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Abstract. We study the Neumann problem with Leray-Lions type operator. Using the classical variational
theory, we prove the existence, uniqueness and multiplicity of solutions. As far as we know, this is the first
attempt to investigate such a fourth-order problem involving Leray-Lions type operators.

1. Introduction

Our aim is to study the existence, uniqueness and multiplicity results for weak solvability of the following
fourth-order problem involving Leray-Lions type operator with the Neumann boundary conditions in
variable exponent spaces

∆(a(x,∆u)) + b(x)|u|p(x)−2u = λ f (x,u) for x ∈ Ω, (1)

with a(x,∆u) ·ν(x) = µ1(x,u) for x ∈ ∂Ω,where λ, µ ∈ R+,Ω ⊂ RN(N ≥ 2) is a bounded domain with smooth
boundary ∂Ω, ν is the outer unit normal vector on ∂Ω, p ∈ C(Ω̄) is the variable exponent, a = a(x, η) :
Ω × RN

7→ RN, f : Ω × R 7→ R and 1 : ∂Ω × R 7→ R are the Carathéodory functions, with A : Ω̄ × R → R
given by

A(x, t) =
∫ t

0
a(x, s)ds.

In this paper, we shall consider the following conditions for a,A, b, f , and 1 :

(L0) a(x,−s) = −a(x, s) for a.e. x ∈ Ω̄ and all s ∈ RN;
(L1) A(x, 0) = 0 for all x ∈ Ω;
(L2) There exists a constant c0 > 0 such that |a(x, η)| ≤ c0

(
1 + |η|p(x)−1

)
for all x ∈ Ω, η ∈ RN;
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(L3) 0 ≤
[
a
(
x, η1

)
− a

(
x, η2

)]
·
(
η1 − η2

)
for all x ∈ Ω, η1, η2 ∈ RN, with equality if and only if η1 = η2;

(L4) |η|p(x)
≤ a(x, η) · η ≤ p(x)A(x, η) for all x ∈ Ω, η ∈ RN.

(B) b ∈ L∞(Ω) and there exists b0 > 0 such that b(x) ≥ b0 for all x ∈ Ω;

(F) For every q ∈ C+(Ω̄) with q+ < p−, there exist c1, c2 > 0 such that

| f (x, t)| ≤ c1 + c2|t|q(x)−1 for all x ∈ Ω, t ∈ R; (2)

(G) For every r ∈ C+(Ω̄) with r+ < p−, there exist c3, c4 > 0 such that |1(x, t)| ≤ c3 + c4|t|r(x)−1 for all x ∈
∂Ω, t ∈ R.

These conditions enable us to obtain well known operators by making appropriate choices of a. Indeed,
when a(x, η) = |η|p(x)−2η, we get the p(x)-biharmonic operator of the fourth order.

Studies of problems involving such operators appear in a variety of fields, such as the clamped plate
problem, elasticity theory and PDEs modeling Stokes’ flows (see El Khalil, Kellati and Touzani [1], Nadi-
rashvili [2]). When a(x, η) = (1 + |η|2)(p(x)−2)/2η, we get the generalized biharmonic mean curvature operator
(see Alsaedi and Rădulescu [3]). Moreover, when we choose

a(x, η) =
(
1 + |η|p(x)

(
1 + |η|2p(x)

)−1/2
)
|η|p(x)−2η,

we obtain the following differential operator

∆a(x,∆u) = ∆

1 +
|∆u|p(x)√

1 + |∆u|2p(x)

 |∆u|p(x)−2∆u

 ,
which describes the capillary phenomenon (see Alsaedi and Rădulescu [3], Avci [4]). We note that condition
(L0) is only needed to obtain the multiplicity of solutions. Also, we choose this kind of function a satisfying
(L0) − (L5) because we want to assure a high degree of generality in our work.

