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Abstract. In [24], Koliha proved that T € L(X) (X is a complex Banach space) is generalized Drazin
invertible operator iff there exists an operator S commuting with T such that STS = S and o(T?S-T) c {0} iff
0 ¢ acco(T). Later, in [14, 34] the authors extended the class of generalized Drazin invertible operators and
they also extended the class of pseudo-Fredholm operators introduced by Mbekhta [27] and other classes
of semi-Fredholm operators. As a continuation of these works, we introduce and study the class of g.-
invertible (resp., g.-Kato) operators which generalizes the class of generalized Drazin invertible operators
(resp., the class of generalized Kato-meromorphic operators introduced by Zivkovié¢-Zlatanovi¢ and Duggal
in [35]). Among other results, we prove that T is g.-invertible iff T is g,-Kato with p(T) = §(T) < oo iff there
exists a commuting operator S with T such that STS = S and acco(T?S — T) c {0} iff 0 ¢ acc (acco(T)).
As application and using the concept of the Weak SVEP introduced at the end of this paper, we give new
characterizations of Browder-type theorems.

1. Introduction

Let T € L(X), where L(X) is the Banach algebra of bounded linear operators acting on an infinite
dimensional complex Banach space (X, |.][). Throughout this paper T*, a(T) and p(T) means respectively,
the dual of T, the dimension of the kernel N(T) and the codimension of the range R(T). The ascent and
the descent of T are defined by p(T) = inf{n € N : N(T") = N(T"*!)} (with inf@ = c0) and ¢(T) = inf{n €
N : R(T") = R(T"1)}. A subspace M of X is T-invariant if T(M) C M and the restriction of T on M is
denoted by Ty. (M, N) € Red(T) if M, N are closed T-invariant subspaces and X = M & N (M @© N means
that M NN = {0}). Let n € N, denote by Tj,) = Trr and by mr = inf{n € N : inf{la(T},)), B(T1)} < oo}
the essential degree of T. According to [10, 28], T is called upper semi-B-Fredholm (resp., lower semi-B-
Fredholm) if the essential ascent p,(T) = inf{n € N : a(T,;) < oo} < oo and R(TP(D*1) is closed (resp.,
the essential descent q.(T) = inf{n € IN : B(Ty,) < oo} < oo and R(T%D) is closed). If T is an upper or a
lower (resp., upper and lower) semi-B-Fredholm, then T is called semi-B-Fredholm (resp., B-Fredholm) and
its index is defined by ind(T) = a(Tpu;]) — B(Tiwey)- T is said to be an upper semi-B-Weyl (resp., lower
semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible, Drazin invertible) if T is an upper semi-
B-Fredholm with ind(T) < O (resp., T is a lower semi-B-Fredholm with ind(T) > O, T is a B-Fredholm with
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ind(T) = 0, T is an upper semi-B-Fredholm and p(T|;,]) < oo, T is a lower semi-B-Fredholm and q(T|,]) < o,
P(Tims1) = 9(Timy)) < ). If T is upper semi-B-Fredholm (resp., lower semi-B-Fredholm, semi-B-Fredholm,
B-Fredholm, upper semi-B-Weyl, lower semi-B-Weyl, B-Weyl, left Drazin invertible, right Drazin invertible,
Drazin invertible) with essential degree mr = 0, then T is said to be an upper semi-Fredholm (resp., lower
semi-Fredholm, semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, upper semi-Browder,
lower semi-Browder, Browder) operator. T is said to be bounded below if T is upper semi-Fredholm with
a(T) =0.
The degree of stable iteration of T is defined by dis(T) = inf A(T), where

A(T)={meN : a(Tp) = a(Ty), Yr e N r > m}.

T is said to be semi-regular if R(T) is closed and dis(T) = 0, and is said to be quasi-Fredholm if there exists
n € IN such that R(T") is closed and TJ,) is semi-regular, see [25, 27]. Note that every semi-B-Fredholm
operator is quasi-Fredholm [10, Proposition 2.5].

According to [1], T is said to have the SVEP at A € C if for every open neighborhood U, of A, f = 0 is
the only analytic solution of the equation (T — ul)f(u) =0 Vu € U,. T is said to have the SVEPon A c C
if T has the SVEP at every A € A, and is said to have the SVEP if it has the SVEP on C. It is easily seen that
T & S has the SVEP at A if and only if T and S have the SVEP at A, see [1, Theorem 2.15]. Moreover,

p(T — AI) < c0o = T has the SVEP at A (A)
g(T = AI) < 00 = T has the SVEP at A, (B)

and these implications become equivalences if T — Al has topological uniform descent [1, Theorem 2.97,
Theorem 2.98]. For definitions and properties of operators which have topological uniform descent, see
[18].

Definition 1.1. [1] (i) The local spectrum of T at x € X is the set defined by

| AeC: forall open neighborhood U, of A and analytic function
or(x) = f Uy — X there exists p € Uy such that (T — ul) f(u) # x.

(ii) If F is a complex closed subset, then the local spectral subspace of T associated to F is defined by
X7(F) = xeX: or(x) C F}.

A Banach space operator S is said to be nilpotent of degree d if S* = 0 and S9! # 0 [with the degree of
the null operator takes 0 if it acts on the space {0} and takes 1 otherwise]. S is a quasi-nilpotent (resp., Riesz,
meromorphic) operator if S — Al is invertible (resp., Browder, Drazin invertible) for all non-zero complex A.
Note that S is nilpotent = S is quasi-nilpotent = § is Riesz = S is meromorphic. Denote by K(T) the
analytic core of T (see [27]):

K(T) ={x € X:de>0,3(u,), C X such that x = ug, Tu,4+1 = u, and ||u,|| < €*||x]| Yn € N},
and by Hy(T) the quasi-nilpotent partof T: Hy(T) = {x € X : lim IT"x|| = 0}.
In [23, Theorem 4, 1958], Kato proved that if T is a semi-Fredholm operator, then T is of Kato-type of
degree d, that is there exists (M, N) € Red(T) such that:

(i) Tm is semi-regular.
(ii) Ty is nilpotent of degree d.

Later, these operators are characterized by Labrousse [25, 1980] in the case of Hilbert space. The important
results obtained by Kato and Labrousse opened the field to many researchers to work in this direction
[7,11,14, 16, 27, 33-35]. In particular, Berkani [7] showed that T is B-Fredholm (resp., B-Weyl) if and only if
there exists (M, N) € Red(T) such that Ty is Fredholm (resp., Weyl) and Ty is nilpotent. On the other hand,
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it is well known [16] that T is Drazin invertible if and only if there exists (M, N) € Red(T) such that Ty, is
invertible and Ty is nilpotent.

If the condition (ii) “Ty is nilpotent” mentioned in the Kato’s decomposition is replaced by “Ty is quasi-
nilpotent” (resp., “Ty is Riesz”, “Ty is meromorphic”), we find the pseudo-Fredholm [27] (resp., generalized
Kato-Riesz [34], generalized Kato-meromorphic [35]) decomposition. By the same argument the pseudo
B-Fredholm [32, 33] (resp., generalized Drazin-Riesz Fredholm [11, 34], generalized Drazin-meromorphic
Fredholm [35]) decomposition are obtained by substituting in the B-Fredholm decomposition the condition
“Ty is nilpotent” by “Ty is quasi-nilpotent” (resp., “Ty is Riesz”, “Ty is meromorphic”). Similarly, the
Drazin decomposition has been generalized [24, 34, 35].

We summarize in the following definition several known decompositions.

Definition 1.2. [5,7,10-12, 14, 27, 33-35] T is said to be

(i) of Kato-type of order d [resp., quasi upper semi-B-Fredholm, quasi lower semi-B-Fredholm, quasi B-Fredholm,
quasi upper semi-B-Weyl, quasi lower semi-B-Weyl, quasi semi-B-Weyl] if there exists (M, N) € Red(T) such that
T is semi-regular [resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl,
Weyl] and Ty is nilpotent of degree d. We write (M, N) € KD(T) if it is a Kato-type decomposition.

