Filomat 37:8 (2023), 2455-2464
https://doi.org/10.2298/FIL23084555

Published by Faculty of Sciences and Mathematics,
University of Nis, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

e/ A
) @

i &

gy as’

5
TIprpor®

Drazin geometric quasi-mean for Lambert conditional operators

Morteza Sohrabi?

?Department of Mathematics, Lorestan University, Khorramabad, Iran

Abstract. In this paper we introduce the Drazin geometric quasi-mean A@,B = ||BAY|’Al* for bounded
conditional operator A and B in L?*(Z), where A has closed range and v > 0. In addition, we discuss some
measure theoretic characterizations for conditional operators in some operator classes. Moreover, some
practical examples are provided to illustrate the obtained results.

1. Introduction and Preliminaries

Let (X, X, u) be a o-finite measure space and let A be a o-subalgebra of ~ such that (X, A, u) is also
o-finite. We denote the collection of o-measurable complex-valued functions on X by L%(Z) = LY%(X, £, ).
We also adopt the convention that all comparisons between two functions or two sets are to be interpreted
as holding up to a y-null set. The support of a measurable function f € L°(Z) is defined by o(f) = {f #
0} = {x € X : f(x) # 0}. For f € L°(X), by the Radon-Nikodym theorem, there exists a unique A-measurable
function E/(f) such that

_ A
[ sau= [ Efnan, aea

for which fA fdu exists. Note that Eﬁ[( f) depends both on p and A. Put E = Eﬁ‘. A real-valued measurable
function f = f* — f~ is said to be conditionable if u({E(f*) = co = E(f7)}) = 0. If f is complex-valued,
then f € D(E) = {f € L°(L) : f is conditionable} if the real and imaginary parts of f are conditionable and
their respective expectations are not both infinite on the same set of positive measure. Note that for each
p €l,00], LP(X) = LP(X,Z, u) € D(E). The mapping E : LP(X) — LP(A) defined by f — E(f), is called
the conditional expectation operator with respect to pair (A, ). Put E = E. The mapping E is a linear
orthogonal projection. Note that D(E), the domain of E, contains L*(£) U {f € L°(Z) : f > 0}. For more

details on the properties of E see [7, 12, 13]. Those properties of E used in our discussion are summarized
below.

¢ If f is an A-measurable function, then E(fg) = fE(g).

o If f > 0then E(f) > 0; If f > 0 then E(f) > 0.

¢ o(E(|f1)) is the smallest A-measurable set containing o(f).
¢ a(f) € a(E(f)), for each nonnegative f € L*(X).

o E(If?) = |E(f)P if and only if f € L(A).
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Now suppose that {u, w, uw} € D(E),i.e., E(u), E(w) and E(uw) are defined. Operators of the form M, EM,,
acting in L*(X) with D(M,EM,) = {f € L*%(Z) : wE(uf) € L*(L)} are called weighted conditional type opera-
tors. It is known that M, EM,, is densely defined whenever K is finite-valued A-measurable function. Also,
by closed graph theorem, M,EM, : D(M,EM,) — L*(X) is continuous if and only if D(M,EM,) = L*(X)
(see [6]).

Let Bc(H) be the set of all bounded linear operators on H with closed range. For T € Bc(H), if there
exists an operator TP € B¢(H) satisfying the following three operator equations

717 = T4, TT? = TT, T*'T = T* (1)

then T is called a Drazin inverse of T. The smallest k such that (1) holds, is called the index of T, denoted by
ind(T). Notice also that ind(T) (if it is finite) is the smallest non-negative integer k such that R(T**1) = R(T*)
and N(T*1) = N(T*) hold. For other important properties of T* and T* see [1-3].

For v € [0, 1], the geometric mean Al B of positive invertible operator A and positive operator B is defined
as Aff,B = ||B%A771 IVA% . Let B}(H) be the class of all bounded linear invertible operators on H. Dragomir
in [4] introduced the concept of quadratic weighted operator geometric mean of operators. For v > 0, the
quadratic weighted operator geometric mean of the pair (A, B) € B~}(H) x B(H) is defined by A®,B =
IBA~Y["Al%. Also, for general case see [5]. When A € BC(H) is not invertible, we introduce the Drazin-
Dragomir geometric quasi-mean of the pair (A, B) € BC(H) x B(H) as A@, B = ||[BAY"A2. For A € B-1(H),
A@,B = AG),B.