The study of fourth-order partial differential equations with constant exponent has intensively devel-
oped in recent years. It has a large variety of applications (see for example Dănet [5], Ferrero and Warnault
[6], Myers [7] and the references therein). By introducing elliptic problems with variable exponent, we open
the door to applications utilizing extremely nonhomogeneous materials which are nowadays becoming
increasingly common in industry. One of these applications is related to the modeling of electrorheological
fluids. The first significant discovery in electrorheological fluids was in 1949 by Willis Winslow. These
fluids have specially viscous liquids and can significantly change their mechanical properties when they
contact an electric field (see Acerbi and Mingione [8], Ru̇žička [9]). Other known applications are related to
the image restoration (see Chen, Levine and Rao [10]), elastic materials (see Boureanu [11] and Zhikov [12]),
mathematical biology (see Fragnelli [13]), dielectric breakdown and electrical resistance (see Bocea and
Mihăilescu [14], polycrystal plasticity (see Bocea, Mihăilescu and Popovici [15], and models of diffusion in
sandpiles (see Bocea, Mihăilescu, Perez-Llanos and Rossi [16]). In order to be able to study such problems
with variable exponent, we need to use the novel theory of Lebesgue and Sobolev spaces with variable
exponent (Lp(x)(Ω),Wp(x)(Ω)). Over the past few decades, these spaces have attracted considerable attention
(see Cruz-Uribe and Fiorenza [17], Rădulescu and Repovš [18], Diening, Harjuletho, Hästö and Ru̇žička
[19]) and the references therein).

The subject of the fourth order elliptic problems involving the Leray-Lions operator with variable expo-
nent has drawn the attention of many authors, for example, Boureanu [20] who has established interesting
properties which are useful in the treatment of various classes of fourth-order problems. Boureanu and
Vélez-Santiago [21] studied the solvability of a higher-order problem of type (1) with subject to Navier-
Stokes boundary conditions over irregular domain. Moreover, Kefi, Repovš and Saoudi [22] showed the
existence and multiplicity results of weak solutions for fourth-order problems involving the Leray-Lions
type operators by using the theorem of Bonanno and Marano [23]. We also mention a very interesting pa-
per by Giri, Choudhuri and Pradhan [24]. Motivated by these results and the ideas accurately introduced
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by Boureanu [20], we shall investigate the weak solvabilty of problem (1) with subject to the Neumann
boundary conditions.

A reasonable inquiry given the preceding knowledge is what results can be recovered when the stan-
dard p-Laplacian and p-biharmonic are replaced by a fourth-order problem employing a Leray-Lions type
operator. To our knowledge, only few papers have been published on this subject (see Boureanu [20]
and Bonanno [23]). Boureanu [21] established some definitions and basic properties of new fourth-order
problem involving a Leray-Lions type operator with variable exponents and proved some existence results
for fourth-order problems with variable exponents by using different approaches. One of the interesting
aspects of our work is that we study a problem with a nonlinear boundary term that needs the applica-
tion of the Trace theorem. The possibilities of the parameter being sufficiently large or small has been
treated as different cases. Finally, it should be noted that the context here is different from Boureanu and
Vélez-Santiago [21], due to the more complicated operator and numerous parameters.

Now, we state our main results which concern existence, uniqueness and multiplicity of solutions of
problem (1) :

Theorem 1.1. Under conditions (L1)-(L4), (B), (F), and (G), problem (1) has a weak solution.

Theorem 1.2. Under conditions (L1)-(L4), (B), (F), (F0), (G), and (G0), problem (1) has a unique weak solution.

Theorem 1.3. Under conditions (L0)-(L4) and (F1)-(F4), there exist an open intervalΛ ⊆ (0,+∞) and a positive real
number ω such that for each λ ∈ Λ and 1 : ∂Ω ×R → R satisfying condition (G1), there exists δ > 0 such that for
each µ ∈ [0, δ], problem (1) has at least three weak solutions with norms in W2,p(x)(Ω) less than ω.

Theorem 1.4. Under conditions (L0)-(L4), (F), (G), (B), ( f1), ( f ), and (1), problem (1) has an unbounded sequence
of distinct weak solutions.

We describe the structure of the paper. In Section 2, we state some notations and preliminary properties
which are necessary for proving our results. In Section 3, using variational methods, we establish the
existence and uniqueness result for problem (1). In Section 4, we prove the multiplicity of solutions to
problem (1) by using Ricceri’s Three critical points theorem and the Fountain theorem. We thank the referee
for several constructive remarks.

2. Preliminaries

For simplicity, we shall use letters ci (i = 1, 2, · · · ,N) to denote positive constants in different cases. We
set

C+(Ω̄) =
{

p ∈ C(Ω̄) : 1 < min
x∈Ω̄

p(x) < max
x∈Ω̄

p(x) < ∞
}

and for all p ∈ C+(Ω̄) we let
p+ = sup

x∈Ω
p(x), p− = inf

x∈Ω
p(x).

Also, we denote

p⋆(x) =
{

Np(x)/[N − p(x)] if p(x) < N,
∞ if p(x) ≥ N

and

p∂(x) =
{

(N − 1)p(x)/[N − p(x)] if p(x) < N,
∞ if p(x) ≥ N.