(ii) Pseudo-Fredholm [resp., upper pseudo semi-B-Fredholm, lower pseudo semi-B-Fredholm, pseudo B-Fredholm,
upper pseudo semi-B-Weyl, lower pseudo semi-B-Weyl, pseudo B-Weyl, left generalized Drazin invertible, right gen-
eralized Drazin invertible, generalized Drazin invertible] if there exists (M, N) € Red(T) such that Ty is semi-regular
[resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded
below, surjective, invertible] and Ty is quasi-nilpotent. We write (M, N) € GKD(T) if it is a pseudo-Fredholm type
decomposition.

(iii) Generalized Kato-Riesz [resp., generalized Drazin-Riesz upper semi-Fredholm, generalized Drazin-Riesz lower
semi-Fredholm, generalized Drazin-Riesz Fredholm, generalized Drazin-Riesz upper semi-Weyl, generalized Drazin-
Riesz lower semi-Weyl, generalized Drazin-Riesz Weyl, generalized Drazin-Riesz bounded below, generalized Drazin-
Riesz surjective, generalized Drazin-Riesz invertible] if there exists (M, N) € Red(T) such that Ty is semi-regular
[resp., upper semi-Fredholm, lower semi-Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded
below, surjective, invertible] and Ty is Riesz.

(iv) Generalized Kato-meromorphic [resp., generalized Drazin-meromorphic upper semi-Fredholm, generalized Drazin-
meromorphic lower semi-Fredholm, generalized Drazin-meromorphic Fredholm, generalized Drazin-meromorphic
upper semi-Weyl, generalized Drazin-meromorphic lower semi-Weyl, generalized Drazin-meromorphic Weyl, general-
ized Drazin-meromorphic bounded below, generalized Drazin-meromorphic surjective, generalized Drazin-meromorphic
invertible] if there exists (M, N) € Red(T) such that Ty is semi-regular [resp., upper semi-Fredholm, lower semi-
Fredholm, Fredholm, upper semi-Weyl, lower semi-Weyl, Weyl, bounded below, surjective, invertible] and Ty is
meromorphic.

As a continuation of the studies mentioned above, we define new classes of operators: one of them
named g,-Kato which generalizes the class of generalized Kato-meromorphic operators. We prove that
the g.-Kato spectrum o¢,,x(T) is compact and acco,¢(T) C 04.x(T). Moreover, we show that if T is g.-Kato,
then a(Tum), B(Tm), p(Tm) and g(T) are independent of the choice of the decomposition (M, N) € g.KD(T).
An other class named g.-invertible which generalizes the class of generalized Drazin invertible operators
introduced by Koliha. As a characterization of g.-invertible operator, we prove that T is g.-invertible iff
0 ¢ acc (acco(T)) iff there exists a Drazin invertible operator S such that TS = ST, STS = S and T?S — T is
zeroloid. These characterizations are analogous to those proved by Koliha [24] which established that T
is generalized Drazin invertible operator iff 0 ¢ acco(T) iff there exists an operator S such that TS = ST,
STS = S and T?S — T is quasi-nilpotent. As application, using the new spectra studied in the present work
and the concept of the Weak SVEP introduced at the end of this paper, we give new characterizations of
Browder-type theorems.
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The next list summarizes some notations and symbols that we will need later.

r(T) : the spectral radius of T

isoA  : isolated points of a complex subset A
accA  : accumulation points of a complex subset A
A : the closure of a complex subset A

AC : the complementary of a complex subset A

B(A,e) : the open ball of radius € centered at A
D(A,€) : the closed ball of radius € centered at A

(B) : the class of operators satisfying Browder’s theorem (T € (B) if 0,(T) = 04(T))
(Be) : the class of operators satisfying essential Browder’s theorem [4] (T € (B,) if 0.(T) = 04(T))
(aB) : the class of operators satisfying a-Browder’s theorem (T € (aB) if 0,,(T) = 0,(T))
o(T): spectrum of T 0,£(T): pseudo-Fredholm spectrum of T
04(T): approximate points spectrum of T opf(T): pseudo B-Fredholm spectrum of T
0s(T): surjective spectrum of T ouppf(T): upper pseudo semi-B-Fredholm spectrum of T
05(T): semi-regular spectrum of T o1ppf(T): lower pseudo semi-B-Fredholm spectrum of T
o.(T): essential spectrum of T 0prw(T): pseudo B-Weyl spectrum of T

0uf(T): upper semi-Fredholm spectrum of T | 0,p(T): upper pseudo semi-B-Weyl spectrum of T
017(T): lower semi-Fredholm spectrum of T | oyp(T): lower pseudo semi-B-Weyl spectrum of T

0w(T): Weyl spectrum of T 044(T): generalized Drazin invertible spectrum of T
0uw(T): upper semi-Weyl spectrum of T 0154(T): left generalized Drazin invertible spectrum of T
o1w(T): lower semi-Weyl spectrum of T 014a(T): right generalized Drazin invertible spectrum of T
0p(T): Browder spectrum of T 04(T): Drazin spectrum of T

opf(T): B-Fredholm spectrum of T opw(T): B-Weyl spectrum of T

2. The g,-Kato decomposition

We begin this section by the following definition of zeroloid operators.

Definition 2.1. We say that T € L(X) is a zeroloid operator if acc o(T) € {0}.
The next remark summarizes some properties of zeroloid operators.

Remark 2.2. (i) A zeroloid operator has at most a countable spectrum.

(ii) Since acc o(T) C o4(T) for every T € L(X), then every meromorphic operator is zeroloid. But the operator I + Q
shows that the converse is not true, where I is the identity operator and Q is the quasi-nilpotent operator defined on
the Hilbert space €*(IN) by Q(x1,x2,...) = (0,x1,%,...).

(iii) T is zeroloid if and only if T" is zeroloid for every integer n > 1.

(iv) Let (T, S) € L(X) X L(Y), then T & S is zeroloid if and only if T and S are zeroloid.

(v) Here and elsewhere denote by comm(T) = {S € L(X) : TS = ST}. So if Q € comm(T) is a quasi-nilpotent or a
power finite rank operator, then T is zeroloid if and only if T + Q is zeroloid.

According to [4], the p-ascent f(T) and the p-descent §(T) of a pseudo-Fredholm operator T € L(X) are
defined respectively, by #(T) = p(Tm) and §(T) = g(Tm), where M is any subspace which complemented by
a subspace N such that (M, N) € GKD(T).

Proposition 2.3. If T € L(X) is a pseudo-Fredholm operator, then the following statements are equivalent:
(a) p(T) < oo;

(b) T has the SVEP at 0;

(c) Ho(T) N K(T) = {0};

(d) Ho(T) is closed.

dually, the following are equivalent:

(e) 17(T) < 00;
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(f) T* has the SVEP at O;
(g) Ho(T) + K(T) = X.

Proof. (a) &< (b) Let (M, N) € GKD(T), then Ty is semi-regular and Ty is quasi-nilpotent. As p(Ts) = #(T)
then by the implication (A) above, we deduce that §(T) < oo if and only if Tj; has the SVEP at 0. Hence
p(T) < oo if and only if T has the SVEP at 0. The equivalence (e) < (f) goes similarly. The equivalences (b)
& (c), (c) & (d) and (f) & (g) are proved in [1, Theorem 2.79, Theorem 2.80]. O

Lemma 2.4. For T € L(X), the following statements are equivalent:
(i) T is zeroloid;
(11) O_*(T) - {0}/ where 0. € {opf/ O_upbf/ olpbfr Guphwr Ulpbwr algd/ Orgdr O-pbf/ opbw}-

Proof. (i) = (ii) Obvious, since 0,4(T) = acco(T).

(i) = (i) If 0.(T) {0}, then C\ {0} C Q, where Q is the component of (d,, f(T))C. Suppose that there exists A €
acco(T)\ {0}, then A ¢ 0.(T) and hence H(T — Al) = oo or §(T — Al) = oo, but this is impossible. Indeed, assume
that §(T — AI) = oo, as T — Al is pseudo-Fredholm, from Proposition 2.3 we have Hy(T — AI) N K (T — AI) # {0}.
And from [12, Corollary 4.3], we obtain Hy(T — AI) N K(T — AI) = Hy(T — puI) N K(T — ul) for every u € Q.
This implies that §(T — ul) = oo for all u € Q\ {0} [otherwise Hy(T — uI) becomes closed for some u € Q \ {0}
and then Hy(T — AI) N K(T — Al) = {0}, which is impossible] and this is contradiction. Thus §(T — AI) = oo,
but this leads (by the same argument) to a contradiction. Hence T is zeroloid. [J

Proposition 2.5. T € L(X) is zeroloid if and only if Ty and T;,, are zeroloid, where M is any closed T-invariant
subspace.

