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Abstract. In this paper, we consider the Robin-Dirichlet problem for a nonlinear wave equation of
Kirchhoff-Carrier type with Balakrishnan-Taylor damping. First, under suitable conditions on the initial
data, the local existence and uniqueness of a weak solution are proved. Next, an asymptotic expansion of
solutions in a small parameter with high order is established. The used main tools are the linearization
method for nonlinear terms together with the Faedo-Galerkin method, and the key lemmas of the expansion
of high-order polynomials and the Taylor expansion for multi-variable functions.

1. Introduction
In this paper, we consider the following Robin-Dirichlet problem for a nonlinear wave equation with

Balakrishnan-Taylor damping and nonlinear sources

= Attt = 1 (1,0 (), 0 (9), (I M) ) 42

= £ (3t g, @ u(t), 0 (1), Iu®IF, [u(®I7), 0 <x<1,0<t<T, (L.1)
Uy (0,8) — hu(0,t) = u(1,t) =0,
u(x, 0) = flo(.X'), ut(x/ 0) = ﬁl(x)/

where , f, iy, fi; are given functions and A > 0, h > 0 are given constants, a(-, -) is the symmetric bilinear
form on H' x H' defined by

1
a(u,v) = f 1 ()0, (x)dx + hu(0)0(0), Yu, v e H,
0

and ||v||, = +/a(v,v), Yo € H.
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Eq. (1.1); isa model with Balakrishnan-Taylor damping, because of having a (u(t), v’ (t)) in variables of the
function p, and a (u(t), u’(t)) = (u(t), u}(t)) when h = 0. This model was initially proposed by Balakrishnan
and Taylor [1], and Bass and Zes [2], it was related to the panel flutter equation and to the spillover problem.
Since then, there have been many stability results for the problem having Balakrishnan-Taylor damping,
see [4], [6]-[9], [10], [11], [12], [22]-[23], [26] and references therein. For instance, in [26], Zarai and Tatar
studied a viscoelastic Kirchhoff equation with Balakrishnan-Taylor damping as follows

= (&0 + E VDI + o(Vut), Viu(8))) Auct)

+ fot h(t — s)Au(s)ds = |ul’ u, in Q X [0, +o0), (1.2)
u(x,0) = up(x), ui(x,0) = uy(x), in Q,
u(x,t) =0,inT X [0, +00),

where Q) is a bounded domain in R” (n > 2) with smooth boundary. By using integral inequalities and
multiplier techniques, the authors established polynomial decay estimates for the energy of the problem.
In [10], Kang et. al. proved a general stability result for the viscoelastic problem with Balakrishnan-Taylor
damping and time-varying delay of the form

Uy — (a +b|IVul? + o(Vu, Vi) )Au + fot g(t — s)Au(s)ds
+uafi (ue(x, 1)) + pz fo (ui(x, t = 7(t))) = 0,in Q x (0, 00),
u=0,ondQ X (0,), (1.3)
u(x,0) = ug(x), us(x,0) = u1(x), in Q,
up(x,t) = fo(x,t), in Q x [-7(0), 0),

where Q) is a bounded domain in R” (n > 2) with smooth boundary, 4, b, ¢ are positive constants, p; > 0,
po # 0 is a real number, 7(t) > 0 represents time-varying delay, and g, fi, f> are given functions. In [4],
Emmrich and Thalhammer considered a class of integro-differential equations with applications in nonlinear
elastodynamics. They proposed a general model for description of nonlinear extensible beams incorporating
weak, viscous, strong and Balakrishnan-Taylor damping as follows

Uy + aN*u + Eu + ki — AAuy + puANuy

- [ﬁ +y fQ [Vul> dx + 6 |fQ VuVutder fQ VuVutdx] Au=h, (1.4)
in Qx(0, o0), where Q C R" isabounded domain and T > 0. The constants have the physical meaning: a > 0
is the elasticity coefficient, ¥ > 0 is the extensibility coefficient, A > 0 is the viscous damping coefficient,
g > 0 is the strong damping coefficient, 6 > 0 is the Balakrishnan-Taylor damping coefficient, § € R is
the axial force coefficient (§ > 0 traction or f < 0 compression), ¥ € R is the weak damping coefficient
(although without sign condition), £ € R is a source coefficient and the exponent g belongs to [2, c0). We
note more that the Balakrishnan-Taylor damping fQ uy(x, )uy(x, f)dx can be considered as a special case

of nonlinear Balakrishnan-Taylor damping, | fQ VuVutde_z fQ VuVudx, in (1.4). Recently, a generalization
of (1.4) has been considered by Tavares et. al. in [24], with an alternative expression of the following
Balakrishnan-Taylor term

