) = (}(ch)( ). Hence ¢ is analytic on D \ {zeros of f}.
Thus each isolated singularity of ¢ in ID is removable since ¢ is assumed to be bounded. Thus ¢ is analytic
on ID. Since ¢ € L*(ID), hence ¢ € H*(ID).
(i) Since M{” (CS'L2(dA,)) € LA(dA,), hence MVCY is bounded (see [3],[24]). Let f € L2(dA,). Then

(6 MOK(,2), £) = (KO, 2, MY C) f) = 76 7B, @)
= 9@ (K9(, B,(2)), f).
Hence (Cg))* M(;)K(“)(-, z) = g(z2)K@(,, B,(2)). Since M;“)C(gj is bounded, so is (Cg))* M(;) as (M;“))* = Mfi,“)

( for details see [24]). Thus there exists R > 0 such that ||(C(§))* M%“)K(“)(-, z)“2 < R|IK@(-,z)|l,. Hence
lg@)| IK9(, Bu(2))ll2 < RIKW(:,z)|l, and we obtain from Lemma 2.4 that

1
|I1(Z)| o\ 1+4 < n\1+% °
(1 —=18u(2)) 2 (1—1z?) "2
That is,
1-18,(2)P\"*
<R[——————
lg(2)l < ( e
Letl = {nax{locil} andp = {I<1jn{|ai|}. It follows from [8] that for | < |z| < 1, we have
<i<n <i<n
1-18.(2))? 1+
1—z]2 1-p

Hence g € H*(D). O

Theorem 4.2. Let () € Aut(D) and N = {q € L2(dA,) : M} (Range c) c LX(dAy)}. If N = H™(D), then there
exist constants L > 0 and R > 0 such that

LIMPCPN < gl < RIMEICI -

Proof. The set N is a vector space. Define for g4 € N, the norm ||glly = ||M,(1a)Cf;‘)|l. The space N is
complete with respect to the metric induced from || - ||n. Let E, be a sequence in N which is Cauchy. Then
M(E‘)?Cff) is a Cauchy sequence in L(L2(dA,)). Since the space L(L2(dA,)) is complete, hence there exists
S € L(LA(dA,)) such that lim ngfci;” = . For f € L}(dA,), lim M(E”:)C(j) f = Sf. Thatis, lim E,(f o ) = Sf
and for z € D, r}g& Ex(2)f(W(z)) = (Sf)(z). For f = 1, we obtain lim 5, = S1. Let ¢ = S1. Then for

n—oo

g € L2(dA,), z € D, we have lim E,(2) f({(z)) = 9(z) f((z)). Hence we get (Sf)(z) = q(z) f(¢(2)). It follows
therefore that S = M;Q)Cff) and g € N and lim ||E, — glly = lim ||M(EO?C$) - Mf,a)Cff)II = 0and N is

complete with respect to the metric induced from the norm || - ||5. Since N' = H*(ID), we obtain by inverse
mapping theorem [20] that there exist constants L > 0 and R > 0 such that L|lglly < ll9lle < Rllgllx. Thus

LIMICE) < lglle < RIMPCL||. The theorem follows.
O
Theorem 4.3. Let i € Aut(D) and q € L2(dA,). Then
N ={q € LdAy) : M (Range cfg”) C L2(dA,)} = H (D)

if and only if  is a finite Blaschke product.
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Proof. The sufficiency part follows from Theorem 4.1. For the necessary part, define for z,w € D, the
2
function Kgff )(z) = (L)M . Then for any f € L2(dA,), it follows from Lemma 2.4 that

1-zw

(@) ~(a)
HM@CU/ f

2
\ - f 1K @)PIf((2) PdA(2)
2 D

:J;Ht;%@EZVW@MﬁAA@

B 1 (1 _ |w|2)a+2
- (1 _ |w|2)a+2 pl1- Z@|2(a+2)

= m fD @)K PdA ()

- o fD (@ © ) @PdAL)

1 1T+ @)\
= (1 _ |w|2)a+2 (1 _ |1P(ZU)|) ”f”z

[f(@(@)PdAa(2)

The last inequality follows from [16]. So

@ ~@ <
HMK@C%” T (1= wP)tts

1 (1 + |¢(w)|)“%'
1= [(w)l )

From Theorem 4.2, it follows that there exists a constant R’ > 0 such that

K|l < R’

1 (1+|¢(w)|)“‘§
A -+ \1=lp@)l) -

+2 +2 1+4
Since [IK{ll = (2)", we obtain (2)" < R'—L— (Z59) ™  That s,

—[w] A-fwp)* 2 \1-[p @)l
1+ 1+9 1+9
(1+|w|) zsR,(HItP(w)I) SR,( 2 ) _
1= [wl 1= [(w) 1= [p(w)l

Thus when |w| — 1, then |¢(w)| — 1 and the function ¥ is a finite Blaschke product. [J

5. Conclusion

(i)

(ii)

In this work, we only dealt with the weights (1-|z|*)*dA(z), z € D, a > —1 which is a Mdbius invariant.
Whether such result holds for other weights like (i) r(++1) (log#)a ya > =1 (i) exp (ﬁ), a,c >

0 (iii) exp (—y exp (ﬁ)) @, B,y > 0 defined on D and in the weighted Bergman spaces L2(Q2) where
Q) is any bounded symmetric domain in C ?

De Leeuw [17] showed that the isometries in the Hardy space H'(ID) are weighted composition
operators and Forelli [15] obtained the same result for the Hardy spaces H?,1 < p < oo,p # 2. Further,
itis well-known [17] that if T is any Banach space isometry of H*(ID) onto H*(ID), then T has the form
(THA) = af(z(A)), f € H°(ID) and where a is a complex constant of modulus 1 and 7 is a conformal
map of the open unit disk onto itself. Bourdon and Narayan [5] gave a characterization of the unitary
weighted composition operators on H*(D) in 2010. They showed that if the weighted composition
operator Wy, from H?(D) into itself is unitary, then ¢ € Aut(ID). Further in 2014, Matache [21]
proved that if Wy, is isometric on H*(D) then ¢ must be an inner function and ¢ must belong to
H?*(D) and [|[¢/]| = 1. In this context it is also important to analyse what are all the isometries from
[1(dA,),1 < p < o into itself ?
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(iii) In section 2, we have seen that the map Uy = (f o (j)a)k;Jr%, a € D is bounded, unitary and self-adjoint.
Notice that, ¢, = —k,. That is, if the inducing function of the composition operator is ¢, then the

weight function is k;+% and the resulting operator is unitary. In section 4, we have shown that if the
inducing function of the composition operator is a finite Blaschke product if and only if the weight
function belong to H*(ID). Now we ask if the inducing function is an infinite Blaschke product or an
inner function then to which class the weight function i) must belong to, so that Wy, ;, will be bounded
and unitary.
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