Proof. 1f T is zeroloid, then its resolvent (6(T))C is connected. From [15, Proposition 2.10], we obtain that
o(T) = o(Tm) U (T}, ). Thus Ty and Ty, are zeroloid. Conversely, if Ty and T;,, are zeroloid, then T is
zeroloid, since the inclusion o(T) € o(Tm) U o(T},.) is always true. [

Definition 2.6. Let T € L(X). A pair of subspaces (M, N) € Red(T) is a generalized Kato zeroloid decomposition
associated to T [(M, N) € g.KD(T) for brevity] if Ty is semi-regular and Ty is zeroloid. If such a pair exists, we say
that T is a g,-Kato operator.

Example 2.7. (i) Every zeroloid operator and every semi-regular operator are g,-Kato.
(ii) Every generalized Kato-meromorphic operator is g,-Kato. But the converse is not true, see Example 4.13 below.

Our next result gives a punctured neighborhood theorem for g.-Kato operators. Recall that the reduced
minimal modulus y(T) of an operator T is defined by y(T) := inf 12 where d(x, N(T)) is the distance

N TEND)
between x and N(T).

Theorem 2.8. Let T € L(X) be a g,-Kato operator. For every (M, N) € g.KD(T), there exists € > 0 such that for all
A € B(0,¢€) \ {0} we have

(i) T — Al is pseudo-Fredholm.

(i) a(Tyy) = dim N(T — AI) N K(T — Al) < a(T — Al).

(iii) B(Tm) = codim [R(T — AI) + Ho(T — AD] < B(T — Al).

Proof. Lete = y(I'm) > 0 and let A € B(0,¢) \ {0}. From [18, Theorem 4.7], Ty — Al is semi-regular, a(Ty) =
a(Ty — Al) and B(Ty) = B(Tm — Al). As Ty is zeroloid then from [4], Ty — Al is pseudo-Fredholm with
N(Ty — A) N K(Ty — Al) = {0} and N = R(Tny — AI) + Ho(Tn — Al). Hence T — Al is pseudo-Fredholm,
a(Ty) = dim N(T — A) N K(T — Al) and B(Tr) = codim [R(T — AI) + Ho(T — AD]. O

Since every pseudo-Fredholm operator is g.-Kato, from Theorem 2.8 we immediately obtain the following
corollary. Hereafter, we denote by 0, x(T) = {A € C: T — Al is not g.-Kato operator} the g.-Kato spectrum.

Corollary 2.9. The g.-Kato spectrum o4.x(T) of an operator T € L(X) is compact.
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Proposition 2.10. If T € L(X) is a g,-Kato operator, then a(Tn), B(Tum), p(Tam) and g(Tar) are independent of the
choice of the generalized Kato zeroloid decomposition (M, N) € g.KD(T).

Proof. Let (M1, N1), (Ma,N2) € g.KD(T) and let n > 1. It is easily seen that T" is also a g.-Kato operator and
(M1,N1), (M2, N») € g.KD(T"). We put e, = min{y('l’}f/Il ),)/(T?AZ)}. If A € B(0, €,) \ {0}, then by Theorem 2.8 we
obtain a(TI’\IAl) = a(Tl’\’/Iz) =dim N(T"—-A)NK(T"—Al) and ﬁ(Tl’(Al) = :B(T;\ZAZ) = codim [R(T" — AI)+Ho(T" — AD)].
Hence p(Ta,) = p(Tam,) and g(Tar,) = q(Ta,). O

Let T € L(X) be a g.-Kato operator. Following Proposition 2.10, we denote by &(T) = a(Twm), B(T) = B(Tm),
p(T) = p(Tm) and §(T) = q(Trm), where (M, N) € g.KD(T) be arbitrary. If in addition, Ty is semi-Fredholm,
then for every (M',N') € g.KD(T) the operator Ty is also semi-Fredholm and ind(Tx) = ind(T,y) (this
result will be extended in Lemma 3.4).

The next lemma extends [30, Theorem A.16]. In the sequel, for T € L(X) and (M, N) € Red(T), we define
the operator Timny € L(X) by TNy = TPum + Py, where Py is the projection operator on X onto M.

Lemma 2.11. Let T € L(X) and let (M, N) € Red(T). The following assertions are equivalent:
(i) R(TM) is closed;

(i1) R(Ty,.) is closed;

(iii) R(Ty,.) ® M* is closed in the weak-*-topology o(X*, X) on X*.

Proof. As (M,N) € Red(T) then (Pxn)* = Py and (TPuy)* = T*Pne. So (Taun))* = (TP +Pn)* = TPy + Pape =
T*NL MY Thus R(Tmn)) = R(Tm) @ N and R((Tn))*) = R(Ty,.) ® M*. Moreover, R(Ty) is closed if and only
if R(Tny) is closed. By applying [30, Theorem A.16] to the operator T(ym ), the proof is complete. [

From this Lemma and some known classical properties of pseudo-Fredholm and quasi-Fredholm operators,
we immediately obtain:

Corollary 2.12. Let T € L(X). The following statements hold:
(i) If T is pseudo-Fredholm, then R(T*) + Ho(T*) is closed in o(X*, X).
(ii) If T is a Hilbert space quasi-Fredholm operator of degree d, then R(T*) + N (T*) is closed in (X", X).

The following lemma extends some well known results in spectral theory, as relation between nullity,
deficiency and some other spectral quantities of a given operator T and its dual T".

Lemma 2.13. Let T € L(X) and let (M, N) € Red(T). The following statements hold:

(i) T is semi-regular if and only if Ty, is semi-regular.

(i1) I R(T) is closed, then a(Tu) = B(Ty), B(Tw) = a(Ty.), p(Tag) = q(T.) and q(Tag) = p(Ty,).

(iii) 04,(Tm) = 05(Tx1), 05(Tm) = ou(TNL) 0:(Tm) = 0.(Ty, )and r(Tm) = r(Ty,.), where 0. € {0, 0se, O, Tsf, Opf, 0, Ob}-
Moreover, if Ty is semi—Fredholm, then ind(Ty) = —ind(T]*\]L).

Proof. (i) We have N(Tan)) = N(Tm) and (Touny)" = T(MN) for every n € IN. It is easy to see that T is
semi- regular if and only if TNy is semi-regular. As (Tmny)* =T then Ty is semi-regular if and only
if T}, is semi-regular.

(ii) We have N((T(MN)) ) = N(T% ) and R((T(MN ") = R( ;\1/1) ® N for every n € N. As R(T(M,N)) =R(Tm)®N
is closed then a(Ty) = a(TwmN) ) = B(T; (e ML)) B(Ty,.)- The other equalities go similarly.

(iii) As (T ® On)* = (TPy)" = T"Pne = T . ® Oppe, then 0.(Ty) U 0.(0n) = 0.(Ty ®0y) = O*(T;\u ®0pe) =
0+(T}.) U 0.(0p). We know that 0.(S) = (Z) for every nilpotent operator S with . € {04, 0,4}. Furthermore,
the first and the second points imply that 0 € 0.(T) if and only if 0 € 0.(T}..), where 0. € {0, 0s, 0¢, 055, 03}
So 0.(Tm) = 0.(Ty.) and r(Ty) = r(Ty,.)- The proof of the other equalities spectra is obvious, see Lemma
2.11. Moreover, 1f Ty is semi- Fredholm then T}, is also semi-Fredholm and ind(Ty) = —ind(T}.). O

NJ_ MJ.)

Corollary 2.14. Let T € L(X) and let (M, N) € Red(T). Then (M, N) € g.KD(T) ifand only if (N*, M~*) € g.KD(T").
In particular, if T is g,-Kato, then T" is g,-Kato.
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Proposition 2.15. If T € L(X) is g,-Kato, then
(a) There exist S,R € L(X) such that:
(i) T =S+R,RT =TR =0, S is quasi-Fredholm of degree d <1 and R is zeroloid.
(i) N(S) + N(R) = X and R(S) & R(R) is closed.
(b) There exist S,R € L(X) such that SR = RS = (S + R) — [ = T, S is semi-regular and R is zeroloid.