CD(u,ut):fVuVutdx:—f(Au)utdx.
Q Q

The authors studied well-posedness and long-time dynamics to the following class of extensible beams
with Balakrishnan-Taylor and frictional damping as follows

Uy + Azu -

B+ yf IVul? dx + 6| (u, )7 @ (u, uy) | Au (1.5)
Q

+xuy + f(u) =h, in QX Ry,
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where Q is a bounded domain of R” with smooth boundary I' = dQ.

Motivated by the above works, we consider the problem (1.1) with Balakrishnan-Taylor damping,
where (1.1); is a nonlinear equation of a (u(t), u’(t)), and then of (u,(t), 1}(t)). Obviously, there are some
certain available difficulties for researchers to find the explicit solution of nonlinear initial boundary value
problems, such as that of the problem (1.1). Therefore, in one way or another, they want to know more
and more the informations of solutions, for example, they find the behavior of solutions. In this paper, in
order to study the behavior of solutions of the problem (1.1), we introduce a method named the asymptotic
expansion method, in which the solution is approximated by a polynomial in a small parameter and satisfied
a high-order estimation. This method was used successfully in our published works, see [14]-[21], [25].
However, the asymptotic expansion method used here is different from our previous papers because of
appearing the perturbed parameter / in the elements of nonlinear terms. We shall discuss briefly about the
asymptotic expansion in a small parameter / of a weak solution of (1.1) as follows.

Suppose that the weak solution of (1.1) is a function of three variables u = u(h, x, t), (x,t) € [0,1] X [0, T],
|h| is small enough. With a fixed pair (x,t), we assume that the function i — u(h, x, t) has the Maclaurin
expansion given by

N
u(h, x, t) = Z kl&— O, x, ) K + BN 1Ry [, 1, x, ], (1.6)
k=0
where
N+1
Rl xtl = ———2 " onxn, 0<0<1,

(N + 1)! ghN+1
or

1 (! N
RN [u,h,x, t] = ﬁ f (1 - 9) W (Gh,x, t) do.
+Jo

In a certain space X, suppose that Ry [u, 1, x, t] satisfies the following estimation
“RN [M, h/ y ]”X < CN/

where Cy is a constant which is independent of £, x, t, |h| is small enough. Then, it implies from (1.6) that

N1 o0k

ulh, ) -y =5
L Kt i

©,-,)H|| < CnInN*', for |h| small enough, (1.7)

X

we then obtain the following approximation
N o
~ Z ' ot k
u(h, x,t) = ZE (0 x, t) 1", for |h| small enough,

in the sense of (1.7). By the fact that the explicit solution u(h, x,t) is not known, we can not compute
all derivatives % 0,x,t),k=0,1,--- ,N. To pass this difficulty, we find the functions ug(x, t), -+, un(x,t)
(independent of /) such that the derivatives 2 ahk 1 (0, x,t)in (1.7) can be replaced by these functions. Then, we

have the following estimation

N
u(h/ r ) - U ('/ ) hk

k=0

<C N|h|N+l

X

for |h| small enough. (1.8)

Our plan in this paper is as follows. In Section 2, we give some notations and lemmas. In Section
3, we prove the local existence by applying the linearization method together with the Galerkin method.
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Specially in Section 4, with the additional assumptions u € CN*}([0, T*] x R x R2), u(t, z1,22,23) > e > 0,
for all (t,z1,22,23) € [0, T'] X Rx R% and f € CN*}([0,1] x [0, T*] X R* x R%), we establish an asymptotic
expansion of the weak solution # = uj, in a small parameter & with order N + 1 in the sense of (1.8), via
significant techniques with complicated computations. The results obtained here can be considered as a
relative generalization of [14], [15], [19], [25].