Finally, we define the mapping ρp(·) : Lp(·)(Ω)→ R by

ρp(·)(u) =
∫
Ω

|u(x)|p(x)dx.
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Proposition 2.1. (see Fan and Zhao [25]) If u ∈ Lp(·)(Ω), then:

∥u∥Lp(·)(Ω) < 1(= 1;> 1) ⇔ ρp(·)(u) < 1(= 1;> 1); (3)

∥u∥Lp(·)(Ω) > 1⇒ ∥u∥p
−

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p

+

Lp(·)(Ω)
; (4)

∥u∥Lp(·)(Ω) < 1⇒ ∥u∥p
+

Lp(·)(Ω)
≤ ρp(·)(u) ≤ ∥u∥p

−

Lp(·)(Ω)
. (5)

Remark 2.2. Define the map ρ̃p(·) : Lp(·)(∂Ω)→ R by

ρ̃p(·)(u) =
∫
∂Ω
|u(x)|p(x)dS,

where dS is a surface measure. One can easily prove relations (3)-(5) stated above.

By hypotheses (B), we have the norm

∥u∥b = inf
{
µ > 0 :

∫
Ω

(∣∣∣∣∣∆u(x)
µ

∣∣∣∣∣p(x)

+ b(x)
∣∣∣∣∣u(x)
µ

∣∣∣∣∣p(x))
dx ≤ 1

}
,

which is equivalent to ∥ · ∥ on W2,p(x)(Ω). Therefore, we shall use
(
W2,p(x)(Ω), ∥ · ∥b

)
in the sequel.

We consider ρ : W2,p(x)(Ω)→ R defined by

ρp(.),b(u) =
∫
Ω

[
|∆u|p(x) + b(x)|u|p(x)

]
dx

and we make an important connection with the norm ∥ · ∥b by proceeding as in Boureanu, Rădulescu and
Repovš [26].

Proposition 2.3. (see Boureanu, Rădulescu and Repovš [26]) For any u,un ∈ W2,p(·)(Ω), the following statements
hold:

∥u∥b < (=;> 1)⇔ ρp(.),b(u) < (=;> 1);

∥u∥b ≤ 1⇒ ∥u∥p
+

b ≤ ρp(.),b(u) ≤ ∥u∥p
−

b ;

∥u∥b ≥ 1⇒ ∥u∥p
−

b ≤ ρp(.),b(u) ≤ ∥u∥p
+

b ;

∥un∥b → 0(→∞) ⇔ ρp(.),b (un)→ 0(→∞).

Theorem 2.4. (see Fan and Zhao [25]) Let q ∈ C(Ω̄;R) be such that 1 < q− ≤ q+ < ∞ and q(x) ≤ p∗k(x) for all
x ∈ Ω̄, where

p∗k(x) =

 Np(x)
N−kp(x) if kp(x) < N,
+∞ if kp(x) ≥ N

for any x ∈ Ω̄, k ≥ 1. Then there exists a continuous embedding

Wk,p(·)(Ω) ↪→ Lq(·)(Ω).

If we replace ≤ with <, then this embedding is compact.

Theorem 2.5. (see El Amrouss, Moradi and Moussaoui [27]) Let Ω ⊂ RN,N ≥ 2, be a bounded open set with a
smooth boundary. Suppose that p ∈ C+(Ω̄) and r ∈ C(Ω̄) satisfy the condition

1 ≤ r(x) < p∂(x), for all x ∈ ∂Ω.

Then there exists a compact boundary trace embedding W2,p(·)(Ω) ↪→ Lr(·)(∂Ω).
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3. The case λ = µ = 1

We recall the concept of a weak solution for problem (1) :

Definition 3.1. We call u ∈W2,p(·)(Ω) a weak solution of (1) if for all v ∈W2,p(·)(Ω),∫
Ω

a(x,∆u) · ∆vdx +
∫
Ω

b(x)|u|p(x)−2uvdx −
∫
Ω

f (x,u)vdx −
∫
∂Ω
1(x,u)vdS = 0.

The energy functional I : W2,p(·)(Ω)→ R associated to problem (1) is defined by

I(u) =
∫
Ω

A(x,∆u)dx +
∫
Ω

b(x)
p(x)
|u|p(x)dx −

∫
Ω

F(x,u)dx −
∫
∂Ω

G(x,u)dS,

where

F(x, s) =
∫ s

0
f (x, t)dt, G(x, s) =

∫ s

0
1(x, t)dt

and

Φ(u) =
∫
Ω

A(x,∆u)dx +
∫
Ω

b(x)
p(x)
|u|p(x)dx,

Ψ(u) = −
∫
Ω

F(x,u)dx, J(u) = −
∫
∂Ω

G(x,u)dS.

