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Abstract. In this paper, we derive the asymptotic expressions of the scaled value function and the optimal
redemption boundary of stock loan with dividend-paying near maturity. Using the equation satisfied by
the derivative of the value function at the exercise boundary, we set up the asymptotic expression for the
boundary. When the risk-free rate r is smaller than the loan rate β, i.e., r < β, the boundary tends to KeβT0

in parabolic-logarithm form, this case is the main result. For the case r ≥ β, the corresponding problem
returns back to a usual American call option with interest-free rate r − β and the existing results can be
utilized to make proper adjustments for the stock loan. The matched expansion for the value function is
performed with a small parameter. Numerical examples are provided to demonstrate the effectiveness of
the proposed method.

1. Introduction

As a type of path-dependent options, the finite-time American options’ valuation is an important and
complicated problem in mathematical finance. When the time to expiry is short, or the time approaches
maturity, the asymptotic problems of American options are of interest for theoretic and practical aims,
which have been addressed in many literature during latest decades, herein we refer some papers [1]–[13].
Under short time framework, the main goals are to derive the asymptotic forms of the value functions of
American put and call options and the optimal exercise boundaries of them. The existing studies make
clear that the parameters including the interest rate, the constant dividend rate, the volatility and the time
to maturity, influence the exercise boundaries and the value functions. In the finite-time American options’
valuation, especially for call options, the dividend rate is a pivotal parameter compared to other ones.
Some papers have disclosed that the optimal exercise boundaries are singular at expiry and they observe
remarkably different asymptotic behaviors when the dividend rate varies from less than the interest rate to
greater than it.

Stock loans are a kind of popular financial contract in the capital market, which are essentially an
American call option with time-dependent strike price. As a formal literature record, stock loans were
initially studied by Xia and Zhou [14], who investigated stock loans as a perpetual American call option
with time-growth strike price and built the value function with a different structure relative to usual
perpetual American call. After that, there are considerable studies about stock loans. Further works are
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mainly extended along several directions, which include considering the contracts under other underlying
processes, the ones with different terms/clauses, and the ones with finite maturity. For the extensions
with the complicated underlying processes, we can refer some literature as follows: Zhang and Zhou
[15] studied perpetual stock loans under regime-switching models; Prager and Zhang [17, 29] considered
the finite-maturity stock loans under regime-switching and mean-reverting models and a Markov chain
model; Wong and Wong [21] investigated perpetual stock loans with mean-reverting stochastic volatility
models; Wong and Wong [22] studied the contracts with exponential phase-type Lévy models; Grasselli
and Gómez [23] researched the contract in incomplete markets; Cai and Sun [25] studied the contracts
under hyper-exponential jump diffusion models; Chen, Xu and Zhu [28] investigated the contracts under
stochastic interest rate models; Fan, Xiang and Chen [30] studied the contracts based on the finite moment
log-stable process; Fan and Zhou [31] investigated the contracts under the CGMY Models. For the second
extensions with added clauses, we can refer several papers. Liu and Xu [16] considered the valuation of
perpetual stock loans with cap limit of stock price; Liang, Wu and Jiang [18] studied the contracts with
automatic termination clause, cap and margin; Lu and Putri [27] investigated stock loans with a margin
call. For the extensions with finite maturity, we can refer Dai and Xu [20], Pascucci, Suárez-Taboada and
Vázquez [24], Lu and Putri [26].

Under finite time framework, the free boundary of stock loans is treated as a function of time. Since stock
loans possesses the early exercise feature of American options, it is necessary to ascertain the time-varying
behavior of exercise boundary of the contract. In [20], the authors provided the limits of the redeeming
boundaries under several different dividend distribution manners as the time tending to maturity. But
these results looks a bit rough and not exquisite as taking into account short-time asymptotic form. To the
best of our knowledge, there are no available literature concerning short-time asymptotics of stock loans. In
this paper, we will investigate the problems of short-time approximation for stock loans, in which we derive
asymptotic expansions of the free boundary and the scaled value function with respect to time-to-maturity.
This paper is structured as follows: The second section provides a formulation of the model about the
problem. By proper change of variable, we transform Black-Scholes equation into a second-order parabolic
equation with constant coefficients. Next, we derive an expansion of the free boundary of stock loan about
time-to-maturity. Then we derive the matched asymptotic expansion of the scaled value function. Some
formulas needed in the computations are provided in the appendix.