2. Preliminaries

First, we put Q = (0,1) and denote the usual function spaces used in this paper by the notations
[7 = [P(Q), H™ = H" (Q). Let -, -) be either the scalar product in L? or the dual pairing of a continuous
linear functional and an element of a function space. The notation ||-|| stands for the norm in L?, ||-||x is the
norm in the Banach space X, and X’ is the dual space of X.

We denote by LF(0,T; X), 1 < p < oo for the Banach space of real functions u : (0,T) — X measurable,
such that

T 1/p
letllpo,,%) = ( ; (1G] df) <ocoforl<p<oo,

and

llullLw0,7:x) = esssup [lu(b)llx for p = oo.
0<t<T

Denote u(t) = u(x, t), u'(t) = us(t) = ¢9t Lx, ), u”(t) = up(t) = %(x, 1), u (t) = gz (x, 1), uy(t) = %(x, t).
With f € CK([0,1] X [0, T'] X R* X R2), f = f(x,t,y1, ", Ys), we put D; f = 8f ,Dof = 8f Diof = %,

withi=1,---,6and D*f =D{"---Dg*f, a = (a1, --- ,a8) € Z8, |a| = g +~-+ag Sk,D O)f—f. g
Similarly, with y € Ck(0,T*] x R x R? = ult,y1,---,y3), we put Dy = &8—[:, Digp = 3—5, with

i=1,,3and Dfu=D" - D'y, p= (B1, , Bu) € Z2, l
On H! = H! (QQ), we shall use the following norm

=1+ + P <k DO Oy =y

lolle = (Il + lewl)’ 2.1)
We set
V={veH :01)=0}, (2.2)
and
a(u,v) = (uy,vy) + huu (0)v(0), forallu, v e V. (2.3)
Then, V is a closed subspace of H! and three norms v + [[v||zn, v > [[vy]| and v > |[o]|, = /a (v,0)

are equivalent on V.
V is continuously and it is densely embedded in L?. Identifying L? with (LZ), (the dual of L?), we have
Ves2= (Lz)/ — V’. We remark that the notation (-, -) is also used for the pairing between V and V".
Then we have the following lemmas.
Lemma 2.1. The embedding H' — C° (5) is compact and

oo @y < V2|[vllyp forall v e H'. (2.4)
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Lemma 2.2. Let h > 0. Then the embedding V — C° (5) is compact and
Wlleo () < lloxll < [l forall wveV, .
5 Pl < llosll < lolly < VI+Rlpll  forall veV. @5)

Lemma 2.3. Let h > 0. Then the symmetric bilinear form a(-,-) defined by (2.3) is continuous on V X V and
coercive on 'V, i.e.,

@) la(o)l <@+ ludllodll, forall u,veV, 2.6)
(i) a(v,0)> [, forall veV. :

Lemma 2.4. Let h > 0. Then there exists the Hilbert orthonormal base {w]} of the space L? consisting of
eigenfunctions w; corresponding to eigenvalues A such that

(i) O</\1S/\zS"‘S/\]‘SA]‘_HS'”,4lim/\j=+00,
(i1) a(w]-,v):/\j<wj,v>forallv€V,j:1,2,---.

Furthermore, the sequence {w;/ \/A—] } is also the Hilbert orthonormal base of V with respect to the scalar product
a ('/ ) .

On the other hand, we also have w; satisfying the following boundary value problem

—Aw; = Aw;, in Q,
{ j i%i (2.8)

w]-x(O) — hw]-(O) = w; 1) =0, w; € VnCce® (5)