Using the approach of Boureanu [20], we show that I ∈ C1
(
W2,p(·)(Ω);R

)
with

⟨I′(u), v⟩ =
∫
Ω

a(x,∆u) · ∆vdx +
∫
Ω

b(x)|u|p(x)−2uvdx −
∫
Ω

f (x,u)vdx −
∫
∂Ω
1(x,u)vdS, (6)

for all u, v ∈W2,p(·)(Ω).

3.1. Existence of weak solutions of problem (1)

Proof of Theorem 1.1. We show that I is coercive. It follows from (F) and (G) that

|F(x, t)| ≤ c1|t| + c2
|t|q(x)

q(x)
, for all x ∈ Ω, t ∈ R, (7)

|G(x, t)| ≤ c3|t| + c4
|t|r(x)

r(x)
, for all x ∈ ∂Ω, t ∈ R. (8)

By (3),(5) and Remark 2.2, we have∫
Ω

F(x,u)dx ≤ c1∥u∥L1(Ω) +
c2

q−

(
∥u∥q

+

Lq(·)(Ω)
+ ∥u∥q

−

Lq(·)(Ω)

)
,

∫
∂Ω

G(x,u)dS ≤ c3∥u∥L1(∂Ω) +
c4

r−
(
∥u∥r

+

Lr(·)(∂Ω) + ∥u∥
r−
Lr(·)(∂Ω)

)
.

Theorems 2.4 and 2.5 imply that, for u ∈W2,p(·)(Ω) with ∥u∥b ≥ 1, there exist k1, k2, k3, k4 > 0 such that∫
Ω

F(x,u)dx ≤ k1∥u∥b + k2∥u∥
q+

b , (9)

∫
∂Ω

G(x,u)dS ≤ k3∥u∥b + k4∥u∥r
+

b . (10)
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It follows from (L4) and (B) that∫
Ω

A(x,∆u)dx +
∫
Ω

b(x)
p(x)
|u|p(x)dx ≥

1
p+

∫
Ω

[
|∆u|p(x) + b(x)|u|p(x)

]
dx.

By Proposition 2.3, we know that, for ∥u∥b ≥ 1,∫
Ω

A(x,∆u)dx +
∫
Ω

b(x)
p(x)
|u|p(x)dx ≥

1
p+
∥u∥p

−

b . (11)

Then, applying (9), (10) and (11), for ∥u∥b ≥ 1, we have

I(u) ≥
1

p+
∥u∥p

−

b − k2∥u∥
q+

b − k4∥u∥r
+

b − (k1 + k3) ∥u∥b. (12)

By the assumptions on p, q and r , we obtain that I(u) → ∞ when ∥u∥b → ∞. Following that, we create
the notations

F (u) =
∫
Ω

F(x,u)dx, G(u) =
∫
∂Ω

G(x,u)dS.

Given that F ′ and G′ are entirely continuous, F and G are said to be weakly continuous. We can infer
from Boureanu [20, Proposition 5] that I is a weakly lower semi continuous. Now we can apply the result
in Struwe [28, Theorem 1.2]. As a consequence, we can conclude that problem (1) admits at least one weak
solution.

3.2. Uniqueness of weak solutions of problem (1)
To establish the uniqueness of solutions, we shall impose the following conditions on f and 1 :

(F0) The monotonicity condition on f is satisfied, i.e. ( f (x, s) − f (x, t))(s − t) < 0, for all x ∈ Ω and s, t ∈ R
with s , t;

(G0) The monotonicity condition on 1 is satisfied, i.e. (1(x, s)− 1(x, t))(s− t) < 0, for all x ∈ ∂Ω and s, t ∈ R
with s , t.

Proof of Theorem 1.2. The existence follows from Theorem 1.1. So let now u1 and u2 be two weak
solutions to problem (1). Thanks to Definition 3.1, we can replace u by u1 and consider v = u1 − u2 to get
that ∫

Ω

a (x,∆u1) · ∆ (u1 − u2) dx +
∫
Ω

b(x) |u1|
p(x)−2 u1 (u1 − u2) dx

−

∫
Ω

f (x,u1) (u1 − u2) dx −
∫
∂Ω
1 (x,u1) (u1 − u2) dS = 0.