2. The Model and Problem Formulation

The underlying asset (stock) price observes the geometric Brownian motion

dSt = St[(r − q)dt + σdWt],

where r > 0 denotes the risk free interest rate, q ≥ 0 is the dividend rate, σ > 0 is the volatility coefficient.
{Wt}t>0 is a standard Brownian motion defined on a filtered probability space (S,F , {F }t≥0,P). We denote
the loan rate by the sign β. Assume that, during the mortgage period of the asset, the acquired dividend
of the asset is attributed to the bank–the lender of the loan until the client (borrower) repays the loan. At
initial time, the client obtains a loan of amount K from the bank with the stock as a collateral. When the
borrower pays back the loan, the amount should be Keβt at the repaying loan time t ∈ [0,T0] with T0 being
the expiry time of the loan. We write P(S, t) as the value of the loan contract at time t with the current stock
price St := S,which can be expressed as the value function of an optimal stopping problem

P(S, t) = sup
τ∈T[t,T0]

Et[e−r(τ−t)(Sτ − Keβτ)+]

= eβt sup
τ∈T[t,T0]

Et[e−(r−β)(τ−t)(Ŝτ − K)+]

= eβt sup
τ∈T[0,T0−t]

E[e−(r−β)τ(Ŝe(r−β−q− 1
2 σ

2)τ+σWτ − K)+] (1)
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where Et is the expectation operator under Ft and T[t,T0] denotes the set of all stopping times with values in
[t,T0]. The process Ŝt := e−βtSt is the discounted process of stock price, which follows a stochastic differential
equation dŜt = Ŝt[(r − β − q)dt + σdWt]. The simplified notation Ŝ is the discounted stock price at time t,
namely, Ŝt := Ŝ. According to above expressions, we can observe the following facts: (1) As r ≥ β, the value
function of stock loan P(S, t) can be denoted as eβtP1(Ŝ, t), where P1(Ŝ, t) is a usual American call option
with the underlying price Ŝ and non-negative interest rate r − β (≥ 0). (2) As r < β, the value function of
stock loan P(S, t) can be denoted as eβtP2(Ŝ, t), where P2(Ŝ, t) is an unusual American call option with the
underlying price Ŝ and negative interest rate r − β (< 0). From another perspective, the value function
satisfies the following variational inequality problem

Pt +
1
2
σ2S2PSS + (r − q)SPS − rP = 0, as 0 < S < B(t), 0 < t < T0. (2)

P(B(t), t) = B(t) − Keβt, PS(B(t), t) = 1. (3)

lim
S→0

P(S, t) = 0 (4)

P(S,T0) = max{S − KeβT0 , 0}, B(T0) =
{

eβT0 K, as r < β;
eβT0 K max{1, r−β

q }, as r ≥ β, q > 0. (5)

where B(t) is the exercise boundary of the loan contract, defined as B(t) ≜ inf{S > 0|P(S, t) = S − Keβt}, ∀t ∈
[0,T0]. The exercise time of the contract is a stopping time defined by T∗ = inf{t ∈ [0,T0]|St ≥ B(t)}.Valuation
of the stock loan is different from usual American call option in which the strike price is placed by the
time-growth one. The strike price with a fast growing factor has caused a trouble of deriving the value
function of stock loan under perpetual time framework (see [14]). In finite time setting, we overcome the
problem by introducing the following changes of variables:

Let x = ln e−βtS
K , τ =

σ2

2 (T0 − t), b(τ) = ln e−βtB(t)
K , α =

2(r−β)
σ2 , ℓ =

2q
σ2 , p(x, τ) = e−βtP(S, t)/K. Under above new

variables, the function p(x, τ) satisfies the following variational inequalities

max{Lp − pτ, p0 − p} = 0, in R × (0,∞) (6)

p(x, 0) ≜ p0(x) = (ex
− 1)+, at τ = 0. (7)

b(τ) = inf{x|p(x, τ) = p0(x)} = sup{x|p(x, τ) > p0(x)},∀τ > 0. (8)

b(0) =
{

0, i f α < 0;
max{0, ln αℓ }, i f α ≥ 0, ℓ > 0. (9)

where the operator L is defined by Lp = ∂xxp + (α − ℓ − 1)∂xp − αp. The above variational inequalities (6-9)
can be also formulated as a free boundary value problem

pτ = Lp, x < b(τ), τ > 0
p(x, τ) = ex

− 1, x ≥ b(τ)
px(b(τ), τ) = eb(τ), τ > 0
p(−∞, τ) = 0, τ > 0

(10)

Our goal is to derive the asymptotic forms of the exercise boundary b(τ) and the value function p(x, τ) of
stock loan when the time τ approaches zero. Next sections will provide detailed derivation procedures for
them.
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3. Short Time Asymptotics for the Exercise Boundary

In this section, we will deal with the asymptotic expansion for the exercise boundary. In [20], the
limiting behavior of the boundary was provided, but the result looks rough and not accurate. To improve
the limiting result, we provide a more accurate form for the boundary. To this end, we need to make the
following asymptotic analysis. For the free boundary problem in (10), the corresponding Green’s function
is

G(x, τ) =
1
√

4πτ
e−

(x+(α−ℓ−1)τ)2

4τ −ατ.