3. Local existence

In this section, we prove the local existence of solutions to the problem (1.1). For this purpose, we
consider T* > 0 fixed and make the following assumptions:
(Hy) g, b eV N HZ, fiox (0) — hiig(0) = 0;
(H2) ueCH[0,T*] x R x R?) and there exists a constant y, > 0 such that
[Ll(t, Y1, ,y3) > sy V(f, Y1, ,y3) S [O,T*] X R X ]R_Z'_,
(H;) f€CY[0,1] X [0, T*] X R* x R?) such that
f(1,4,0,0,y3,- ,y6) =0, Yt € [0,T*],V(y3,- -, ys) € RXxR2 X R.
Let A >0,h > 0. For every T € (0, T*], we say that u is a weak solution of the problem (1.1) if

u € Wr={pel®0,T;VNH?):v e L*0,T;VNH?,
v” € L2(0,T; V) N L=(0, T;L?)},

and u satisfies the following variational equation

(' (£),0) + Aa(u'(t),0) + u [u] (Da(u(®), o) = (F [l (1), 0), (3.1)
forallv € V,and a.e., t € (0, T), together with the initial conditions
u(0) = g, u'(0) = iy, (3.2)
where
ulul (¢) = u(ta u®), w' ©), @I, lu®l?), (3.3)

FIul Get) = £ (3t 10,11, 10,0 (), 0 (0), B )
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For each M > 0 given, we set the constants Ky (h, w), Ku(h, f) as follows
_ . 4
K (1) = Ky (1, 1) = ”/"“cl(AM) = ”ru“cU(AM) + l=Z‘1 HDiru“cﬂ(AM) ’
8
K (f) = K (h, f) = “f”cl(AM) = ”fHCO(AM) + Ei HDif‘|c0(AM) ’

where

7

”/“chO(AM) = sup ’y(t, Y1, Y2, Y3)
(ty1,y2,43)€EAM

”fHCU(AM) = sup }f(x, Ly, Ye)

(xty1,+ ,y6)EAM
Av =10,T] xy[—(1j +h)M?, (1 + h)M?] x [0, M?] x [0, (1 + h)M?],
Anm =1[0,1] X [0, T*] X [-M, M]? x [-(1 + h)M?, (1 + h)M?]
x[0, M?] x [0, (1 + h)M?].

7

For each T € (0, T*], we denote
Vr={veL®0,T;VNH?:v e L®(0,T; VN H?), v € L>0,T; V)},
is a Banach space with respect to the norm
ollv, = max{llolle@,r.varz); 10 le,r:vor) ;107 l20,mv))-
For every M > 0, we put
WM,T) = f{oeVr:|poly, <M},
WiM,T) = {veWWM,T):v” € L¥0,T;L?).
Consider the recurrent sequence {u,,} with 1y = 0, and suppose that
up-1 € W1 (M, T), (3.4)

we will find u,, € Wi(M, T), m > 1 satisfying the linear variational problem

(), vy + Aa(u, (), 0) + pn(Dauu(t), v) = (Fp (£),0), Yo €V, a5
un(0) = i, u},(0) = iy, (3.5)

where

sn(t) = 1 [ ] () = 1 (,a (s (O, 1,y (), Ntta DI latmr DIE),
Fu (t) = f [um-11(x, t)
= £ (bt (o 8), 1), (3 8), Vit 1 (3, 8), 8 (1r (8), 1], (8)),
a1, s D).
Theorem 3.1. Let f, u satisfy the conditions (Hy), (Hs) respectively and if iy, iy € V N H?, then there exists a

recurrent sequence {u,,} C W1(M, T) defined by (3.5)-(3.6).
Proof of Theorem 3.1. Let {w;} be a completely orthonormal in L? as in Lemma 2.4. Put

K ko
ud® =Y Ppw,

j=1 mj

(3.6)

;]2 are determined by the ordinary differential equations as below

(i1 (1), ;) + Aa (1), w;) + (B (ul(®), w;)
=(Fn (), w;), 1<j<k, 3.7)
) (0) = g, 1y)(0) = fix,

where ¢
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in which
fge = Y a®w; — i strongly in V N H2
ok j=1 @ wj — i strongly in V.0 HY, (38)
il = Z’;zl ﬁ;k)wj — fip strongly in V' N H?. ’
Note that (3.7) leads to an equivalent form of the system (3.9) as follows
EoN(E) + NS0 + Aiptn (B, (8) = Fu(t), 39)
M0 =al, e®0) =Y, 1<i<k, ‘
where
fmi(t) = <Fm (t)lwi>l 1<i<k (310)