Next, we substitute u2 for u in Definition 3.1 and consider v = u2 − u1 to obtain∫
Ω

a (x,∆u2) · ∆ (u2 − u1) dx +
∫
Ω

b(x) |u2|
p(x)−2 u2 (u2 − u1) dx

−

∫
Ω

f (x,u2) (u2 − u1) dx −
∫
∂Ω
1 (x,u2) (u2 − u1) dS = 0.

After some calculation, we can deduce that∫
Ω

[a (x,∆u1) − a (x,∆u2)] · (∆u1 − ∆u2) dx +
∫
Ω

b(x)
[
|u1|

p(x)−2 u1 − |u2|
p(x)−2 u2

]
(u1 − u2) dx

−

∫
Ω

[
f (x,u1) − f (x,u2)

]
(u1 − u2) dx −

∫
∂Ω

[
1 (x,u1) − 1 (x,u2)

]
(u1 − u2) dS = 0.

Finally, unless u1 = u2, conditions (L3), (F0), and (G0) indicate that all terms in the above equality are
positive. As a result, we get the uniqueness of the weak solution to the problem (1).
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4. The case λ ⩾ 0, µ ⩾ 0

4.1. Multiplicity of weak solutions for problem (1)
To obtain the multiplicity of solutions, we shall need to combine the following conditions :

(F1) For t ∈ C(Ω̄) and t(x) < p∗(x) for all x ∈ Ω̄, we have

sup
(x,s)∈Ω×R

| f (x, s)|
1 + |s|t(x)−1

< +∞;

(F2) There exists a positive constant c such that F(x, s) > 0 for a.e. x ∈ Ω and all s ∈ (0, c];

(F3) There exist a positive constant c5 and a function γ ∈ C(Ω̄) with 1 < γ− ≤ γ+ < p−, such that
|F(x, s)| ≤ c5

(
1 + |s|γ(x)

)
for a.e. x ∈ Ω and all s ∈ R;

(F4) There exist p1 ∈ C(Ω̄) and p+ < p−1 ≤ p1(x) < p∗(x), such that

lim sup
s→0

sup
x∈Ω

F(x, s)
|s|p1(x)

< +∞;

(G1) For p2 ∈ C(Ω̄) and p2(x) < p∂(x) for all x ∈ Ω̄, we have

sup
(x,s)∈∂Ω×R

|1(x, s)|
1 + |s|p2(x)−1

< +∞.

The main tool employed to prove Theorem 1.3 is the variational method, used to find critical points of
the functional H(u) = Φ(u) + λΨ(u) + µJ(u) on W2,p(x)(Ω), where

Φ(u) =
∫
Ω

A(x,∆u)dx +
∫
Ω

b(x)
p(x)
|u|p(x)dx, (13)

Ψ(u) = −
∫
Ω

F(x,u)dx, (14)

J(u) = −
∫
∂Ω

G(x,u)dσ. (15)

and

F(x,u) =
∫ u

0
f (x, s)ds,G(x,u) =

∫ u

0
1(x, s)ds.

In this case, we define the weak solution of problem (1) on W2,p(x)(Ω) as∫
Ω

a(x,∆u)∆vdx +
∫
Ω

b(x)|u|p(x)−2uvdx

= λ

∫
Ω

f (x,u)vdx + µ
∫
∂Ω
1(x,u)vdσ for all v ∈W2,p(x)(Ω).

To prove Theorem 1.3, we shall use the Three critical points theorem (see Ricceri [30, Proposition 3.1]).

Proposition 4.1. Let X be a nonempty set andΦ,Ψ real functions on X.Assume that there exist r > 0 and x0, x1 ∈ X
such that

Φ (x0) = −Ψ (x0) = 0, Φ (x1) > r, sup
x∈Φ−1(]−∞,r])

−Ψ(x) < r
−Ψ (x1)
Φ (x1)

.
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Then for each h satisfying

sup
x∈Φ−1(]−∞,r])

−Ψ(x) < h < r
−Ψ (x1)
Φ (x1)

,

one has
sup
λ≥0

inf
x∈X

(Φ(x) + λ(h +Ψ(x))) < inf
x∈X

sup
λ≥0

(Φ(x) + λ(h +Ψ(x))).

Here, we have X = W2,p(x)(Ω). Using the techniques of Boureanu [20], we can prove the following
properties (we shall avoid the details here).

Proposition 4.2. Let Ω ⊂ RN(N ≥ 2) be a bounded domain with a smooth boundary, Φ : X → R the functional
defined by (13,) and a : Ω×R→ R a Carathéodory function such that the conditions (L2) and (B) are satisfied. Then
Φ is well-defined and of class C1, with the Gâteaux derivative

⟨Φ′(u), v⟩ =
∫
Ω

a(x,∆u)∆vdx +
∫
Ω

b(x)|u|p(x)−2uvdx.