By Green’s theorem, we can write the function p(x, τ) in integral of G as follows:

p(x, τ) =

∫
∞

0
(ey
− 1)G(x − y, τ)dy +

∫ τ

0

∫
∞

b(u)
(ℓey
− α)G(x − y, τ − u)dydu.

:= I1(x, τ) + I2(x, τ).

By direct computations, it produces the explicit expressions as follows

I1(x, τ) = ex−ℓτN( x+(α−ℓ+1)τ
√

2τ
) − e−ατN( x+(α−ℓ−1)τ

√
2τ

);

I2(x, τ) =

∫ τ

0
ℓex−ℓ(τ−u)N( x−b(u)+(α−ℓ+1)(τ−u)

√
2(τ−u)

)du −
∫ τ

0
αe−α(τ−u)N( x−b(u)+(α−ℓ−1)(τ−u)

√
2(τ−u)

)du,

where the sign N(·) is the standard normal distribution function, i.e., N(x) = 1
√

2π

∫ x

−∞

e−
u2

2 du. To analyze the

asymptotic form of p, we need to introduce the complementary error function

erfc(x) =
2
√
π

∫
∞

x
e−u2

du ∼
e−x2

√
πx
, as x→ +∞. (11)

It is not hard to derive an equality of the relationship between N(x) and erfc(x)

N(x) = 1 −
1
2

erfc(
x
√

2
). (12)

By virtue of equation(12), we can rewrite the formulations of two above functions I1(x, τ) and I2(x, τ)
involving in the error function and obtain the following results

I1(x, τ) = ex−ℓτ
(
1 − 1

2 erfc( x+(α−ℓ+1)τ
2
√
τ

)
)
− e−ατ

(
1 − 1

2 erfc( x+(α−ℓ−1)τ
2
√
τ

)
)

(13)

I2(x, τ) =

∫ τ

0
ℓex−ℓ(τ−u)(1 − 1

2 erfc( x−b(u)+(α−ℓ+1)(τ−u)

2
√

(τ−u)
))du

−

∫ τ

0
αe−α(τ−u)(1 − 1

2 erfc( x−b(u)+(α−ℓ−1)(τ−u)

2
√

(τ−u)
))du. (14)

On the optimal exercise boundary, we have pτ(b(τ), τ) = 0, which has appeared as a useful tool to discuss
the analysis of American option near expiry. Thus we can obtain an equation for the boundary b(τ) :

∂τI1(b(τ), τ) + ∂τI2(b(τ), τ) = 0. (15)

To solve equation (15), we write b(τ) with respect to b0 and a new unknown function a(τ) : b(τ) = b0+2
√
τa(τ).

Since α ≥ 0, the loan contract can reduce to a usual American call option with non-negative interest rate,
which case can be adapted to the existing results of American call option (see [1]). We mainly treat the
case α < 0 and b0 = 0 for this case. In the following, we will show that lim

τ→0+
a(τ) = +∞ for the case α < 0.
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Actually, since ∂I2
∂x is an integral from 0 to τ, it holds that lim

τ→0+
∂I2
∂x = 0. By the equation ∂p

∂x =
∂I1
∂x +

∂I2
∂x ,we thus

obtain that

lim
τ→0+

∂p
∂x
= lim
τ→0+

∂I1

∂x
.

Using direct computations, we get that

∂I1

∂x
= ex−ℓτ

1 − 1
2 erfc( x+(α−ℓ+1)τ

2
√
τ

) + 1
2
√
π

1
√
τ
e
−(

x+(α−ℓ+1)τ
2
√
τ

)2
 − e−ατ 1

2
√
π

1
√
τ
e
−(

x+(α−ℓ−1)τ
2
√
τ

)2

.

Using the equation (10) and b(0) = 0 for α < 0, it holds that px(b(0), 0) = eb(0) = 1.We deduce that

lim
τ→0+

∂I1

∂x
(b(τ), τ) = lim

τ→0+
(1 −

1
2

erfc(a(τ)) = 1.

Thus we have that lim
τ→0+

erfc(a(τ)) = 0.According to the property of the error function erfc(·),we can deduce

that lim
τ→0+

a(τ) = +∞.