In the next section, first we review some basic results on T = M, EM,, and we introduce the Drazi-Dragomir
geometric quasi-mean A@,B = IBA?|" AJ? for bounded conditional operator A and B in L?(X), where A has
closed range and v > 0. Also, we obtained some operator equalities for the Drazin-Dragomir quasi-mean
on BC(H) x B(H). To explain the results, some examples are then presented. From now on, we assume
that C = o(E(uw)), F = o(E(rs)).

2. Characterizations of Drazin geometric quasi-mean
Theorem 2.1. [8, 9] Let (u, w, uw) € D(E) and T = M,EM,, is a Lambert conditional type operator.
(1) T € B(LX(X)) if and only if E(lw[?)E(|ul*) € L*(Z), and in this case || T||*> = |E(|wl*)E(|ul*)||co-
(2) Let T € B(LA(X)), 0 < u € LO(Z) and v = u(E(lw?))z. If E(v) = 6 on o(v), then T has closed range.

(3) Ifw = gii for some 0 < g € L°(A), then T = MyzEM,, > 0 and for each g > 0, TF(f) = {gﬁE(Iulz)ﬁ‘l} AE(uf).
Definition 2.2. For A € BC(H) and B € B(H), the Drazi-Dragomir geometric quasi-mean of (A, B) is defined by
A@,B = || BAY'A?, v>0.

Theorem 2.3. Letv > 0,A = M,EM, € BC(L*(X)) and B = M,EM; € B(L?(X)). Then

A@VB =M E(r2)Y [E(sw)[2Y E(u?)Y 1 [EGuo)2 x e MzEM,,.

E(uw)®

Proof. Direct computations show that

B'BAY = (M§E(|,|2)EMS)(M%EML,)

EM,,

=M E(r)Esw)sc

E(uw)2
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Ad*B*BAd (M ixc EM3 )(Mg(mz E(sw)sxc EM )

E(uw)? E@uw)2

= Mygyecopse MaEMu,

E(uw)“’

d* d
(ATB'BAY) = My pyopnpeciuytse MaEMy,

E(uw)4a

AYAT B BANYA = My pppmpariuytiewops. MaEMy.

E(uw)*@

It follows that

A@,B=M Er2)V IEGw)2Y Equi?)" 1 E@uo)2 MzEM,,.

E(uw)3

This complete the proof. [

Theorem 2.4. Let v > 0,A = M,EM, € BC(L*(X)) and B = M,EM, € BC(L%(X)). Then (A@,B)* = A?@,B" if
and only if

E(rs)E(uw) = VE(IrP)E(jul)|E(sw)].
Proof. We know that

A@VB = ME(Mz)v‘E(sw)‘hgu,dz)vq‘EM,HZA,C MﬂEMu.

E(uw)®

Thus, using the lemma..

(A@,B)? =M Fot ey MaEMu

E(r2)Y |E(sw)/2Y E(ul?)"+ 1 |E(uw)?

Also,

d d _
A@, B = My s sy, Ma EM.

X(CnF)

E(rs)4VE(uw)4
Puta = E(ju?) and b = E(Ir]?). If (A@,B)? = A?@, B, then for each f € L*(Z), we have

E(uw)* XcroEeopBEWf)  bY|E(sw)?a" " |E(uw) xcrpBE(uf )
b |E(sw)?a"* E(uw)]> E(rs)*E(uw)*

Take f, = it VE(lw|?) x4, Replacing f in (2) by f, and by simplifying, we get that
E(rs)*E(uw)* i = b*|E(sw)[*a* 1.

Now, by multiplying the sides of above by u and then taking E of both sides equation we obtain
E(rs)* E(uw)* = b¥|E(sw)|*a*".

It follows that

E(rs)E(uw) = VE(IrP)E(luP?)|E(sw)].

Conversely, if E(rs)E = VE(rP)E(ul)|E(sw)|, it is easy to check that (A@,B)? = A?@,B?. This complete
the proof. O
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Theorem 2.5. Letv > 0, A = M,EM, € BC(L*(X)) and B = M,EM; € BC(L*(X)). Then (A@,B)" = A"@,B" for
all n € N if and only if

[E(rs)IE(uw)| = VE(IM?)E(lul?)|E(sw)l, on CNF.
Proof. Since A" = Mgy~ EMy, B" = M,ggsn-1 EM;. Then, we have

n n _
A @VB — M E(lr‘Z)v‘E(ys)‘ZV(n—l)‘E(SZU)‘ZVE(‘”‘Z)V—I \E(uw)l“”‘l)Z"*Z”,\'C Mﬂ EMM .