Theorem 4.3. Assume that the mapping a satisfies conditions (L0)-(L4) . Then

1. Φ′ is continuous and strictly monotone.
2. Φ′ is of (S+) type.
3. Φ′ is a homeomorphism.

Proposition 4.4. Let Ω ⊂ RN(N ≥ 2) be a bounded domain with a smooth boundary, Φ : X → R as defined by
(13) and a : Ω × R → R a Carathéodory function such that conditions (L1), (L2), and (B) are satisfied. Then Φ is
(sequentially) weakly lower semicontinuous, that is, for any u ∈ X and any subsequence (un)n ⊂ X such that un⇀u
in X, the following holds

Φ(u) ≤ lim inf
n→∞

Φ (un) .

Proof of Theorem 1.3:
(i) Let u, v ∈ X be such that

⟨Φ′(u), v⟩ =
∫
Ω

[
a(x,∆u)∆v + b(x)|u|p(x)−2uv

]
dx,

⟨Ψ′(u), v⟩ = −
∫
Ω

f (x,u)vdx, ⟨J′(u), v⟩ = −
∫
∂Ω
1(x,u)vdσ.

By Theorem 4.3 and Proposition 4.4, Φ is a continuous Gâteaux differentiable and sequentially weakly
lower semicontinuous functional whose Gâteaux derivative admits a continuous inverse on X′.

By (F) and (G), Ψ and J are continuously Gâteaux differentiable functionals. Furthermore, by the
compactness of the embedding W2,p(x)(Ω) ↪→ Lp(x)(Ω) and the trace embedding W2,p(x)(Ω) ↪→ Lp(x)(∂Ω), we
can conclude thatΨ′ and J′ are compact. As a result, Φ is bounded on each bounded subset of X .

By condition (L4), if ∥u∥b ≥ 1, then we have

Φ(u) =
∫
Ω

A(x,∆u)dx +
∫
Ω

1
p(x)

b(x)|u|p(x)dx

≥

∫
Ω

1
p(x)

(
|∆u|p(x) + b(x)|u|p(x)

)
dx ≥

1
p+
ρ(u) ≥

1
p+
∥u∥p

−

b .

Using relations (7) and (8), we can deduce that

λΨ(u) = −λ
∫
Ω

F(x,u)dx ≥ −λ
∫
Ω

c5

(
1 + |u|γ(x)

)
dx

≥ −λc5

(
|Ω| +max ||u||γ

+

γ(x), ||u||
γ−

γ(x)

)
≥ −c′5

(
1 +max ||u||γ

+

γ(x), ||u||
γ−

γ(x)

)
≥ −c′′5

(
1 + ∥u∥γ

+

b

)
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for any u ∈ X. Consequently, Φ(u) + λΨ(u) ≥ 1
p+ ∥u∥

p−

b − c′′5
(
1 + ∥u∥γ

+

b

)
.

Since γ+ < p−, we get

lim
∥u∥b→+∞

(Φ(u) + λΨ(u)) = +∞, for all u ∈ X, λ ∈ [0,+∞).

(ii) Let u0 = 0. Invoking Proposition 4.1, condition (L2), and the definition of F, we getΦ (u0) = −Ψ (u0) =
0. By virtue of (F4), there exist η ∈ [0, 1], c6 > 0, such that

F(x, s)≤c6|s|p1(x)
≤c6|s|p

−

1 , for all s ∈ [−η, η] and a.e. x ∈ Ω.

Invoking condition (F3), we can determine a constant M such that

F(x, s) <M|s|p
−

1 , for all s ∈ R and a.e. x ∈ Ω.

On the other hand, by virtue of the Sobolev embedding theorem, W2,p(x)(Ω) ↪→ Lp−1 (Ω) is continuous, so
we have

−Ψ(u) =
∫
Ω

F(x,u)dx <M
∫
Ω

|u|p
−

1 dx ≤ c7∥u∥
p−1
b ≤ c8rp−1 /p

+

when ∥u∥p
+

b /p
+
≤ r. Since p−1 > p+, we obtain

lim
r→0+

1
r

sup
∥u∥+b /p

+≤r
{−Ψ(u)} = 0. (16)

Next, let u1 ∈ C1(Ω) be a positive function in Ω, with max
Ω̄

u1 ≤ c. Then, u1 ∈ X and Φ (u1) > 0. Invoking

condition (F2), we get

−Ψ (u1) =
∫
Ω

F (x,u1(x)) dx > 0.

