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Abstract. In this paper, we consider the doubly indexed sequence a(Ar)(n, m), (n,m > 0), defined by a
recurrence relation and an initial sequence a(Ar) (0,m), (m > 0). We derive with the help of some differential
operator an explicit expression for u(A')(n, 0), in term of the degenerate r-Stirling numbers of the second kind
and the initial sequence. We observe that a(r) (n,0) = Bua(r), for a(’) (0,m) = -L=, and a(’) (n,0) = E,a(r), for

a? 1 (0,m) = ( ) Here B, 1(x) and &, 1 (x) are the fully degenerate Bernoulli polynomials and the degenerate
Euler polynomials, respectively.

1. Introduction

Inrecent years, we have witnessed that some mathematicians have explored various degenerate versions
of many special polynomials and numbers by using various tools. These explorations for degenerate
versions were initiated by Carlitz (see [3]) when he studied degenerate versions of some special polynomials
and numbers, namely the degenerate Bernoulli and Euler polynomials and numbers.

The r-Stirling number of the second kind {}} counts the number of partitions of the set [n] = {1,2,..., 1}
into k blocks in such a way that the numbers 1,2,...,r are in distinct subsets. The degenerate r-Stirling
numbers of the second kind {}} , are a degenerate version of the r-Stirling numbers of the second kind {}} .
They can be viewed also as natural extensions of the degenerate Stirling numbers of the second kind {}},,
which were introduced earlier (see [8,12,13]).

The aim of this paper is to derive an explicit expression for the n-th generating function g,(t, 1) =

Yoo aa(n, m)t", from the initial generating function go(t, A) = Y;»_oa1(0, m)t", and the recurrence relation
given by (12). If we choose a,(0,k) =

ﬁ, then a,(n,0) = B,1. Here B, 1(x) are the fully degenrate Bernoulli
polynomials and 5,1 = f,,1(0) are the fully degenerate Bernoulli numbers (see (10)). This is generalized to

slightly more general recurrence relation in (29) with initial generating function g(r)(t A=Y a(r)(O m)t".

Then we get a(Ar)(n, 0) = Bua(r), fora r)(O m) = -1 and u(r)(n 0) = &y (r), for a(r)(O m) = ( ) Here &, 1(x)
are the degenerate Euler polynomials.
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In more detail, we show the following. For a given initial sequence a,(0,m), (m =0,1,2,...), the doubly
indexed equence a,(n,m), (n > 1, m = 0,1,2,...) are defined by the recurrence relation in (12). For each
nonnegative integer n, let g,(t, A) = Y.,._o ar(n, m)t" be the n-th generating function. Then we show that

gt )= (- DD) o)=Y Saan -V qutt ),

k=0

where (x),, are the degenerate falling factorials, and S, 1(n, k) are the degenerate Stirling numbers of the
second kind (see (3)). Then, by letting t = 0, we express a,(n,0) in terms of the initial sequence a,(0, k),
namely a,(n,0) = Y./ Soa(n, k)(=1)*k!a,(0,k). For a,(0,k) = ﬁ, ay(n,0) = Bn1. This idea is generalized
to the case of slightly more general recurrence relation in (29), starting with the initial sequence ag() (0, m).
Indeed, by proceeding similarly to the previous case we obtain the expression

a(n,0= Y {” * Y}A(—l)’”m!a(;)(o, m),

+
m=0 m+r

1
m+1’
Yoo ag()(n, 0)% in terms of the initial generating function F(t) = gg)(t, A). Observe here that the sum is over
the first argument. Indeed, we have

where r is a nonnegative integer. For ag() (0,m) = aﬁ{)(n, 0) = Bya(r). In addition, we express the sum

EOFA - ) = Y 1,00
n=0

Here a{(n,0) = &,,(r), for a0, m) = (1)"
For any nonzero A € R, the degenerate exponential functions are defined by

&) =(1+AT, (see[6,7,9—13]). 1)

When x = 1, we let ey (f) = e} (t). Note that }\irr(l) e (t) =e.
The degenerate falling factorials are defined by

@oa=1, @p1=x(x=A)x-21)(x=(m-1A), (221).
In [6], the degenerate Stirling numbers of the first kind are defined by

@ =Y S1a(L D), (12 0), 2)
k=0

where (x)o =1, (x), =x(x—-1)---(x—n+1), (n > 1).
As the inversion formula of (2), the degenerate Stirling numbers of the second kind are defined by