E(uw)dvn

Also, by using the Theorem(2.1)

(A@VB)H = M E(\rlz)"V’\E(sw)\z"”E(Iulz)’”"lIE(uw)\Z”)(C Mﬂ EMM .

E(Mw)élvn

Puta = E(jul*) and b = E(|r|*). It is easy to check that (A@,B)" = A"@,B" iff for each f € L*(X),

b | E(sw)|*"a™~|E(uw) " iE (uf)
E(MZU)4V"

B bV|E(7‘S) |2v(n—1) |E(SZU) |2vav—l |E(uw)|("‘1)zv+2”ﬂE(uf)
- E(uw)bn ’

Put f, = 1 E(w?)xa,. After substituting f, in above and using the similar argument in Theorem 2.2, we
obtain

b E(sw)[*"a™ i = b¥|E(rs)*" " V|E(sw) | a" |E(uw)| "% a, on C.

Now, by multiplying the sides of above by u and then taking E of both sides equation we obtain
B0 D|E(sw) D@D = |E(rs) 20D E(uw)| "D, on C N F.

It is equivalent to
[E(rs)IE(uw)| = VE(rP)E(luP)|E(sw)|, on CNF.

This complete the proof. [

Corollary 2.6. Let v > 0,A = M,EM, € BC(L*(X)) and B = M,EM; € BC(L*(X)). Then (A@,B)" = A"@,B"
for all n € N if and only if (A@,B)? = A*@,B*

Definition 2.7. For 0 < A € BC(H)and 0 < B € B(H), the Drazin-Ando geometric quasi-mean of (A, B) is defined
by
AH'B = B2 (ADI[PAZR, v > 0.

Not that AfIB = AZ|B3(A%)3 A7 = A3[(A)2B(A%):]"A%. For v = 1, we denote the above means by A@B
and A#?B.
Theorem 2.8. Letv > 0,0 < A = My,EM, € BC(L?(X)) and 0 < B = M,EM; € B(L*(X)). Then

d
AB = M runrecr X sm,(g,MﬂEMu

9" TEuR)?

for some 0 < g € L(A).
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Proof. First, note that A is positive. Then, by Theorem 2.1 we have

[T

A2 =M ——x,EM,y,

E(u2)

(Ah): =M

5 Xsna(g) EM,,
VFE(u2) 2

where 0 < g € L(A). Thus, direct computations show that

(Ad) % B(Ad) % = uE(m)E(m) )(Sm(] EMu,

gE(uP)3

[(Ad) 2 B(Ad)% 1" = M sz eeny Xsoap EMus

‘/E(\u|2)2‘/+1

%[(Ad) B(Ad) ]VAZ =M E((IV)LE(H,()] Xsmu(g MUEMH

g LE(u2)2Y

It follows that

AﬁiB =M E(ur)V E(sit)” XSHJ(?)MQEML[.

P
This complete the proof. O
Lemma 2.9. [11] Let u,w € D(E). |E(uw)[> = E(lu|*)E(jwl|?) if and only if w = gii for some g € L(A).
Theorem 2.10. Let A = M,EM, € BC(L*(X)) and B = M,EM; € BC(L*(X)).Then the following assertions hold

on Q.
|E(sw)P [E(ru)P?
(1) If A@B = B@A, then iiiiions = mipyetap)-

(2) If s = g, @ and r = g, for some g,, g, € L°(A), then AOB = BQA.

Where Q = o(E(jul)) N o(E(wl)) N o(E(r)) N o(E(IsP)) N o(E(si)).
Proof. (1) We know that

A@B =M o M;EM,,
£y L)

B@A =M M;EM;.
i(("’;‘z)lE ru)|

Puta = E(lul?),b = E(lwl?), ¢ = E(I|*) and d = E(Js|*). If A@B = BA, then for each f € L?(Z), we have
M iy PEWS) = M i SEGS)- )
Take f, = it Vbxa,. Replacing f in (3) by £, and so, we obtain

M\/E\E(swn””\/_XA \/—‘E( SE(si1) \/_)(A
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Asn — oo. It follows that
Vac|E(sw)lit = \/EIE(ru)Is'E(sﬁ).
By multiplying the sides of above by s and then taking E of both sides equation we obtain

Vac|E(sw)|E(sit) = Vbd|E(ru)|E(sin),

IEGW)PXo@no@ _ ECWPXo@not _
and sO ~prpEEp) . = EepEwn o O O(E(H).