To obtain the asymptotic expression of b(τ) as τ tends to zero, we need to derive the asymptotic forms
of ∂τI1(b(τ), τ) and ∂τI2(b(τ), τ). Firstly, we compute the derivative ∂τI1(x, τ) as follows:

∂τI1(x, τ) = −ℓex−ℓτ(1 − 1
2 erfc( x+(α−ℓ+1)τ

2
√
τ

)) + ex−ℓτ 1
√
π

e
−(

x+(α−ℓ+1)τ
2
√
τ

)2

( −x
4τ3/2 +

α−ℓ+1
4
√
τ

)

+αe−ατ(1 − 1
2 erfc( x+(α−ℓ−1)τ

2
√
τ

)) − e−ατ 1
√
π

e
−(

x+(α−ℓ−1)τ
2
√
τ

)2

( −x
4τ3/2 +

α−ℓ−1
4
√
τ

).

At x = b(τ), as τ→ 0+, it holds that b(τ)→ 0, eb(0)−ℓτ
→ 1, e−ατ → 1, x+(α−ℓ±1)τ

2
√
τ

)→ +∞, and erfc( x+(α−ℓ±1)τ
2
√
τ

)→ 0,
x+(α−ℓ±1)τ

2
√
τ
∼

x
2
√
τ
. Thus, we combine these results and obtain that, as τ→ 0+,

∂τI1(b(τ), τ) ∼ (α − ℓ) + 1
2
√
πτ

e−b2(τ)/4τ. (16)

Next, we will derive the asymptotic expression of ∂τI2(b(τ), τ). To this end, we set change of variable u = τz
and define C(x, z, τ) := x−b(u)

2
√
τ−u
=

x/τ1/2
−2z1/2a(τz)

2
√

1−z
, then the variables in erfc of I2 become

x − b(u) + (α − ℓ ± 1)(τ − u)

2
√

(τ − u)
= C(x, z, τ) +

(α − ℓ ± 1)τ1/2
√

1 − z
2

.

Then, in the expression of I2, we make variable change u = τz and use C(x, τ, z). By Taylor’s expansion, we
evaluate I2 up to terms of order τ3/2. Letting τ→ 0, we have that

I2(x, τ) ∼ (ℓex
− α)τ[1 − 1

2

∫ 1

0
erfc(C(x, z, τ)dz] + [ℓex (α−ℓ+1)

2 −
α(α−ℓ−1)

2 ] τ
3/2

2

∫ 1

0

2
√

1−z
√
π

e−C2(x,z,τ)dz (17)

Letting x = b(τ) and τ→ 0, we take the τ derivative of (17) to obtain ∂τI2(b(τ), τ).When β > r, it implies
b0 = 0 and b(τ) = 2τ1/2a(τ). Equation (15) multiplies by factor 2τ1/2 and then become

e−a2(τ)

√
π

∼ lim
x→b(τ)

[
−τ1/2(α − ℓ − 2ℓτ1/2a(τ))

∫ 1

0
erfc(C(x, z, τ))dz

−τ3/2(α − ℓ − 2ℓτ1/2a(τ))
(
−

∫ 1

0

2
√
π

e−C2(x,z,τ)Cτ(x, z, τ))dz
)

−
3τ
2

1
2

[
α + ℓ − (α + ℓ)2

2
]
∫ 1

0

2
√

1 − z
√
π

e−C2(x,z,τ))dz (18)

−τ2[
α + ℓ − (α + ℓ)2

2
]
∫ 1

0

2
√

1 − z
√
π

(−2C(x, z, τ))Cτ(x, z, τ)))e−C2(x,z,τ))dz
]
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By virtue of the similar discussion in ([1]), we obtain that
∫ 1

0
erfc(C(b(τ), z, τ))dz ∼ lim

z→1−
−

Czz

2|Cz|
3 , as τ → 0.

Since C(b(τ), z, τ) = a(τ)−
√

za(τz)
√

1−z
, the asymptotic form of the first- and second-order derivatives of C w.r.t τ are

given as follows. Direct computations show that

Cz(b(τ), z, τ)) = −
a(τz) + 2τza′(τz)

2
√

z(1 − z)1/2
+

a(τ) −
√

za(τz)
2(1 − z)3/2

.

For fixed τ > 0, we can deduce that lim
z→1−

a(τ)−
√

za(τz)
1−z =

a(τ)+2τa′(τ)
2 by L’Hospital rule. Thus we have that, as

z→ 1−,

Cz(b(τ), z, τ)) ∼ −
a(τ) + 2τa′(τ)

4(1 − z)1/2
.

Furthermore, we can obtain that, as z→ 1−,

Czz(b(τ), z, τ)) ∼ −
a(τ) + 2τa′(τ)

8(1 − z)3/2
.