Therefore, by (16), we can find r ∈
(
0,min

{
Φ (u1) , 1

p+

})
such that

sup
∥u∥

p+
b

p+ ≤r

{−Ψ(u)} < r
−Ψ (u1)
Φ (u1)

.

Now, let u ∈ Φ−1((−∞, r]). Then∫
Ω

(
p(x)A(x,∆u) + b(x)|u|p(x)

)
dx ≤ rp+ < 1.

It follows from Proposition 2.3 that ∥u∥b < 1 and we can conclude that

1
p+
∥u∥p

+

b ≤
1

p+
ρ(u) ≤

∫
Ω

(
p(x)A(x,∆u) + b(x)|u|p(x)

)
dx < r.

Therefore, we can infer that Φ−1((−∞, r]) ⊂
{
u ∈ X : 1

p+ ∥u∥
p+

b < r
}
, and so

sup
u∈Φ−1(]−∞,r])

{−Ψ(u)} < r
−Ψ (u1)
Φ (u1)

.

According to Proposition 4.1, (ii) is proved, hence problem (1) indeed has at least three solutions.
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4.2. Existence of an unbounded sequence of distinct weak solutions of problem (1)
We shall impose the following additional conditions:(

f
)

f satisfies the (AR) condition, that is, there exist θ1 > p+ and l1 > 0 such that

0 < θ1F(x, t) ≤ t f (x, t) for all |t| > l1 and a.e. x ∈ Ω,

and essinf
x∈Ω

F (·, t0) > 0, where F(x, t) =
∫ t

0
f (x, s)ds;

(
1
)
1 satisfies the (AR) condition, that is, there exist θ2 > p+ and l1 > 0 such that

0 < θ2G(x, t) ≤ t1(x, t) for all |t| > l1 and a.e. x ∈ ∂Ω,

and ess inf
x∈∂Ω

G (·, t0) > 0, where G(x, t) =
∫ t

0
1(x, s)ds;

(
f1

)
f , 1 : Ω ×R→ R are Carathéodory functions, odd with respect to the second variable.

In order to prove Theorem 1.4, we shall invoke the Fountain theorem (see Willem [31]). Let〈
fn, em

〉
= δn,m = χ{m=n},X = span {en : n = 1, 2, . . .}

and
X⋆ = span

{
fn : n = 1, 2, . . .

}
,

where (en)∞n=1 ⊂ X and
(

fn
)∞

n=1 ⊂ X⋆. We take X =W2,p(x)(Ω) and for i = 1, 2, . . .we denote

Xi = span {ei} , Yi =

i⊕
j=1

X j and Zi =

∞⊕
j=i

X j. (17)

Theorem 4.5. (Fountain theorem, see Willem [31]) Assume that Φ ∈ C1(X,R) is even and that for each i = 1, 2, . . .,
there exist ρi > γi > 0 such that

(H1) inf
u∈Zi,∥u∥X=γi

Φ(u)→∞ as i→∞;

(H2) max
u∈Yi,∥u∥X=ρi

Φ(u) ≤ 0;

(H3) Φ satisfies the (PS) c condition for every c > 0, that is, any sequence (un)n ⊂ X such that Φ (un) → c and
Φ′ (un)→ 0 in X⋆ as n→∞ contains a subsequence converging to a critical point of Φ.

Then Φ has a sequence of critical values tending to +∞.

Proof of Theorem 1.4.

(H1) For each i ∈N∗ there exists γi > 0 such that inf
u∈Zi,∥u∥b=γi

I(u)→∞ as i→∞.

We have already proved that for ∥u∥b ≥ 1 we have

I(u) ≥
1

p+
∥u∥p

−

b − λk2∥u∥
q+

b − µk4∥u∥r
+

b −
(
λk1 + µk3

)
∥u∥b. (18)

Since p− > q+ and r+ < p−, we can choose
(
γi

)
i such that γi →∞ as i→∞. Consequently, since q+ > 1,

(18) yields that I(u)→∞ as γi = ∥u∥b →∞.
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(H2) The proof is similar as in Boureanu [21, Theorem 1]. For each i ∈ N∗, there exist ρi > γi such that

max
u∈Yi,∥u∥b=ρi

I(u) ≤ 0. To establish this, we set A(x, t) =
∫ 1

0
a(x, st)tds and by (L2) and the Hölder-type

inequality, we get
Φ(u) ≤ c0|Ω|∥∆u∥Lp(·)(Ω) +

(
p−

)−1 c0ρp(.),b(u).