Using the Banach’s contraction principle, it is not difficult to prove that the system (3.9) has a unique
solution cgj; (f),1 < j < koninterval [0, T]. The following priori estimates show the bounds of approximate

solution ugj)(t).
First, we put

s @ = [la® | + i @ + 2 |an @) (3.11)
4o ) @I + [y 0 )
t t
w21 [ (| O +aild @I )as+2 [ @ s
0 0
By computing directly to (3.7)-(3.8), we obtain
Sty () = S (0) + 2111 (0) ( Aoy, Adty) (3.12)
t t
+2 f (Fu (s), 1% (5))ds + 2 f a(Fy (5), 11 (5))ds
0 0
t t
+2 f a(F (s), il (s))ds +2 f i (5) |2 )| ds
0 0
t
+ f y;n(s)(”uf,’? G| +[]au® O + 2086 5), Anl) (s)))ds
0
= 21 () (A (1), Ay (8)).

Using the inequality
1
2ab < Ba* + Ebz, Va,b >0, V>0,

and the following estimates

Hm (t) < KM(”);

IE. O < Ku(f),

IFme Ol < (1 +3M)Ku(f),

IFw @®ll, < V1+h|F @0l < V1+h(1+3M) Ky (f) = Ru (),
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we deduce
t t
2 [(Eu,0) s < T () + [ s @ (313)
0 0
t t
. (k) 72 (k) .
2 fo a(Fy (s), 1l (5))ds < T3, (f) + fo s (s) ds;
t
2 f a(Fy (5), 113y (s)) ds < 2TR, (f) + }Ls,(j? ®;
0
t t
0 P g < 2% ®
2 fo o 9) | Ay 6)][ s < Ko () fo S5 (s) ds.

By (H;) and the inequality

SO = @[ O+ lau? o)+ A Jans o)
> ([l @I + o o)
> [Au® @ + A Jaal @
> 2y au) 0 laay @,
we have
fo i (1 @I + 4 @I + 2802 5), i 51 ) s (3.14)

(k) ()
S, St <s>] N

t
Sfo um(s)l( Y v

)

We note that

5, (5)] S5 (5) dis.

2

et ) AL () + 1, (5) A )|

H% (1 (6) A0} )

< 2R, () ||a®) G| + 2|, G 2l )|
K%/I([J) 1 , 2 15
< 2( Tt um(s>|]sm ),

then

9 2

¢
||ym ®) Au® (t)Hz tm (0) Adigy + jo‘ e (ym (s) Au® (s)) ds

2
ds

IA

t
2 [ (©) Adige||* + 27 fo H% (1 ) Auty) ()

2 || (0) Aﬁ()k”z

f(R2
+4T f () L
0 A L

IA

i <s>|2] 5% (s) ds.
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Hence, —2u,, () (Auff? ®), Aufj? (t)) is estimated as follows
= 21 () (Auty (1), Aty () (3.15)
4 2 A . 2
< 5 Ml @ b @+ 7 [laas? o
4 2 1
< < [l O 20 O+ 285
8 2
< 1 H.Um 0) AflOkH
+ETft K%W(M)+l
Ao A iR

By the inequalities (3.13), (3.14) and (3.15), we obtain

Hh <s)|2] S 5)ds + 150 0.

S (8) < Sy + 2T (K3, (f) + 3K3, (f)) + f P (5) SY) (s) ds, (3.16)
0
where

_ 16
Sk = 25B (0) + 411, (0) (Adigr, Adiyz) + &t O) 1Az,
4 32TK3, (1)
T (8) =4+ SRy () + —5— (3.17)

1 , 32T ,
]lym ()] + T |, (5)

VAL

Note that the real value p,, (0) = p <O,a (flgw, Ti1x) , |0l ||ﬁo||§) is independent of m, s0 S,k = 255,’? 0) +

+2(l + (2
e

411 (0) (Adlgy, Adtagy + — 2, (0) | Adigi|? is also independent of m. Then, by the convergences of iy, ii1x given

in (3.8), we can deduce the existence of a constant M > 0 independent of k and m such that

Sux < %MZ forall m, k € N. (3.18)

Now, we need the lemmas below, their proofs are easy so we omit.
Lemma 3.2. The following estimates are valid.