(2) if s = g1@ and r = goii for some g,, g, € L°(A), by Lemma 2.9, it is easy to check that A@B = BQA.
This complete the proof. [

Theorem 2.11. Let 0 < A = M,EM,, € BC(L?(X)) and 0 < B = M,EM; € BC(L*(Z)). Then A@B = |A*#|B[? if

and only if
2
el = \l iy o ()N e

Proof. First, we recall that if A = M, EM,,, B = M,EM; then

Al =M s MzEM,,
E(u?) Vo (E(uP))

VIA =M N MzEM,,
Eu2)3 Xo(E(ui2)

VIBl =M N M;EM;,
Es2)3 o(E(s2)

d _ ;
|A| = M’\n(E(\ulz))ﬂd(E(lw\Z)) MEEMu-
VE(uP)3E(fl?)

Thus, direct computations show that

APHB? = |AIIAIIBRIAI") 2 |A]

=M Ve MzEM,.
E(ul) Xo(Equi2)
Also, we have
ADB =M e MzEM,,.
7|
£y GO o(upy)

Puta = E(ju?),b = E(lw|?), c = E(|[r[?) and d = E(|s]?). If A@B = |A]*#?|B?, then for each f € L*(Z) we have
M\/E\E(SZU)HZE(M']C) =M VbelE(sm)| ﬁE(Mf) (4)
Take f, = it Vbxa,. Replacing f in (4) by £, and so, we obtain

M\/E\E(sw)laa \/EXA,, =M \@f(s,—,n iia \/Z_J)(An.



M. Sohrabi / Filomat 37:8 (2023), 24552464 2461

Asn — oo. It follows that

\/;E( ol \/_|E(su)|

By multiplying the sides of above by u and then taking E of both sides equation we obtain

\/7|E( \/_IE(SM on o(a)

on a(a) N o(c). Conversely, if ‘é(éf))f g((llfllzz)) it is easy to check that A@B = |A*#|B|*.

EGw)| _  [E(wP)
[EGsml — N E(uP)’
This complete the proof. [

and so

If A=My,EM,, then A =M iEM,,. It is easy to check that

E(ul?)

—
AQ@,B = M gy igsopreqey-1 [E@w)2xe MzEM,,.

E(uw)‘h'

Hence we have the following corollary.
Corollary 2.12. Let v > 0, A = M,EM, € BC(L2(Z)) and B = M,EM; € BC(L2(Z)). Then A@,B = A@,B.

In a special case, we have

A@ A ME (lul2yv—1E MZ)V M EMu,

E(uw)2v=2

A@A = My, MaEM,.

E(ul?)

Then, we have the following corollary.

Corollary 2.13. Let v > 0,A = M,EM, € BC(A(Z). Then A@,A = A@,A. if and only if E(uw) =
VE(uPP)E(jwl?).

For T € B(H), the spectrum of T is denoted by ¢(T) and #(T) its spectral radius. In [10] it was proved that
the spectrum of T = M, EM,, € B(L*(X)) is the essential range of E(uw).

Theorem 2.14. Let A = M,EM, € BC(L3(Z)) and B = M,EM, € BC(LX(Z)). Then
(1) r(A@B) = |[E(Ir*)E(Jul?)| E(sw)|l| .

(2) A@B is quasinilpotent iff E(|r|>)E(|ul*)|E(sw)| = 0

Proof. (1) We know that

A@B=M —  M;EM,.
E(rl >\E(sw)|

E(lui?)

Thus,

(A@B)" = M) ey E(upy 3 MaEMu
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Then by Theorem 2.1 (i), we get that

IA@B)"I| = [IE(Ir) 2 |E(sw)|2 E(u?) " (E(u) 2 (E(uP)) llo, 1 € N.