Proof. (a) Let (M, N) € g.KD(T). The operators S = TPy; and R = TPy respond to the statement (a). Indeed,
as Ty is zeroloid and acco(R) = acco(Ty) then R is zeroloid. Suppose that M ¢ {{0}, X} (the other case is
trivial) and let n € IN > 1, then N(§") = N @ N(T})) and R(S) = R(Tn) is closed. As Ty is semi-regular, it
follows that N(§") + R(S) = N + N(T};)) + R(Tm) = N + N(Tm) + R(Tm) = N(S) + R(S). Consequently, S is
quasi-Fredholm of degree d < 1. Moreover, N(S) + N(R) = X and R(S) & R(R) = R(Tm) ® R(Tw) is closed.
(b) Let (M,N) € gZKD(T) If we take S = T(M,N) and R = T(N,M)/ thenSR=RS=(S5+R)-1=T,5S=Ty®Iyis
semi-regular and R = Iy ® Ty is zeroloid. O

In the case of Hilbert space operator T, the next proposition shows that the statement (2) of Proposition 2.15
is equivalent to say that T is g,-Kato.

Proposition 2.16. If H is a Hilbert space, then T € L(H) is g,-Kato if and only if there exist S,R € L(H) such that
T=S+Rand

(i) RT = TR = 0, S is quasi-Fredholm of degree dis(S) < 1, R is a zeroloid operator;

(@) N(S) + N(R) = H and R(S) ® R(R) is closed.

Proof. Assume that S is quasi-Fredholm of degree 1 (the case of S semi-regular is obvious), then from the
proof of [27, Theorem 2.2], there exists (M, N) € GKD(S) such that Ty; = Sy and Ty = Ry. As R is zeroloid
then Proposition 2.5 entails that Ty is zeroloid. Thus T is g.-Kato. For the converse, see Proposition2.15. [J

3. g.-Fredholm operators

Definition 3.1. T € L(X) is said to be an upper semi-g,-Fredholm (resp., lower semi-g,-Fredholm, g,-Fredholm)
operator if there exists (M,N) € Red(T) such that Ty is an upper semi-Fredholm (resp., lower semi-Fredholm,
Fredholm) operator and Ty is zeroloid. T is said a semi-g.-Fredholm if it is an upper or a lower semi-g,-Fredholm.

Every zeroloid operator is g.-Fredholm. Every generalized Drazin-meromorphic semi-Fredholm is a semi-
g.-Fredholm, and we show by Example 4.13 that the converse is generally not true.

The next proposition gives some relations between semi-g.-Fredholm and g.-Kato operators.

Proposition 3.2. Let T € L(X). The following statements are equivalent:

(i) T is semi-g,-Fredholm [resp., upper semi-g,-Fredholm, lower semi-g,-Fredholm, g.-Fredholm];

(ii) T is g.-Kato and min {&(T), B(T)} < oo [resp., T is g,-Kato and &(T) < oo, T is g,-Kato and (T) < oo, T is g,-Kato
and max {&(T), B(T)} < oo];

(iii) T is g.-Kato and O ¢ acc ospp¢(T) [resp., T is g.-Kato and 0 ¢ acc 0,,pp¢(T), T is g.-Kato and O ¢ acc oyp(T), T is
g.-Kato and 0 ¢ acc o,,¢(T)], where asppr(T) := 0uppr(T) U appp(T).

Proof. (i) &< (ii) Assume that T is semi-g,-Fredholm, then there exists (A, B) € Red(T) such that T, is
semi-Fredholm and T} is zeroloid. From [5, Corollary 3.7], there exists (M, N) € g.KD(T) such that Ty is
semi-Fredholm. Thus T is g.-Kato operator and min {&(T), E(T)} = min{a(Tm), f(Tm)} < co. The converse is
obvious. The other equivalence cases go similarly.

(if) < (iii) Is a consequence of Theorem 2.8. [

Corollary 3.3. T € L(X) is g,-Fredholm if and only if T is an upper and a lower semi-g,-Fredholm.
The following lemma will allow us to define the index for semi-g,-Fredholm operators.

Lemma 3.4. Let T € L(X). If there exist two pair of closed T-invariant subspaces (M,N) and (M',N’) such that
M®N =M &N is closed, Tyy and T,y are semi-Fredholm, Ty and Ty are zeroloid, then ind(Tyy) = ind(Tyy ).
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Proof. As Ty and Ty are semi-Fredholm operators then from the punctured neighborhood theorem for
semi-Fredholm operators, there exists € > 0 such that B(0, €) C o f(TM)C Nosp(Tyy )¢, ind(Ty — AI) = ind(Ty)
and ind(T,y — Al) = ind(T,y) for every A € B(0,€). From [4, Remark 2.4] and the fact that Ty and Ty are
zeroloid, we conclude that By := B(0,€)\ {0} C 05¢(Tan) N0sf(Thy )  N0ga(Tn) N0ga(Tn)© € 0gppf(Tiaan)©- Let
A € By, then (T — Al)pen is pseudo semi-B-Fredholm and ind((T — AD)yen) = ind(Ty — Al) + ind(Ty — AL) =
ind(Tyy — Al) +ind(Ty — Al). Thus ind(Ty) = ind(Tyy). O

Definition 3.5. Let T € L(X) be a semi-g,-Fredholm. We define its index ind(T) as the index of Ta1, where M is a
closed T-invariant subspace which has a complementary closed T-invariant subspace N such that Ty is semi-Fredholm
and Ty is zeroloid. From Lemma 3.4, the index of T is independent of the choice of the pair (M, N) appearing in
Definition 3.1 of T as a semi-g,-Fredholm. In addition, we have from Proposition 3.2, ind(T) = &(T) — B(T).

We say that T € L(X) is an upper semi-g,-Weyl (resp., lower semi-g,-Weyl, g,-Weyl) operator if T is an
upper semi-g,-Fredholm (resp., lower semi-g,-Fredholm, g.-Fredholm) with ind(T) < 0 (resp., ind(T) > 0,
ind(T) = 0).

Remark 3.6. (i) Every zeroloid operator T is g,-Fredholm with &(T) = (T) = ind(T) = 0. A pseudo semi-B-Fredholm
is semi-g,-Fredholm and its usual index coincides with its index as a semi-g,-Fredholm.

(ii) T is g.-Fredholm if and only if T is semi-g.-Fredholm with an integer index. And T is g,-Weyl if and only if T is
upper and lower semi-g,-Weyl.

Proposition 3.7. If T € L(X) and S € L(Y) are semi-g,-Fredholm, then
(i) T" is semi-g,-Fredholm and ind(T") = n.ind(T) for every integer n > 1.
(ii) T @ S is semi-g,-Fredholm and ind(T ® S) = ind(T) + ind(S).

Proof. (i) As T is semi-g,-Fredholm, then there exists (M, N) € Red(T) such that Ty is semi-Fredholm and
Ty is zeroloid. So (M, N) € Red(T"), T}, is semi-Fredholm and T}, is zeroloid. Thus ind(T") = ind(T},) =
nind(Ty) = nind(T).

(i) Since T € L(X) and S € L(Y) are semi-g,-Fredholm, then there exist (M;, N;1) € Red(T) and (M, N;) €
Red(S) such that Ty, and Ty, are semi-Fredholm, Ty, and Ty, are zeroloid. Hence Ty, e, is semi-Fredholm
and Ty, en, is zeroloid. Moreover, (M; @ My, N1 @ N;) € Red(T @ S). Hence ind(T @ S) = ind((T @ S)amrem,) =
ind(Tyy, ) + ind(Sp,) = ind(T) +ind(S). O

Denote by 0, ¢(T), 014,£(T), 055.£(T), 04.£(T), 0ug.w(T), 019.0(T), 0sg.o(T) and 0., (T) respectively, the upper
semi-g,-Fredholm spectrum, the lower semi-g.-Fredholm spectrum, the semi-g,-Fredholm, the g,-Fredholm
spectrum, the upper semi-g,-Weyl spectrum, the lower semi-g.-Weyl spectrum, the semi-g,-Weyl spectrum
and the g.-Weyl spectrum of T.

Corollary 3.8. For every T € L(X), we have 6. ¢(T) = 0,,7(T) U 015.¢(T) and 6 4..(T) = 0ug.0(T) U 014,0(T).