Combining above results on two derivatives of C, we will obtain the following expression, as τ→ 0+,∫ 1

0
erfc(C(b(τ), z, τ))dz ∼ lim

z→1−
−

Czz

2|Cz|
3 = O

(
a(τ)−2

)
.

For the second integral in (18), we have that lim
τ→0+

−2τ
√
π

∫ 1

0
e−C2(b(τ),z,τ)Cτ(b(τ), z, τ))dz = 4. Actually, using the

discussions of asymptotic evaluation of Gaussian integrals in ([1]), we have that, as τ→ 0+,

−2τ
√
π

∫ 1

0
e−C2(b(τ),z,τ)Cτ(b(τ), z, τ))dz ∼

−2τ
√
π

lim
z→1−

Cτ(b(τ), z, τ))
√
π

|Cz(b(τ), z, τ))|
.

Because of the derivative Cτ(x, z, τ) =
−

x
2τ3/2

−2z3/2a′(τz)

2
√

1−z
,we can obtain that

lim
τ→0+

−2τ
√
π

lim
z→1−

Cτ(b(τ), z, τ))
√
π

|Cz(b(τ), z, τ))|
= 4 lim

τ→0+
lim
z→1−

a(τ) + 2z3/2τa′(τ)
a(τ) + 2τa′(τ)

= 4.

Thus we keep the term of order τ1/2 in the right side of (18), and obtain the following main result

e−a2(τ)

√
π
∼ 4(ℓ − α)

√
τ, for ℓ ≥ 0 and α < 0, (19)

which implies that, as τ→ 0+,

a2(τ) ∼ ln
1

4(ℓ − α)
√
πτ
, for ℓ ≥ 0 and α < 0, (20)

from which we can also see that lim
τ→0+

a(τ) = +∞. Via the equality B(t) = Keβteb(τ),we can acquire that the free

boundary of stock loan near expiry observes the asymptotic behavior with r̄ = r − β < 0, as t→ T−0 ,

B(t) ∼ Keβt
[
1 + σ

√
(T0 − t) ln[σ2/(32π(q − r̄)2(T0 − t))]

]
. (21)
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Besides, when the interest rate r is larger than the loan rate β, i.e., r > β, this case returns back to the
usual American call option, according to the available results in [1], we can write the boundary of stock
loan with dividends as follows: as t→ T−0

B(t) ∼ Keβt
[
1 + σ

√
(T0 − t) ln[σ2/(8π(T0 − t)(q − r̄)2)]

]
; q > r̄

B(t) ∼ Keβt
[
1 + σ

√
2(T0 − t) ln[1/(4

√
πq(T0 − t))]

]
; q = r̄

B(t) ∼ r̄
q Keβt[1 + σγ0

√
2(T0 − t)]; 0 ≤ q < r̄.

(22)

where γ0 is some constant.

4. Matched Asymptotic Expansions of Stock Loan

In this section, we shall derive matched asymptotic expansions to the scaled value function with respect
to short time. For studying short time behavior of the scaled value function p(x, τ),we define a new function
h(x, τ) := eατ(p(x, τ) − ex + 1). Then in continuation region of the contract, h(x, τ) satisfies the equation

hτ = hxx + (α − ℓ − 1)hx + eατ(α − ℓex).

Let τ = δT with T = O(1) and δ is a small parameter. Then the function h satisfies the equation for x and T
as follows:

hT = δ
[
hxx + (α − ℓ − 1)hx + eδαT(α − ℓex)

]
(23)

and with the boundary and initial conditions

h(b(τ),T) = hx(b(τ),T) = 0; h(x,T) = eδαT(1 − ex), asx→ −∞; h(x, 0) = (1 − ex)+. (24)

For x < 0 and x = O(1), we employ a Taylor’s expansion in the powers of δ to obtain the outer expansion as
follows:

h = 1 − ex + δα(1 − ex)T +O(δ2), x < 0. (25)

A local expansion in the region x = b(τ)+ δz with z = O(1) is proposed to cater for the boundary conditions.
Thus the equation for h(z,T) is given by

δhT − b′(τ)hz = hzz + δ(α − ℓ − 1)hz + δ
2eδαT(α − ℓeb(τ)+δz)

h(b,T) = hz(b,T) = 0,

this will lead to h = O(δ2). Since the outer expansion becomes invalid for x = O(δ1/2), we need an inner
expansion with a scaling x = δ1/2X and X = O(1) which links between the outer region and a region near
b(τ).We define the following expansion

h(x, τ) = δ1/2h0(X,T) + δh1(X,T) + δ3/2h2(X,T) +O(δ2). (26)