@) fltrall 20y < Kot (@) [(1+ G+ 20) M2) NT + (1 + B) M?] = o7 (M) ;
(i) “lu;””Ll(O,T) S \/T|

Hinll 2y < VTor (M);

T (1 412 32TK2 (3.19)

(iii) “VWHLl(o,T) < M (W) + 2 M () :
+2(l . VTor (M) + 32Ta§ M) = 7p(T). O
te  \Aw Ak
Lemma 3.3. For every T € (0, T*] and p > 0, we put

k —(1+ ! +L) 2801+ D, ) (3.20)
" VB V2R i H ~

T 1
X exp [E + o \/TOT (M)] ,
where

Du(f, ) = (2 +5M + hM)* K2, (f) + M* (5 + ) K3, () - (3.21)
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Let B > 0 such that

1 1 ~
(1 + N + \/ﬁ) \28Dum(f, 1) < 1.

Then, we can choose T € (0, T*], such that

{ (M2 + 2T (K3, (F) + 3K, (f)) exp (7w (1) < M2,
kﬁ,T <1l.0

By (3.18), (3.19)3, we have from (3.16) that

t
SW (1) < M2 exp (—7m () + f T (5) S (5) d. (3.22)
0
Applying Gronwall’s Lemma, it follows that

sW

IA

t
M2 exp (=7 (T)) exp ( fo P (5) ds)

M? exp (—yum (T)) exp (”W”Ll(@,ﬂ) <M,

IN

forall t € [0, T], for all m and k. Therefore, we get
uf,’? e WM, T), forall m and k. (3.23)

From (3.23), we deduce the existence of a subsequence of {uf,’?} still so denoted, such that
uf,’? — Uy in L%

0,T;V N H?) weak?*,
uﬁ,’j) - uy, in L%

0,T;VNH?
;0

= U in L?(Qr) weak,
iy € W(M,T).

weak®, (3.24)

Letting k — oo in (3.7), we obtain u,, satisfying (3.5)-(3.6) in L? (0, T). By (3.24)4, it is not difficult to check
thatu), = AAuj, + upy, (t) Auy, +Fy € L% (O, T; Lz). Thus u,, € Wy (M, T) and the proof of Theorem 3.1 is proved
completely. O

By using Theorem 3.1 and the compact imbedding theorems, we shall prove the existence and uniqueness
of the weak local solution in time to the problem (1.1). First, we introduce the following space

Wi (T) = {0 € L (0,T; V) : v’ € L* (0, T;L*) N L2 (0, T; V)},
which is a Banach space with respect to the norm (see Lions [13])

0llwyry = 10llL=,1.v) + 10l 0,7:22) + 110" li20,73v) -

Theorem 3.3. Suppose that the hypotheses (H1) — (H3) are satisfied. Then, the recurrent sequence {u,,} defining
by (3.5)-(3.6) converges strongly to a function u in W1(T) and u is the unique weak solution of (1.1). Moreover, we
have the following estimate

it = tllwyry < Cr (Ksr)", forallm € N, (3.25)

where kg € [0, 1) is defined as in (3.20) and Cr is a constant depending only on T, f, u, ilo, i1, A, h and kg .
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Proof of Theorem 3.3. First, we prove the local existence in time of (1.1). It is necessary to prove that

{ty;} (in Theorem 3.1) is a Cauchy sequence in Wy (T) . Let v, = tp41 — ty,. Then v, satisfies the variational
problem

(v (t), w) + Aa (v, (£), W) + psr () a (0 (), W)
= (Fm+1 (t) - Fm (t) ’ w) + [[«lm+1 (t) - Pm (t)] <Aum (t) 7 w)/ Yw € Vr (326)
Om (0) = Ull”rl (0) =0,

where

Fm+1 (t) - Fm (t)
= (b (e 1), 10y (5, 8), Vit (x,8), @ (s (8) 107, (8)) Mt (I it (D)
_f (x/ £, U1 (x/ t) ’ u:y,71 (x/ t) ’ Vum—l (x/ t) ,a (”m—l (t) ’ u:/’171 (t)) ’

i1 OIF, s (I,
Hm+1 (t) - HUm (t)
= (b, G (B, 17, () Nl OIF N (O

e (ta (1t (8), 1, (), Mty (I s (D)