Proposition 3.9. Let T € L(X) be a semi-B-Fredholm operator which is semi-g,-Fredholm. Then T is quasi semi-B-
Fredholm and its index as a semi-B-Fredholm coincides with its index as a semi-g,-Fredholm.

Proof. Let (M, N) € Red(T) such that Ty is semi-Fredholm and Ty is zeroloid. Since T is semi-B-Fredholm
then Ty is Drazin invertible. So there exists (A, B) € Red(Tn) such that T, is invertible and T is nilpotent.
It is easy to get that M @ A is closed, so that Ty is semi-Fredholm. Consequently, T = Tpga ® T3 is
quasi semi-B-Fredholm. Furthermore, the punctured neighborhood theorem for semi-Fredholm operators
implies that ind(Tx) = ind(Tj,p). O

From [29, Theorem 7] and the previous proposition, we obtain the following corollary.

Corollary 3.10. Every B-Fredholm operator T € L(X) is g.-Fredholm and its usual index coincides with its index as
a g,-Fredholm operator.

Proposition 3.11. If T € L(X) is a semi-g,-Fredholm operator, then T* is semi-g,-Fredholm, &(T) = B(T"), B(T) =
a(T") and ind(T) = —ind(T").
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Proof. See Lemma 2.13. [
Our next definition gives a new class of operators that extends the class of semi-Browder operators.

Definition 3.12. We say that T € L(X) is an upper semi-g,-Browder (resp., lower semi-g,-Browder, g,-Browder) if
T is a direct sum of an upper semi-Browder (resp., lower semi-Browder, Browder) operator and a zeroloid operator.

Proposition 3.13. Let T € L(X). The following statements are equivalent:

(i) T is an upper semi-g,-Browder [resp., lower semi-g,-Browder, g,-Browder];

(ii) T is an upper g,-Weyl and T has the SVEP at 0 [resp., T is a lower semi-g,-Weyl and T* has the SVEP at 0, T is
g.-Weyl and T or T* has the SVEP at 0];

(iii) T is an upper semi-g,-Fredholm and T has the SVEP at 0 [resp., T is a lower semi-g,-Fredholm and T* has the
SVEPat 0, T is g,-Fredholm and T & T* has the SVEP at 0].

Proof. (i) & (ii) Suppose that T is g,-Browder, then there exists (M, N) € g, KD(T) such that Ty is Browder.
So Tum, (Tm)*, Ty and (Tn)* have the SVEP at 0. Thus T and T* have the SVEP at 0. Conversely, if T is g,-Weyl
and T or T* has the SVEP at 0, then there exists (M, N) € g.KD(T) such that Ty is Weyl and Ty or (Tum)*
has the SVEP at 0. So max{a&(T), 3(T)} < o and min{f(T), §(T)} < oo. This implies from [1, Lemma 1.22] that
max{f(T),§(T)} < oo and then Ty is Browder. Therefore T is g.-Browder. The other equivalence cases go
similarly.

(i) & (iii) Suppose that T is g,-Fredholm and T ® T" has the SVEP at 0. Let (M, N) € g.KD(T) such that Ty
is Fredholm and Ty is zeroloid. Hence Ty ® (Ty)* has the SVEP at 0. From the implications (A) and (B)
mentioned in the introduction, we deduce that Ty, is Browder and then T is g.-Browder. The converse is
clear and the other equivalence cases go similarly. [

The proofs of the following results are obvious and are left to the reader.

Proposition 3.14. If T € L(X) is semi-g,-Fredholm, then there exists € > 0 such that By := B(0,€)\ {0} C (ospbf(T))C
and ind(T) = ind(T — Al) for every A € By.

Corollary 3.15. For every T € L(X), the following assertions hold:
(1) O'ung(T)/ Ulng(T)/ ngzf(T)/ ngf(T)l O'ugzw(T)/ O'Zgzw(T)/ Usgzw(T) and ngw(T) are compact.
(ii) If Q) is a component of(oung(T))C or (olng(T))C, then the index ind(T — Al) is constant as A ranges over ().

Corollary 3.16. Let T € L(X). The following statements are equivalent:

(i) T is semi-g,-Weyl [resp., upper semi-g,-Weyl, lower semi-g,-Weyl, g,-Weyl];

(i1) T is g,-Kato and 0 ¢ acc oy (T) [resp., T is g.-Kato and 0 & acc 0,ppu(T), T is g.-Kato and 0 ¢ acc 61 (T), T is
g.-Kato and 0 ¢ acc 0pp,(T)], where osppi(T) := Guppno(T) U 01 (T).

4. g.-invertible operators

Recall [1] that T € L(X) is said to be Drazin invertible if there exists an operator S € L(X) which commutes
with T with STS = S and T"ST = T" for some integer n € IN. The index of a Drazin invertible operator T is
defined by i(T) = min{n € IN : S € L(X) such that ST = TS,STS = S and T"ST = T"}.

Proposition 4.1. Let T € L(X). If p(T) < oo (resp., q(T) < oo) then p(T) = dis(T) (resp., q(T) = dis(T)). Moreover,
if T is Drazin invertible, then i(T) = dis(T).

Proof. Suppose that p(T) < oo, then N(T,;) = {0} for every n > p(T). This implies that N(T4) = {0}, where
d := dis(T). Thus p(T) < d, and as we always have d < min{p(T), q(T)} then p(T) = d. If g(T) < oo, then
X = R(T) + N(T") for every n > g(T). Since R(T) + N(T?) = R(T) + N(T™) for every integer m > d, then
X = R(T) + N(T%. Hence Ty is surjective and consequently q(T) = d. If in addition T is Drazin invertible,
then the proof of the equality desired is an immediate consequence of [1, Theorem 1.134]. O

Definition 4.2. We say that T is quasi left Drazin invertible (resp., quasi right Drazin invertible) if there exists
(M, N) € KD(T) such that T, is bounded below (resp., surjective).
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Proposition 4.3. Let T € L(X). The following hold:

(i) T is Drazin invertible if and only if T is quasi left and quasi right Drazin invertible.
(ii) If T is quasi left Drazin invertible, then T is left Drazin invertible.

(iii) If T is quasi right Drazin invertible, then T is vight Drazin invertible.
Furthermore, the converses of (ii) and (iii) are true in the case of Hilbert space.

Proof. (i) Assume that T is Drazin invertible, thenn := p(T) = g(T) < oo.Itis well known that (R(T"), N(T")) €
Red(T), Trer is invertible and Ta/r») is nilpotent. So T is quasi left and quasi right Drazin invertible.
Conversely, if T is quasi left and quasi right Drazin invertible, then &(T) = B(T) = 0. Therefore a(Ty) =
&(T) = B(T) = B(Tum) = 0 for every (M, N) € KD(T). Thus T is Drazin invertible.

(if) Let (M,N) € Red(T) such that Ty is bounded below and Ty is nilpotent of degree d. As a bounded
below operator is semi-regular, we deduce from [5, Theorem 2.21] that d = dis(T). Clearly, R(T") is closed
and T, = (Tm)pn is bounded below for every integer n > d. Hence T is left Drazin invertible. Conversely,
assume that T is left Drazin invertible Hilbert space operator. Then T is upper semi-B-Fredholm, which
entails from [10, Theorem 2.6] and [5, Corollary 3.7] that there exists (M, N) € KD(T) such that Ty is upper
semi-Browder. Using [4, Lemma 2.17], we conclude that Tj is bounded below and then T is quasi left
Drazin invertible.

(iif) Goes similarly with (ii). O

Proposition 4.4. T € L(X) is an upper semi-Browder [resp., lower semi-Browder] if and only if T is a quasi left
Drazin invertible [resp., quasi right Drazin invertible] and dim N < oo for every (or for some) (M, N) € KD(T).

Proof. If T is an upper semi-Browder, then T is upper semi-Fredholm. From [5, Corollary 3.7], there exists
(M, N) € KD(T) with Ty, is upper semi-Browder. It follows from [4, Lemma 2.17] that Ty is bounded below.
Let (A, B) € KD(T) be arbitrary. Since a nilpotent operator S € L(Y) is semi-Fredholm iff dim Y < oo, then
dim B < co. The converse is obvious and the other case goes similarly. ]

Definition 4.5. T € L(X) is said to be left g,-invertible (resp., right g.-invertible) if there exists (M, N) € g.KD(T)
such that Ty is bounded below (resp., surjective). T is called g,-invertible if it is left and right g,-invertible.