Using three equalities hT = δ1/2h0T+δh1T+δ3/2h2T, hx = h0X+δ1/2h1X+δh2X and hxx = δ−1/2h0XX+h1XX+δ1/2h2XX,
we combine them with (23) and match the coefficients of the powers of δ of two sides. We can derive the
sequence of three subproblems:

Subproblem 1. For h0, it satisfies an equation with conditions

h0T = h0XX, in −∞ < X < ∞,T > 0,

h0(X, 0) = max(−X, 0), as X→ +∞, h0 → 0, as X→ −∞, h0 ∼ −X.
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By Green’s theorem, we can derive the solution

h0(X,T) =
∫ 0

−∞

(−y) 1
√

4πT
e−

(X−y)2

4T dy =
√

T
√
π

e−
X2
4T −

X
2 erfc( X

2
√

T
).

Furthermore, we can write h0(X,T) =
√

T f0(ξ) with ξ = X
2
√

T
and f0(ξ) = 1

√
π

e−ξ2
− ξerfc(ξ).

Subproblem 2. For h1, it satisfies an equation with conditions

h1T = h1XX + (α − ℓ − 1)h0X + (α − ℓ), in −∞ < X < ∞, T > 0,

h1(X, 0) = −X2

2 I(X < 0); as X→ +∞, h1X → 0; as X→ −∞, h1 ∼ −
X2

2 .

The solution to h1 can be expressed as

h1(X,T) =
∫ 0

−∞

−
1
2 y2

√
4πT

e−
(X−y)2

4T dy +
∫ T

0

∫
∞

−∞

(
−(α−ℓ−1)

2 erfc( y
2
√

s
) + (α − ℓ)

)
1√

4π(T−s)
e−

(X−y)2

4(T−s) dyds

since h0X = −
1
2 erfc( X

2
√

T
).The first integral in h1 may be formulated as−X2

4 erfc( X
2
√

T
)+ T
√
π

X
2
√

T
e−

X2
4T −

T
2 erfc( X

2
√

T
).

To simplify the second integral in h1, we need to utilize an important equality
1
√
π

∫
∞

−∞

erfc(a − bu)e−u2
du =

erfc(
a

√

b2 + 1
), which will be proved in Appendix 1. By the equality, we can compute the second integral in

h1 as follows∫ T

0

∫
∞

−∞

(
−(α−ℓ−1)

2 erfc( y
2
√

s
) + (α − ℓ)

)
1√

4π(T−s)
e−

(X−y)2

4(T−s) dyds

=

∫ T

0

∫
∞

−∞

(
−(α−ℓ−1)

2 erfc( X−2
√

T−su
2
√

s
) + (α − ℓ)

)
1
√
π

e−u2
duds; (u = X−y

2
√

T−s
)

=
−(α−ℓ−1)

2

∫ T

0
erfc(

X
2
√

s√
T−s

s +1
)ds + (α − ℓ)T

=
−(α−ℓ−1)

2 erfc( X
2
√

T
)T + (α − ℓ)T.

Thus we write the expression of h1 as follows:

h1(X,T) = T
(
− ξ2erfc(ξ) − (α−ℓ)

2 erfc(ξ) + 1
√
π
ξe−ξ

2
+ (α − ℓ)

)
:= T f1(ξ),

where ξ = X
2
√

T
and f1(ξ) satisfies

f ′′1 + 2ξ f ′1 − 4 f1 = −2(α − ℓ − 1) f ′0 − 4(α − ℓ), in −∞ < ξ < ∞;

as ξ→ +∞, f1 → (α − ℓ), f ′1 → 0; as ξ→ −∞, f1 ∼ −2ξ2.

Subproblem 3. For h2, it satisfies an equation with conditions

h2T = h2XX + (α − ℓ − 1)h1X − ℓX in −∞ < X < ∞, T > 0,

h2(X, 0) = max(−X3

6 , 0); as X→ +∞, h2X → −ℓT; as X→ −∞, h2 ∼ −
X3

6 − αXT.

By Green’s theorem, the solution of h2 can be denoted as

h2(X,T) =
∫ 0

−∞

−
1
6 y3

√
4πT

e−
(X−y)2

4T dy +
∫ T

0

∫
∞

−∞

(
(α − ℓ − 1)h1X(y, s) − ℓy

)
1√

4π(T−s)
e−

(X−y)2

4(T−s) dyds.
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First integral in h2 can be computed as −X3

12 erfc( X
2
√

T
) − XT

2 erfc( X
2
√

T
) + 2

3
T
√

T
√
π

( X
2
√

T
)2e
−( X

2
√

T
)2

+ 2
3

T
√

T
√
π

e
−( X

2
√

T
)2

.