(X2 = Z Soa(m,k)(xX), (n=0), (seel6]). 3)
k=0

Note that %m'é S1a(n, k) = S1(n, k), }\m’é Soa(n,k) = Sy(n, k), where Si(n, k) and S»(n, k) are respectively the
Stirling numbers of the first kind and the Stirling numbers of the second kind defined by

Wn =Y S0, ¥ =) Sm k)X, (120), (see[10,15-19)). @)
k=0 k=0
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For r € Z with r > 0, the degenerate r-Stirling numbers of the second kind are defined by

(HWM=ZK?:%m,m2% (see [12,13]). ©)
— A
From (5), we note that

1, koo [n+r)

HEA(t)(eA(t) -1) = Z:,: {k . r}ﬂ' (see [12,13]). (6)

By (5) and (6), we easily get

n+r " (n
{k + T} A - mZ:O (m)s 2,1(11, k) ()=, -

For r = 0, we note that {Z}A = Sy (n, k).
For other types of Stirling numbers and polynomials, one may refer to [2,14,20].
In [3], Carlitz introduced the degenerate Bernoulli polynomials defined by

- (t) ——i(h) = ZB(xI)\ . ®)

Note that %imo B, (x|A) = B, (x), where B, (x) are the Bernoulli polynomials defined by

e tn
et =Y B, (see[1,4,5,16)).

t
et -1
n=0

He also defined the degenerate Euler polynomials given by

n

S TTA0= L Ene (e l3) ©)

n=|

When x =0, ;1 = E,,1(0) are called the degenerate Euler numbers.
The fully degenerate Bernoulli polynomials arise from a p-adic bosonic integral over Z,, and are given

by

log(1 + At) t"
erﬁwr;mmm,mww. (10)

When x =0, 8,1 = fu,1(0) are called the fully degenerate Bernoulli numbers.
For n > 0, we note that

k+r

ﬁmm=Z¥H?0ﬁ%h02W (see [10)). a1
k=0

2. A new approach to fully degenerate Bernoulli numbers and polynomials

In this section, we prove the main results of this paper. Assume that A is a fixed real number. For a given
initial sequence a,(0,m) (m = 0,1,2,...), we define the doubly indexed sequence a,(n,m), (n > 1, m > 0),
which are given by

ay(n,m)=may(n—-1,m)—(m+Dayn—-1,m+1)— (n—-1Aa,(n — 1, m). (12)
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For any nonnegative integer , let g,(t, 1) be the generating function of a,(n,m), (m > 0), given by

(o)

gult, ) = Y ax(n, m)e". (13)

m=0

From (12) and (13), we note that

(o8]

gult, A) = ) ax(n, m)e" (14)

m=0

{maA(n —1lm—-m+Da(n—-1,m+1)—n-DAa(n -1, m)}t’"

s 101

may(n — 1, m)t" — Z(m +Dayn—-1,m+1)t" - (n— 1)/\2@(71 -1, m)t"

m=1 m=0 m=0
= tZ(m + Day(n—1,m+ )" - Z(m + Day(n—1,m+ 1)t"
m=0 m=0

-(n- 1)AZaA(n -1, m)t"
m=0
=(t-1) Z(m +Day(n—1,m+ D" —(n—1)A ZaA(n —1,mt"
m=0 m=0

=(t-1) i may(n —1,m)t" " — (n — 1A iaﬂ(n -1, myt"
m=0

m=1

= (= DT 016~ (1= DG, 1)

= ((t — 1)% - (Tl — 1)/\){]n—1(t1 /\)

Thus, by (14), we get
gu(t, 1) = (= 1)~ (1= DA)gu (1) 0
= ((t- 1)% —(m=-DA)(t- 1)% — (1= 2)A)gu-alt, A).
Continuing this process, we have
gt )= (= D5) @A), e, (16)

Here one has to observe that
d . d . d . d .
(G 1= in)(ct - - jA) = (- N (G D= iA),
for any distinct nonnegative integers i, j. Similar observations to this are needed for other results below.