Remark 4.6. (i) It is clear that T is g,-invertible if and only if there exists (M,N) € g,KD(T) such that Ty is
invertible.
(ii) Every generalized Drazin-meromorphic invertible operator is g.-invertible.

We prove in the following result that the class of g.-invertible operators preserves some properties of
Drazin invertibility [16, 24].

Theorem 4.7. Let T € L(X). The following statements are equivalent:

(i) T is g.-invertible;

(ii) T is g,-Browder;

(iii) There exists (M, N) € g.KD(T) such that Ty is Drazin invertible;

(iv) There exists a Drazin invertible operator S € L(X) such that TS = ST, STS = S and T?S — T is zeroloid. A such
S is called a g,-inverse of T;

(v) There exists a bounded projection P on X which commutes with T, T + P is generalized Drazin invertible and TP
is zeroloid;

(vi) There exists a bounded projection P on X commuting with T such that there exist U,V € L(X) which satisfy
P=TU = VT and T(I — P) is zeroloid;

(vii) T is g.-Kato and p(T) = §(T) < co.

Proof. The equivalences (i) < (ii) and (i) & (iii) are immediate consequences of Propositions 4.3 and 4.4.
(i) & (iv) Assume that T is g,-invertible and let (M, N) € g,KD(T) such that Ty, is invertible. The operator
S = (Ty)™! ® Oy is Drazin invertible. Moreover, TS = ST = I;; ® Oy, STS = S and T2S = T = Oy & (=T).
As Ty is zeroloid then T2S — T is also zeroloid. Conversely, suppose that there exists a Drazin invertible
operator S such that TS = ST, STS = S and T?S - T is zeroloid. Then TS is a projection. If we take M = R(TS)
and N = N(TS), then (M, N) € Red(T) N Red(S). We have Ty is one-to-one. Indeed, x € N(Tp) implies
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that x = TSy and Tx = 0, so x = (TS)*y = STx = 0. Since R(Ty) = M then Ty, is invertible. Let us to
show that S = (Ty)~! ® Oy. We have Sy = Oy, since S = STS. Let x = TSy € M, as Sy = STSy € M then
Sx = Sy = (Tm)'TmSy = (Tm)'x. Hence S = (Ty) ™t @ Oy and T2S — T = Oy @ (—T). Thus Ty is zeroloid
and then T is g,-invertible.

(i) & (v) Suppose that there exists a bounded projection P on X which commutes with T, T + P is
generalized Drazin invertible and TP is zeroloid. Then (A, B) := (N(P), R(P)) € Red(T), Ta = (T + P),4 is
generalized Drazin invertible and Tp = (TP)p is zeroloid. Thus there exists (C, D) € Red(T4) such that T¢ is
invertible and Tp is quasi-nilpotent. Hence (C,D @ B) € g,KD(T) and then T is g.-invertible. Conversely,
let (M,N) € g.KD(T) such that Ty is invertible. Clearly, P := Oy @ Iy is a projection and TP = PT.
Furthermore, TP = Oy @ Ty is zeroloid and T + P = Ty @ (T + I)y is generalized Drazin invertible, since
-1 ¢ acco(Tn) = 04a(Tn).

(vi) = (i) Suppose that there exists a bounded projection P on X commuting with T such that there
exist U,V € L(X) which satisfy P = TU = VT and T(I — P) is zeroloid. In addition, we assume that
U,V € comm(T) (for the general case, one can see the proof of the implication (v) = (vi) of [35, Theorem
2.4]). Then Iy ® Oy = TylUp @ TnUn = ViTym @ VTN, where (M, N) := (R(P), N(P)) € Red(T), and thus
Tyvly = VuTm = Iy and TyUy = VnTn = On. Hence Ty is invertible. Moreover, Ty is zeroloid, since
T(I — P) = 0p ® Ty is zeroloid. Consequently, T is g,-invertible.

(iv) = (vi) and (i) & (vii) are clear. [

The next two theorems are analogous to the previous one.

Theorem 4.8. Let T € L(X). The following statements are equivalent:

(i) T is left g,-invertible;

(ii) T is upper semi-g,-Browder;

(iii) There exists (M, N) € g.KD(T) such that Ty is quasi left Drazin invertible;
(iv) T is g,-Kato and p(T) = 0;

(v) T is g.-Kato and 0 ¢ acc 6144(T).

Theorem 4.9. Let T € L(X). The following statements are equivalent:

(i) T is right g,-invertible;

(ii) T is lower semi-g,-Browder;

(iii) There exists (M, N) € g.KD(T) such that Ty is quasi right Drazin invertible;
(iv) T is g.-Kato and §(T) = 0;

(v) T is g.-Kato and 0 ¢ acc 6,44(T).

Corollary 4.10. If T € L(X) is g,-invertible and S is a g,-inverse of T, then TST is the Drazin inverse of S and
p(S) =q(S) =dis(S) < 1.

Proof. Obvious. [

Hereafter, 015,4(T), 0,4,4(T) and 0,,4(T) are respectively, the left g.-invertible spectrum, the right g.-invertible
spectrum and the g.-invertible spectrum of T.

Theorem 4.11. For every T € L(X) we have a4.4(T) = acc (acc o(T)).

Proof. Let u ¢ acc(acco(T)). Without loss of generality we assume that y = 0 [note that accacco(T — al) =
acc(acco(T)) — a, for every complex a]. If 0 ¢ acco(T), then T is generalized Drazin invertible and in
particular g,-invertible. If 0 € acc o(T) then 0 € acc (iso o(T)). We distinguish two cases:

Case 1: acc (iso o(T)) # {0}. It follows that e := inf |A| > 0. Moreover, the sets F := D(0, 5) Niso o(T)
Aeacc (iso o(T))\{0}

and F; := ((acco(T)) \ {0}) U (isoo(T) \ Fy) are closed and disjoint. Indeed, F1 N F, = F> N [(acco(T)) \ {0}] €
[acc (isoa(T)) \ {0}] N D(O,5) = 0. As 0 ¢ acc (acco(T)) then (acco(T)) \ {0} is closed. Let us to show that
C :=(isoo(T) \ F,) is closed. If A € acc C (the case of acc C = () is obvious), then A € iso o(T). Let (A,,), € Cbe
a non stationary sequence that converges to A, it follows that A # 0. We have A ¢ F. Otherwise, A € D(0, 5)
and then A ¢ acc (isod(T). So A € isoo(T) and this is a contradiction. Therefore C is closed and then F; is
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closed. As o(T) = F1 U F; then there exists (M, N) € Red(T) such that 6(Ty;) = F; and o(Ty) = F2. So Ty is
invertible and 0 € acco(Ty). Letv € F,, then v ¢ acco(Ty) \ {0}, since F1 NF, = FyN(acco(T)\ {0}) = 0. Hence
acco(Ty) = {0} and T is g.-invertible.

Case 2: acc (iso(T)) = {0}. Then F; := D(0,1) niso o(T) and F; := ((acc o(T)) \ {0}) U (iso o(T) \ F7) are closed
disjoint subsets and give the desired result. For this, if A € C, where C := iso o(T) \ F3, then there exists
a sequence (A,) C C that converges to A. As acc(isoo(T)) = {0} and A(#¢ 0) € isoo(T) then A € isoo(T).
Therefore (A,), is stationary and so A € C. Thus F; is closed and hence there exists (M, N) € Red(T) such
that 0(Ty) = F1 and o(Ty) = F». Conclusion, T is g.-invertible.

Conversely, if T is g.-invertible, then T = T; & T, where T is invertible and T) is zeroloid. And then there
exists € > 0 such that B(0,¢€) \ {0} € (6(T1))¢ N (acc 6(T»))¢ < (acc o(T))C. Thus 0 ¢ acc (acco(T)). O

From the previous theorem and some well known results in perturbation theory, we obtain the following
corollary.

Corollary 4.12. Let T € L(X). The following statements hold:

(i) 014,4(T), 014,¢(T) and 6,,4(T) are compact.

(i1) 04,4(T) = 04,a(T").

(i) If S € L(Y), then T & S is g,-invertible if and only if T and S are g,-invertible.