Because of h1X =
√

T
(
−

X
2
√

T
erfc( X

2
√

T
) + α−ℓ+1

2
√
π

e−( X
2
√

T
)2)

, and using the above integral equality involved error
function, we can compute the second integral in h2 as follows:∫ T

0

∫
∞

−∞

(
(α − ℓ − 1)h1X(y, s) − ℓy

)
1√

4π(T−s)
e−

(X−y)2

4(T−s) dyds

=

∫ T

0

∫
∞

−∞

[
(α − ℓ − 1)

√
s
(
−

y
2
√

s
erfc( y

2
√

s
) + α−ℓ+1

2
√
π

e
−(

y
2
√

s
)2)
− ℓy
]

1√
4π(T−s)

e−
(X−y)2

4(T−s) dyds

=

∫ T

0

∫
∞

−∞

(α − ℓ − 1)
√

s
(
− ( X

2
√

s
−

√
T−s

s u)erfc( X
2
√

s
−

√
T−s

s u)
) 1
√
π

e−u2
du

+

∫ T

0

∫
∞

−∞

(α−ℓ)2
−1

2
√
π

√
se

( X
2
√

s
−

√
T−s

s u)2

e−u2
du −

∫ T

0

∫
∞

−∞

ℓ(X − 2
√

T − su)
e−u2

√
π

du

= −(α − ℓ − 1)
∫ T

0

√
s
(

X
2
√

s
erfc(

X
2
√

s√
T−s

s +1
) − 1

√
π

( T−s
s )
√

s
T e
−( X

2
√

T
)2)

ds

+
(α−ℓ)2

−1
2
√
π

∫ T

0

√
s
√

s
T e−

X2

4T ds − ℓXT

= −(α − ℓ − 1) XT
2 erfc( X

2
√

T
) + (α − ℓ − 1) T

√
T

2
√
π

e−
X2

4T +
(α−ℓ)2

−1
2
√
π

T
√

T
2 e−

X2

4T − ℓXT

where the second equality is true by variable change u = X−y
2
√

T−s
.The third equality comes from two important

equalities

1
√
π

∫
∞

−∞

erfc(a − bu)e−u2
du = erfc(

a
√

b2 + 1
)

and

1
√
π

∫
∞

−∞

(a − bu)erfc(a − bu)e−u2
du = aerfc(

a
√

b2 + 1
) −

b2

√
π

e−
a2

b2+1

√

b2 + 1
.

which are proven in the Appendix 1. We also write the expression of h2 in the variables ξ = X
2
√

T
and T as

follows: h2(X,T) = T
3
2 f2(ξ), and

f2(ξ) = −
2
3
ξ3erfc(ξ) − (α − ℓ)ξerfc(ξ) +

2
3
√
π

(ξ2 + 1)e−ξ
2
+
(α − ℓ − 1

2
√
π
+

(α − ℓ)2
− 1

4
√
π

)
e−ξ

2
− 2ℓξ,

which satisfies the following equation with conditions

f ′′2 + 2ξ f ′2 − 6 f2 = −2(α − ℓ − 1) f ′1 + 8ℓξ, in −∞ < ξ < ∞;

as ξ→ +∞, f2 → −∞, f ′2 → −2ℓ; as ξ→ −∞, f2 ∼ −
4
3
ξ3
− 2αξ.

Besides, as ξ → +∞, the asymptotic forms of f0, f1 and f2, which are needed for matching aims, are given
by

f0(ξ) ∼
1
√
π

(
1

2ξ2 −
3

4ξ4 )e−ξ
2
, as ξ→ +∞;

f1(ξ) ∼ −
1

2
√
π

(α − ℓ)
e−ξ2

ξ
+ (α − ℓ), as ξ→ +∞;

f2(ξ) ∼
1
√
π

(2
3
−
α − ℓ + 1

2
+

(α − ℓ)2
− 1

4

)
e−ξ

2
− 2ℓξ, as ξ→ +∞.
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Thus we have acquired the inner expansion for h(x, τ) as follows:

h(x, τ) = τ
1
2 f0(

x
2
√
τ

) + τ f1(
x

2
√
τ

) + τ
3
2 f2(

x
2
√
τ

) +O(τ2), x = O(
√
τ). (27)

When approaching the free boundary, x = b(τ) + O(τ), the function h takes on the asymptotic behavior
h(x, τ) ∼ O(τ2), x = b(τ) +O(τ).