Lemma 2.1. For any nonnegative integer k, we have

J k d\m
(€=DF),, = L Saatemt = 1"(Z)

m=0
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Proof. Let f(t) = Y- an(t — 1)". Then we have

(e8]

(0-35),50 = Y anonst-17
n=0
=Y o Zsuw m)())(t = 1)" = ZSZA(k m) Y au(m)u(t = 1)"
n=0 n=0
k
= () Soatl,my(t - 1)’”(%) )f®).
m=0
By (17), we get

((t—l)— Zsu(k m)(t —1)" (;t)m

O

From (16) and Lemma 1, we note that
d
gut, A) = ((t - 1)E)Mgo(t, A)
n
d \k
_ k
=Y Saaln Rt = (=) got, ),

k=0

e8]

where g,(t, A) = Z a,(n, m)t",
m=0
Lett = 0in (19). Then we have

ar(1,0) = Y S0, K)(=1)"Kla (0, k).
k=0

Therefore, by (20), we obtain the following theorem.

2273

(17)

(18)

(19)

(20)

Theorem 2.2. For a given initial sequence a)(0,m), (m = 0,1,2,...), let the doubly indexed sequence a,(n, m) be

defined by the recurrence relation

ay(n,m)=mayn—1,m)—(m+Dayin—1,m+1)—(n—-1Aay(n —1,m),

where n is a positive integer. Then we have

ar(1,0) = Y S2.0(n,)(=1)"K1a (0, k).
k=0

Letax(0,k) = &5 +1 in Theorem 2. Then, from (11), we see that

031,0) = Y $240 DD L or = s, (120)
=0

(21)

For a given initial sequence b,(0,m), (m =0,1,2,...), consider the doubly indexed sequence b,(n,m), (n >

1, m > 0), which are defined by

ba(in,m)=m+by(n—-1,m)—(m+Dby(n—-1,m+1)—(n—1)Abr(n — 1, m).

(22)
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Let g;,(t, A) be the generating function of b, (1, m), (m > 0), given by

gyt A) = Y ba(n, m)e". (23)
m=0

Then, by (22) and (23), we get

gyt A) = ) ba(n, m)e” (24)
m=0
= Z mby(n — 1, m)t" — Z(m + Dba(n = 1,m+ DE" + (1= (n = 1)A) Z by(n =1, m)t"
m=0 m=0 m=0
=(t-1) Z(m +Dba(n—1,m+ D" + (1 (1= 1)A) Z by(n— 1, m)t"
m=0 m=0

(e8]

=(t-1) Z mb(n = 1,m)t" " + (1= (n - 1)A) i by(n -1, m)t"
m=1 m=0

=(t- 1)%9;_1(@ N+ (1= = DA)g,_, (8 A) = (¢t - 1)% +1=(n—DA)g,_y(tA).

Thus, by (24), we get

d
Gt ) = (=D + 1= (1= DAY, (1, )
d d
= ((t- Do+ 1= (1~ DA)(t - Do+ 1= (- 2A)g;,_(t, A).

Continuing this process, we have

d
gt A) = (1+ (- 1)E)Mgg(t, A), (25)

where g,(t, 1) = Z by(n, m)t".

m=0
From (18) and (25), we note that

n

. n d .
7t 1) = kZO, (k)(nn_k,ﬂ((t =), ot ) (26)
n k

= Z (Z)(l)n—k,/\ mZ S2,A(k, m)(t _ l)m(%)mga(tl /\)

k=0 =0

Y-y, (’;)mmsm (k, m)gi(t, A).
m=0

k=m

By (7) and (26), we get
. 3 . nn+1 ay" .
gn(tr A) - mZ:O(t - 1) {m + 1}/\(%) go(tr A)/ (27)

where g:(t, 1) = Z by (1, )i,
k=0
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Lett = 0in (27). Then we have
1
b (n,0) = Z( 1)*”{” K } mib (0, m). (28)
=0 A
Therefore, by (28), we obtain the following theorem.

Theorem 2.3. For a given initial sequence by(0,m), (m = 0,1,2,...), let the doubly indexed sequence by(n, m), (n >
1, m > 0), be defined by the recurrence relation

byn,m)=m+1)by(n—-1,m)—(m+1)bp(n—-1,m+1)— (n—1)Aby(n — 1, m).

Then we have
ba(,0) = Z( 1)’"{’“’1} mib (0, m).