(iv) T is g.-invertible if and only if T" is g.-invertible for some (equivalently for every) integer n > 1.

(0) If Q € comm(T) is quasi-nilpotent, then o,.4(T) = 04.4(T + Q).

(vi) If F € Fo(X) N comm(T), then 64,4(T) = 04,4(T + F), where Fo(X) is the set of all power finite rank operators.

Example 4.13. Let T € L(X) be the operator such that o(T) = 04(T) = {%}. Then T is g,-invertible and not
generalized Drazin-meromorphic invertible, since 0 € acc o4(T) (see [35, Theorem 5]). Note also that T is not
generalized Kato-meromorphic. Otherwise, we get &(T) = B(T) = 0, since T is g,-invertible. Hence T is generalized
Drazin-meromorphic invertible and this is a contradiction.

Proposition 4.14. Let T € L(X). The following statements are equivalent:

(i) 0 € iso (acc o(T)) (i.e. T is g,-invertible and not generalized Drazin invertible);

(ii)) T = T1 & Ty, where Ty is invertible and acc 6(T,) = {0};

(iii) T is g,-Kato and there exists a non stationary sequence of isolated points of o(T) that converges to 0.

Proof. (i) = (ii) Follows directly from the proof of Theorem 4.11. Note here that acco(Tn) = {0} for every
(M, N) € g.KD(T).

(i) = (iii) As T = T1 @ T, T is invertible and acc 6(T>) = {0}, then 0 € iso (acc o(T)) and there exists a non
stationary sequence (A,), C isoo(T>) that converges to 0. Thus T is g.-invertible and there exists N € IN
such that A, € o(T) \ acco(T) = isoo(T) for all n > N.

(iif) = (i) Assume that T = T @ T,, T is semi-regular, T, is zeroloid and there exists a non stationary
sequence (A,), of isolated point of o(T) that converges to 0. Hence 0 € acco(T) and T @ T* has the SVEP at
0. This entails that T is g,-invertible and then 0 € iso (acco(T)). O

Recall that 0 C o(T) is called a spectral set (called also isolated part) of T if 0 and o(T) \ ¢ are closed, see [17].
Let T be a g.-invertible operator which is not generalized Drazin invertible. From Proposition 4.14, we
conclude that there exists a non-zero strictly decreasing sequence (A,), C isoo(T) that converges to 0
such that o := {A,:n €N} is a spectral set of T. If P, is the spectral projection associated to o, then
(Mg, Ng) := (N(Py), R(Py)) € g.KD(T), 6(Tn,) = 0 and 0(Tym,) = o(T) \ 0. Thus T + P, = Ty, ® (T + rl)n, is
invertible for every |r| > |A¢| and then the operator T2 := (T +rP;){(I - P,) = (Tm,) ™ ® Oy, is a g,-inverse
of T and depends only on ¢. Note that P, = [ — TT? € comm?(T) := {S € comm(L) : L € comm(T)}, so that
(M, N,) € Red(S) for every operator S € comm(T) and T2 € comm?(T). Note also that T + P, is generalized
Drazin invertible and TP, is zeroloid.

Lemma 4.15. Let T € L(X) be a g,-invertible operator and (M,N) € g.KD(T) such that Ty invertible and
o(Tm) No(Ty) = 0. Then o(Tn) \ {0} C iso o(T) and for every S € comm(T) we have (M, N) € Red(S).
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Proof. 1f T is generalized Drazin invertible, then 0 ¢ acco(T) and so acc o(Ty) = 0, hence o(Ty) is a finite set
of isolated points of o(T). Let P; be the spectral projection associated to ¢ = o(T). From [17, Proposition
2.4] and the fact that P, € comm?(T) we deuce that (M, N) = (N(P,), R(P,)) € Red(S) for every S € comm(T).
If T is not generalized Drazin invertible, then there exists a strictly decreasing sequence (A,), of isolated
point of o(T) that converges to 0 and such that o(Tx) = {A, : n € N}. Thus o(Tn) \ {0} C iso o(T). Let P be the
spectral projection associated to the spectral set o(T), then (M, N) = (N(P), R(P)) and so (M, N) € Red(S)
for every S € comm(T). O

Remark 4.16. It is not difficult to see that the following assertions are aquivalent:
(i) A(M, N) € Red(S) such that Ty is invertible for every S € comm(T);
(ii) AL € comm?(T) such that L = L*T.

Theorem 4.17. Let T € L(X). The following statements are equivalent:

(i) T is g.-invertible;

(1) 0 ¢ acc(acc o(T));

(iii) There exists (M, N) € g.KD(T) such that Ty invertible and o(Typ) N o(Tn) = 0;

(iv) There exists a spectral set o of T such that 0 ¢ o(T) \ o and o \ {0} C iso o(T);

(v) There exists a bounded projection P € comm?(T) such that T + P is generalized Drazin invertible and TP is
zeroloid.

Proof. For the equivalence (i) & (ii), see Theorem 4.11. For the equivalences (i) & (iii) and (i) & (v),
see Theorem 4.7 and the paragraph preceding Lemma 4.15 (the case of T is generalized Drazin invertible
is clear). The proof of the equivalence (iii) <= (iv) is a consequence of Lemma 4.15 and the spectral
decomposition theorem. [J

Proposition 4.18. For every g,-invertible operator T € L(X), the following statements hold:

(i) Let (M,N),(M',N') € g,KD(T) such that Ty, Ty are invertible and o(Tp) N o(Tn) = o(Tyy) N o(Ty) = 0. If

(TM)_1 &0y = (TM')_1 @ ON'/ then (Mr N) = (M/rN/)'

(ii) Let 6,0 two spectral sets of T such that 0 ¢ o(T) \ (6 N ¢") and (6 U c') \ {0} C isoo(T). If (T + rP,)~Y(I - P,) =

(T+7Py)'(I-P,), where P, is the spectral projection of T associated to o, |r| > rgggf Al and |r'| > 1/4\1&13/6 |Al, then
€0

0O=0.

Proof. (i) From the proof of Lemma 4.15, we have (M, N) = (N(P,), R(P,)) and (M,N') = (N(P,), R(P,/)),
whereo = o(Ty)and ¢ = o(Ty'). As (Ty) ' @®0x = (Tyy ) @0y then 6(Ta1) = (T, ) and thus o(Ty) = o(Tyy).
This proves that (M, N) = (M,N).

(ii) Follows from (i). O

The previous Proposition 4.18 gives a sense to the next remark.

Remark 4.19. If T € L(X) is g.-invertible, then
(i) For every (M, N) € g, KD(T) such that Ty is invertible and o(Tar) N o(Tn) = 0, the g,-inverse operator T(D

MN) =
(Ty) ! @ Oy € comm?(T), and we call T(DMN) the g.-inverse of T associated to (M, N).

(ii) If o is a spectral set of T such that 0 ¢ o(T) \ 0 and ¢ \ {0} C iso o(T), then the operator T := (T +rP,) (I P,) €
comm*(T) is a g.-inverse of T, where |r| > rgmx |A|, and we call T? the g.-inverse of T associated to o.
€0

Note that if T € L(X) is generalized Drazin invertible which is not invertible, then by [24, Lemma 2.4]
and Proposition 4.18 we conclude that the Drazin inverse of T is exactly the g.-inverse of T associated to
¢ = {0}, in other words TP = T{%].

Proposition 4.20. Let T, S € L(X) two commuting g,-invertible. If o and ¢ are spectral sets of T and S, respectively
such that 0 ¢ (o(T) \ 0) U (a(8) \ &), 6 \ {0} € isoa(T) and o' \ {0} C isoa(S), then T,S,TZ, S5 are mutually
commutative.
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Proof. As TS = ST then the previous remark entails that T = (T + rP;)"'(I - P,) € comm(S), and
analogously for other operators. [J

The following proposition describe the relation between the g.-inverse of a g,-invertible operator T associ-
ated to (M, N) and the g.-inverse of T associated to a spectral set o. It's proof is clear.

Proposition 4.21. If T € L(X) is g.-invertible and (M, N) € g.KD(T) such that T is invertible and o(Tp) No(Tn) =
0, then ng,N) = TP, where o = o(Ty). In other words T(’?(TN) =(Ty) ' ®0y.