Hence,
IA@B)"ll = IIE(r*)? [E(se0) | E(luf)¥lloo, € N.
It follows that
HA@B) = lim [[(A@B)"[[" = IE(rP)E(uP)IE(sw)lll,
(2) Since

rA@B) = lim [(A@BY'I* = IE(rDE(uP)EGw)ll:-

It follows that (A@B) = 0, whenever E(|r|?)E(lu[*)|E(sw)| = 0.
Conversely, suppose A@B is quasinilpotent. It is easy to check that E(Ir>)E(lul?)|E(sw)| = 0. This complete
the proof. [

Corollary 2.15. Let A = M,EM,, € BC(L*(X)) and B = M,EM;, € BC(L*(X)). Then

0(A@,B) = ess range (E(Irlz)E(IuIZ)IE(SW)I) \ {0}.

For u,w € L*(X)\{0} the rank-one operator u# ® w on L*(X) is defined by (u ® w)f = (f,w)u for all f € L*(X).
Let u(X) = 1 and Ay = {0, X}. Put E”™ = E. Then we have fody = fX E(f)du. Since X is an Ap-atom, then
the Ap-measurable function E(f) is constant on X. It follows that E(f) = fx fdu, for all f € L*(X).

In [10], Jabbarzadeh and Emamalipour show that if T = M,EM, € BC(L?*(X)) be nonzero elements, then
T = w ® il is a rank-one operator and

T'"=M_ wen), T'=0® ——-.
E(uw)z ||u||2”w||2

Like this, we have the following proposition.

Proposition 2.16. Let A = M,EM, € BC(L*(X)), B = M,EM; € BC(L*(X)) and A, B be the nonzero elements.
Then

323 xe

A@,B = L (6w @) w, i W)@ B ).

Proof. Since A =w®1ii, B = r®5. Then we have
B'B=(3E®n(r®s) =|IrhE®s3),

2
e = pECEeswen,

cpad _ 2/ o
B'BA" = [lwr||5(5®3) EGuw)?

I3 xc

Ad* * Ad —
(B°B) E(uw)*

(IR w)(E®3)(wQ i)
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Thus, direct computations show that

715" xc
E(uw)*

[A”(B'B)A"]" = (1@ w)(E®35)(w i)

IR xe
~ E(uw)®

(5, w)"(w, 5y, 1)~ @ ).
Then,
A'TAT (B'B)A'’A =

I'xc

= Eluw)™ (5, W) (w, 5Y (@, 1)~ Nw, 1), W) @ ).

It follows that
AQ.B = luall 3V =2117115Y x e
v E(uw)®

This complete the proof. [

Example 2.17. (i) Let X = [-1,1], du = dx, L be the Lebesgue sets, and let A C L be the -algebra generated by the
symmetric sets about the origin. Then for each f € D(E), 2E(f)(x) = f(x) + f(—x). Put u(x) = 1+x, w(x) = x> + 2,
r(x) = cos'x), s(x) = cos(x) and A = MyEM,, B = M,EM,. Then E(u) = 1,E(ju]?) = 1 + x?, E(uw) = x* + x*%,
E(wl?) = x* + x°, E(Ir]*) = cos*(x), E(|s|*) = cos?(x), E(sw) = x?cos(x), E(rs) = cos®(x), E(ru) = cos?(x) and
E(sui) = cos?(x). For v > 0, direct computations show that

AD,A = M) 5
A@,A = My -

So, by Corollary 2.13, Af@jA = Z@Vg. In this case, by Theorem 2.11, it is easy to check that A@B = |APH4|BI2.
Also, we obtain

A@,B = M 2 ;

1+x2

(5, w){w, 3 (w, u)ii, w)(i  i).

B@VA = sz cos3(x) V1+x2 *

Thus, A@,B # B@,A. In addition, in this case we can show that Theorems 2.4 and 2,5 are not hold.
Now, put u(x) = x%, w(x) = cos(x), r(x) = x*, s(x) = x> cos(x), A = M,EM, and B = M,EM;. Then E(u) = x?,
E(lul?) = x*, E(uw) = x*cos(x), E(w) = cos(x), E(lwl*) = cos*(x), E(r) = x*, E(r*) = x®, E(}s|*) = x* cos?(x),
E(su) = x* cos(x) and E(ru) = x°. In this case we get that

A@VB = Mys cos2(x) 7

B@VA =My cos?(x) *
So, by Theorem 2.10, A@,B = B@,A. Also, direct computations show that

(A@,B)=M__,

— 1 _
18V+4 cos2 (x)

A'@,BY =M

Thus, by Theorem 2.4, (A@,B)? = A@, B“.
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