5. Numerical Examples

In this section, we study numerical examples with the parameters K = 50, r = 0.08, β = 0.1, q = 0.02, σ =
0.2, τ = 0.05, 0.1. and the values of the underlying asset in the interval [40, 60]. Using finite difference
method, we compute the exact value of stock loan and get the exact boundaries 55.99 for τ = 0.1. By the
expression (20)or (21), we can obtain the asymptotic boundary 53.66 for τ = 0.1. The exact and asymptotic
boundaries for τ = 0.05 are 54.43 and 52.83, respectively. The percentages of error of asymptotic boundary
are about 2.9% − 5%. With the shorter time-to-maturity, the error is smaller. We also compute asymptotic
value function of the contract based on the asymptotic boundary. From figure 1, we see that the asymptotic
value functions can offer efficient substitutions for the true ones when the time-to-maturity is short. The
results are displayed in the following figure.

35 40 45 50 55 60 65
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 P

Display of asymptotic and exact value functions of stock loan with  = 0.05, 0.1 

54.4278

52.8321

55.9893

53.6635

=0.1 exact

=0.1 asymptotic

=0.05 exact

=0.05 asymptotic

Figure 1: Comparisons of the exact and asymptotic value functions of Stock loan

6. Conclusion

In above contents, we have derived asymptotic expressions of the redemption boundary and value
function of stock loan with short time to maturity. Using the equation that the option has no time value
at the redemption boundary, we set up the asymptotic expression for the boundary. When the risk-free
rate r is smaller than the loan rate β, i.e., r < β, the result shows that the boundary tends to KeβT0 in



Y. Xu / Filomat 37:7 (2023), 2105–2116 2115

parabolic-logarithm form, this case is the main result. For the case r ≥ β, the corresponding problem returns
back to a usual American call option with interest-free rate r − β and the existing results can be utilized
to make proper adjustments for the stock loan. The matched expansion for the value function is derived
with respect to a small parameter. Numerical examples are provided to show that the proposed method is
effective.

Acknowledgement: The author thanks the reviewers for the constructive advice, which have improved
the paper sufficiently.

Appendix 1

In this appendix, we prove the equality
1
√
π

∫
∞

−∞

erfc(a − bu)e−u2
du = erfc(

a
√

b2 + 1
), which is very

important and used in former computation of related integral. To this end, we define a function 1(a) :=
1
√
π

∫
∞

−∞

erfc(a − bu)e−u2
du, which can be treated as an integral with parameter a. Since erfc′(x) = − 2

√
π

e−x2
,

we can derive that

1′(a) = −
1
√
π

∫
∞

−∞

2
√
π

e−(a−bu)2
e−u2

du;

= −
1
√
π

∫
∞

−∞

2
√
π

e−(b2+1)
(

u− ab
b2+1

)2
e−

a2

b2+1 du;

= −
2

√
π
√

b2 + 1
e−

a2

b2+1

∫
∞

−∞

1
√
π

e−v2
dv;

(
v =
√

b2 + 1(u − ab
b2+1 )
)

= −
2

√
π
√

b2 + 1
e−

a2

b2+1 .

Since it is easy to compute 1(0) = 1
√
π

∫
∞

−∞
erfc(−bu)e−u2 du = 1 by method of polar coordinates on half-plane

and 1(a) − 1(0) =
∫ a

0
1′(t)dt, we can obtain that

1(a) = 1 −
2
√
π

∫ a

0

e−
v2

b2+1
√

b2 + 1
dv = 1 −

2
√
π

∫ a√
b2+1

0
e−z2

dz

=
2
√
π

∫
∞

a√
b2+1

e−z2
dz = erfc(

a
√

b2 + 1
).

Next, we prove the second equality

1
√
π

∫
∞

−∞

(a − bu)erfc(a − bu)e−u2
du = aerfc(

a
√

b2 + 1
) −

b2

√
π

e−
a2

b2+1

√

b2 + 1
.

Actually, we can deduce that

1
√
π

∫
∞

−∞

(a − bu)erfc(a − bu)e−u2
du

=
a
√
π

∫
∞

−∞

erfc(a − bu)e−u2
du +

b
2
√
π

∫
∞

−∞

erfc(a − bu)de−u2
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= aerfc(
a

√

b2 + 1
) +

b
2
√
π

[
erfc(a − bu)e−u2

∣∣∣∣∞
−∞

−
2b
√
π

∫
∞

−∞

e−u2
−(a−bu)2

du
]

= aerfc(
a

√

b2 + 1
) −

b2

√
π

e−
a2

b2+1

√

b2 + 1

∫
∞

−∞

e−v2

√
π

dv;
(
v =
√

b2 + 1(u − ab
b2+1 )
)

= aerfc(
a

√

b2 + 1
) −

b2

√
π

e−
a2

b2+1

√

b2 + 1
.
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[23] M. Grasselli and C. Gómez, Stock loans in incomplete markets, Appl. Math. Finance 20 (2013) 118–136.
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