Then, for u ∈ X with ∥u∥b > 1, invoking Proposition 2.3, there exists the constants c9, c10 > 0, such
that Φ(u) ≤ c9∥u∥b + c10∥u∥

p+

b . Now, by the (AR) condition on ( f ) and (1), we deduce that there exist
c11, c12, c13 > 0 such that

I(u) ≤ c9∥u∥b + c10∥u∥
p+

b − λc11∥u∥θ1

Lθ1 (Ω)
− µc12∥u∥θ2

Lθ2 (Ω)
+ c13.

We put θ3 = inf{θ1, θ2}, and deduce that

I(u) ≤ c9∥u∥b + c10∥u∥
p+

b − λc11∥u∥θ3

Lθ3 (Ω)
− µc12∥u∥θ3

Lθ3 (Ω)
+ c13.

Since θ3 > p+and Yi is finite-dimensional, all norms are equivalent on Yi, so we have completed the
verification of (H2).

(H3) Let M ∈ R and (un)n ⊂ X be such that

|I (un)| <M and I′ (un)→ 0 in X⋆ as n→∞. (19)

We first show that (un)n is bounded. We argue by contradiction and we assume that, up to a
subsequence, ∥un∥ → ∞ as n → ∞. Then, using (19) and (L4), we can take τ ∈

(
p+, θ

)
, where

θ = max{θ1, θ2}. Then for sufficiently large n,we have

M + 1 + ∥un∥ ≥I (un) −
1
τ
⟨I′ (un) ,un⟩

≥

(
1

p+
−

1
τ

)
ρp(.),b(un) − λ

∫
Ω

(
F (x,un) −

1
τ

f (x,un) un

)
dx

≥

∫
∂Ω

(
G (x,un) −

1
τ
1 (x,un) un

)
dS

≥

(
1

p+
−

1
τ

)
ρp(.),b(un) − λ

∫
{x∈Ω: |un(x)|>l1}

(
F (x,un) −

1
τ

f (x,un) un

)
dx

− λ|Ω| sup
{∣∣∣∣∣F(x, t) −

1
τ

f (x, t)t
∣∣∣∣∣ : x ∈ Ω, |t| ≤ l1

}
− µ

∫
{x∈∂Ω: |un(x)|>l1}

(
G (x,un) −

1
τ
1 (x,un) un

)
dx

− µ|∂Ω| sup
{∣∣∣∣∣G(x, t) −

1
τ
1(x, t)t

∣∣∣∣∣ : x ∈ ∂Ω, |t| ≤ l1
}
.

Using Proposition 2.3 and (AR) condition on f and 1, we deduce that, for sufficiently large n,

M + 1 + ∥un∥ ≥

(
1

p+
−

1
τ

)
∥un∥

p−

b − λ|Ω| sup
{∣∣∣∣∣F(x, t) −

1
τ

f (x, t)t
∣∣∣∣∣ : x ∈ Ω, |t| ≤ l1

}
− µ|∂Ω| sup

{∣∣∣∣∣G(x, t) −
1
τ
1(x, t)t

∣∣∣∣∣ : x ∈ ∂Ω, |t| ≤ l1
}
.

Dividing by ∥un∥
p−

b in the above inequality, we obtain a contradiction. This implies that (un)n is
bounded in X. Therefore un ⇀ u in X, where u is a critical point of I, since I′ (un) → 0 in X⋆ and we
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have that lim
n→∞
|⟨I′ (un) ,un − u⟩| = 0. By (F), Hölder’s type inequality, and Theorem 2.4, we can deduce

that

lim
n→∞

∣∣∣∣∣∫
Ω

f (x,un) (un − u) dx
∣∣∣∣∣ = 0

and by Theorem 2.5, we have

lim
n→∞

∣∣∣∣∣∫
∂Ω
1 (x,un) (un − u) dx

∣∣∣∣∣ = 0.

According to Theorem 4.3 (ii), functional Φ′ : X → X⋆ is of type (S+). We also know that I is even
because of condition ( f1). Therefore the proof of Theorem 1.4 is finally completed.

References

[1] A. El Khalil, S. Kellati, A. Touzani, On the principal frequency curve of the p-biharmonic operator, Arab J. Math. Sci. 17 (2011),
89–99.

[2] N.-S. Nadirashvili, Rayleigh’s conjecture on the principal frequency of the clamped plate, Arch. Ration. Mech. Anal. 129 (1995),
1–10.
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