Let b4(0,m) = 1 in Theorem 3. Then, by (11), we have

bA(”/0)=Z( I {””} =Bua(l), (120).

m+1{m+1 A

m=0
Let » be a nonnegative integer. For a given initial sequence a(Ar)(O, m), (m=0,1,2,...), consider the doubly
indexed sequence af\r)(n, m), (n =1, m > 0), such that

a(r)(n,m) =(m+ r)a(Ar)(n -1,m)—(m+ 1)a£{)(n -1lm+1)—-(n- 1))\11;7)(11 -1,m). (29)

Let g(r)(t A) be the generating function of a(;)(n, m), (m > 0), which is given by

o

g0 A) =Y al(n,mye". (30)

m=0

By the same method as in (14) and (27), we get

g0 = (r+ ¢ -12) g00,2) (1)

n

dt

k
dm
(Z)(r)n_m mZO Saalk,m)(t=1)"() g5t A)

(t- 1)*"(%)’"(2 (”)mn £ Sa,1(k,m))gs (t, 1)

0 k=m

_ mlntr d\m G
=200 {m+r} (dt) tA),

m=

(Z)(V)n kA((t_ 1)—)“ Ot A)

k=0

S|

k

Il
o

=

= i

= O

where g7 (¢, 1) r)(n k).

k=0
Lett = 01in (31). Then we have

(0= Y {:z . :}A(—l)mm!agf)(o, m). (32)

m=0

Therefore, by (32), we obtain the following theorem.
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Theorem 2.4. Let r be a nonnegative integer. For a given initial sequence uf\r)(O, m), im=0,1,2,...

indexed sequence a(Ar)(n, m), (n =1, m > 0), be defined by the recurrence relation
a(Ar)(n,m) =(m+ r)ag()(n —-1,m)—(m+ 1)a£{)(n -1lm+1)—(n- l)Auﬁ{)(n —1,m).

Then we have

a(Ar)(n, 0) = Z {n - r} (—1)mm!a5\r)(0, m).

m+r
m=0 A

Leta!’(0,m) = -1. Then, by (11), we get

’ S (4 mom
a(n,0) = mzo{m .\ F}A<—1> = =P, (120).

For a given initial sequence ag)(O, m), (im=0,1,2,...), for the ease of notation we let

() =gt A) = ) a0, m)t".
m=0

From (6), Theorem 4 and (33), we note that

Lttmors=L(L ] o)
— n+r| t"
= Z( 1)"mta(0, m)Z {m . r}
- Z(—n"’mm(ﬁ(o, m)e;(t)%(m(t) -1
m=0 ’
=e;(H) ) a0, m)(1 - ex(t)"
m=0
= ¢} (HF(1 - ex(t)).

Therefore, by (34), we obtain the following theorem.

Theorem 2.5. Let F(t) = g(()")(t, A) = Z a(Ar)(O, m)t™. Then we have

m=0
eOF( - ex(t) = Zaa;”(n, 05,

where r is a nonnegative integer.

2276

), let the doubly

(33)

(34)
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Let a(r)(O m) = (l)m in Theorem 5. Then we have
A\ 2 :

Z an, 0); = ¢ (b) Z (0, m)(1 — ex(t))" (35)
n=0 ' m=0
=) (-3) @o-1"
m=0
a 1 — '
- eA(t)l + e -1) Coet)+ 16A(t)

Comparing the coefficients on both sides of (35), we have
a(n,0) = E,1(r), (n20),

where &, ) (x) are the degenerate Euler polynomials.

3. Conclusion

In recent years, explorations for degerate versions of some special numbers and polynomials regained
the interests of many mathematicians which began with Carlitz’s work on the degenerate Bernoulli and
Euler numbers. They have been done by using various tools like combinatorial methods, generating
functions, differential equations, umbral calculus techniques, p-adic analysis, special functions, operator
theory, probability theory, and analytic number theory.

For a given initial sequence a(Ar)(O, m), (m=20,1,2,...), and the doubly indexed sequence a(;)(n, m), (n >
1, m > 0), defined by the recurrence relation

a(Ar)(n,m) =(m+ r)aﬁ()(n -1,m)—(m+ 1)a(Ar)(n -1lm+1)—-(n- 1)Aag()(n —-1,m),

it was shown by making use of a differential operator that

@) _ S fntr a1 (1)
a(n,0) = Z {m .\ V}A( 1)"mta (0, m).

m=0

m+17
It is one of our future projects to continue to explore many degenerate special numbers and polynomials

with the help of aforementioned tools.

Then we noted that ag() (n,0) = Bya(r), for a(Ar)(O, m) = -, and a(Ar)(n, 0) = &y (1), for aE\r)(O, m) = (%)m.

Acknowledgment: The authors would like to thank the reviewers for their helpful comments and sugges-
tions that helped improve the original manuscript in its present form.
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