Our next theorem gives a generalization of [24, Theorem 4.4] in the case of the complex Banach algebra
L(X). Denote by Hol(T) the set of all analytic functions defined on an open neighborhood of o(T).

Theorem 4.22. If 0 € o(T) \ acc(acc o(T)), then for every spectral set o such that 0 € o and o \ {0} C isoo(T) we
have

T(? = fJ(T)/

where f, € Hol(T) defined by f, = 0 in a neighborhood of o and f,(A) = A~! in a neighborhood of o(T) \ 0. Moreover
o(T?) = {0} UfA : A e a(T) \ a}.

Proof. Let Q1 and Q, two disjoint open sets such that ¢ € 1 and o(T) \ 0 C €, (for the construction of ()
and (), see the paragraph below) and let g € Hol(T) be the function defined by

{1 ifreq
ﬂ”‘{o ifA e,

It is clear that P, = g(T) and as T2 = (T + rP,)~}(I - P,) (where |r| > max |A| be arbitrary), then the function
€0

f5(A) = (A + rg(A)"1(1 — g(A)) has the required property. Moreover, we have o(T?) = £,(o(T)) = {0} U {A7 :
Aeo(M\o}. O

According to [17], if o is a spectral set of T then there exist two disjoint open sets €); and 2, such thato € (g

and o(T) \ 0 € (. Choose a Cauchy domains S; and S, such thato € S1,0(T) \ 0 C Sy, S cOpand S, € Q.
It follows that the spectral projection corresponding to ¢ is

1

P; = —
7 2im Yy,

(AI = T)7YdA.
Moreover, if 0 € g and ¢ \ {0} C iso d(T), then from Theorem 4.22 we conclude that

TP = i ATYAI = T)7tdA.
2iTt 95,

5. Weak SVEP and applications

As a continuation of some results proved in [19, 22], we begain this part by the next theorem which gives
a new characterization of some Browder’s type theorems in terms of spectra introduced and studied in the
preceding parts.

Theorem 5.1. For T € L(X), we have

(i) T € (B) if and only if 64..,(T) = 04,4(T).

(i1) T € (B,) if and only if o4, ¢(T) = 04.4(T).
(i) T € (aB) if and only if 0,5.,(T) = 015.a(T).
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Proof. (i) IfA & 04.4(T), then from Corollary 3.16 we have A ¢ acco,p(T) [note that accopp(T — AI) =
acc (oppw(T)) — A]. Since T € (B) then [22, Theorem 2.6] or [19, Theorem 2.8] implies that A ¢ acc 6,4(T), and
this implies from Theorem 4.11 that A ¢ 0,,.4(T). As the inclusion 0,,4,(T) C 0,.4(T) is always true, it follows
that 0,4 (T) = 0,.4(T). Conversely, let A ¢ 9,,(T), then A & 0.5,(T) = 04.4(T). On the other hand, [5, Corollary
3.7] implies that there exists (M, N) € Red(T) such that Tp; — Al is semi-regular and Ty — Al is nilpotent. Since
T — Alis g,-invertible then p(Ty — AI) = p(T — Al) = §(T — Al) = q(Ty — Al) = 0, and so Ty — Al is invertible.
Hence T — Al is Browder and consequently T € (B). Using [22, Corollary 2.10] or [19, Corollary 2.14], the
point (ii) goes similarly with (i). And Using [22, Theorem 2.7], we obtain analogously the point (iii). O

Definition 5.2. Let A be a subset of C. We say that T € L(X) has the Weak SVEP on A (T has the W-SVEP for
brevity) if there exists a subset B C A such that T has the SVEP on B and T* has the SVEP on A\B. If T has the
We-SVEP, then T is said to have the Weak SVEP (T has the W-SVEP for brevity).

Remark 5.3. (i) Let A be a subset of C. Then T € L(X) has the W4-SVEP if and only if for every A € A, at least T or
T has the SVEP at A.

(ii) If T or T* has the SVEP, then T has the W-SVEP. But the converse is not generally true. For this, the left shift
operator L € L(€*(IN)) defined by L(x1,xa,...) = (x2,X3, ... ) has the W-SVEP, but it does not have the SVEP.

(iii) The operator L ® L* does not have the W-SVEP.

The next theorem gives a sufficient condition for an operator T € L(X) to have the W-SVEP.
Theorem 5.4. Let T € L(X). If

X7(0) x X7 (@) € {(x,0) : x € X} U{(o, f:fexy,
then T has the W-SVEP.

Proof. Let A € C and let V,WW c C two open neighborhood of A. Let f : V — Xand g : W — X" two
analytic functions such that (T — ul)f(u) = 0 and (T* — vl)g(v) = 0 for every (u,v) € V x W. If we take
U = VN W, then [1, Theorem 2.9] implies that or(f(1)) = 07(0) = 0 = 07-(0) = or-(9(n)) for every u € U
Hence (f(u), 9(v)) € X7(0) X X1(0) for every u, v € U We discuss two cases. The first, there exists u € U such
that g(u) # 0. As (f(v), g(1)) € Xr(0) x X1 (0) for every v € U then by hypotheses f = 0 on U The identity
theorem for analytic functions entails that T has the SVEP at A. The second, g(u) = 0 for every u € U. In the
same way, we prove that T* has the SVEP at A. Hence T has the W-SVEP. [0

Question: Similarly to [1, Theorem 2.14] which characterizes the SVEP of T € L(X) in terms of its local
spectral subspace X7(0), we ask if the converse of Theorem 5.4 is true?

The next proposition characterizes the classes (B) and (aB) in terms of the Weak SVEP.

Proposition 5.5. If T € L(X), then
(a) For 0. € {0w, Ovw, 04,0}, the following statements are equivalent:
(i) T € (B);
(ii) T has the Weak SVEP on 0.(T)S;
(iii) Forall A ¢ 0.(T), T ® T* has the SVEP at A;
(iv) Forall A ¢ 6.(T), T has the SVEP at A;
(v) Forall A ¢ 0.(T), T* has the SVEP at A.
(b) For 0. € {0., 0vf, 04, ¢}, the following statements are equivalent:
(i)T € (Be);
(ii) Forall A ¢ 0.(T), T & T* has the SVEP at A.
(c) For 0. € {Ouw, Oupw, Oug.w}, the following statements are equivalent:
(i) T € (aB);
(ii)] T has the Weak SVEP on ¢.(T);
(iii) For all A ¢ 0.(T), T has the SVEP at A.
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Proof. (a) For 0. = 0,4, we have only to show (ii) = (i), and the other implications are clair. Let
A ¢ 04.0(T), then there exists (M, N) € Red(T) such that Ty; — Al is Weyl and Ty — Al is zeroloid. Hence
T or T* has the SVEP at A is equivalent to say that Ty or (Ta)* has the SVEP at A, and this is equivalent
to min {p(Tm — Al),q(Ty — AD)} < oo. Therefore Ty — Al is Browder and then A ¢ ¢,.4(T). From Theorem
5.1, it follows that T € (B). For 0. € {04, 0pw}, the proof of (ii) = (i) is similar, and the other implications
are already done in [1]. The assertions (b) and (c) go similarly with (a). Note that some implications of
assertions (b) and (c) are already done in [1, 6,19, 22]. O

We end this part by the next result which extends [1, Theorem 5.6].

Theorem 5.6. If the g.-Weyl spectrum of T € L(X) has empty interior that is, int 04,,,(T) = 0, then the following
statements are equivalent:

(i) T € (B);

(ii) T € (B,);

(iii) T € (aB);

(iv) T has the SVEP;

(v) T* has the SVEP;

(vi) T &® T* has the SVEP;

(vii) T has the W-SVEP.

Proof. (i) = (vi) As T € (B) then by Proposition 5.5, T ® T* has the SVEP on ogzw(T)C. LetA €0,,(T),UcCC
be an open neighborhood of A and f : U — X be an analytic function which satisfies (uI — T) f(u) = 0, for
every u € U The hypothesis into, (T) = 0 implies that there exists y € U N (0,.(T))". Hence f = 0 on U,
since T has the SVEP at y. It then follows that T has the SVEP at A. Analogously we prove that T* has the
SVEP at A, and consequently T @ T™ has the SVEP. It is clear that the statement (vi) implies without condition
on T all other statements. Furthermore, all statements imply (7). This completes the proof. [
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