Taking w = v;, in (3.26); and then integrating in ¢, we get

t t
Su(t) = fo Wy ) llow GS)IIZ ds + 2 fo (Fut1(s) = Fu (s), 0y, (s))ds (3.27)

t
2 fo [t 5) = trs1 ()] €At (5), 0 (5))ds,

where

Sm(t) =

9 G|} s + s O low DIE. (3.28)

t
o, O +24 fo |

Next, we have to estimate the integrals on right-hand side of (3.27).
Since

Su(t) = st O o DIZ = e llow DI,

it follows that

t 1 .
f ey 8) llom (I ds < _f
0 H* 0

By (H3), it is clear to see that

i1 8| S(s)ds. (3.29)

IFya1 (£ = F (1] < Kot () [2+ 5+ b)) M] ([fow1 (D), +

v, 0),)-
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Hence
2 Fm+ _Fm s 1,11 d
f0< L(8) = Fn (5), 0, (5))ds
< 2Ku (f)[2+ 5+ ) M] fo (Ioma @), + [y ©],) o5 )| s

< 261G, () 12+ 6 + )Y MP (Tllow-l ) +

Uy (t)HiZ(O,T;V))

+ 1 ft Su(s)ds
B Jo
< 28K (f)[2+(5+ WMJ* (1 +T) ”Um—‘l”%/\]l(T) + % fot Sm(s)ds.
By the fact that

|ttmer (8) = i (8)]

Raa () [ Gt 9,15, ) = (1 (0,0, O)

+Rovt (1) ([l O = lets O] + [ltan I = et BIE])
R (1) [(1 4+ 1) M (o1 Ol + 2], B)],) + 4M -1 B, ]
< 5+ MRy (1) (0w Olly + [0, B)],)

we obtain

f
fo [ttt (5) = i (5)] (At ), 0, (5))ds

IN

IA

2

0, G)[|,) [[or ©)]| s

< 26M* 5 + 1) R () (T llow-1le 1) +

+%j(; S (s)ds

_ 1
< 28M* (5 +h)* K3, (1) (1 + T) llom-1 g,y + 5 f Su(s)ds.
0

Combining (3.29), (3.30) and (3.31), we deduce from (3.27) that
Su®) < 281+ T)Dulf, ) llow1li, 1y

2 1,
+[) (‘E+E T (s)))Sm(s)ds,

where Dy (f, ) as in (3.21).
By using Gronwall’s Lemma, we have

t
<2M*(5+h)K et (8]l
<22 G Ku(p) [ (Ions Ol +

, 2
|
m=1llr2(0,7;v)

t
Su (1) < 281+ DD (f, ) w11l 1y exp [ f (z - yl . (s)|)ds]

o \p
_ 2T 1
< 25(1 + T)DM(f/ [J) ”vm—lH%\h(T) exp (F + E

[T ” o (O,T))

) 2T
< 2B(1 + T)Dm(f, ) l0m-1lly, 7y exp (_

L VTor (M)).
B

2332

(3.30)

(3.31)

(3.32)
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Hence, it follows from (3.28) and (3.32) that

Omllw,(ry < kg1 [Om-1llw, (), Ym € N,
where kg 1 € [0, 1) is defined as in (3.20), which implies that

(ksr)"

||um+,, - um”Wl(T) < m [lug — 1/[0||W1(T) < m (kﬁ,T)m , vm,p € IN.

The above inequality ensures that {u,,} is a Cauchy sequence in Wy (T) . Then there exists u € Wy (T) such
that

U, — u strongly in Wy (T). (3.33)

Note that u,, € W (M, T), then there exists a subsequence {”m;’} of {u,,} such that

U, = U in L*® (0, T;V N H?) weak*,
Uy, = in L® (0, T;V N H?) weak®, (3.34)
Uy = U’ in L2(Qr) weak,
weWMT).
We note that

[F = £ 1] 2,y < (1 4+ VT) 2+ 5 + HIMI Kt () st = sl -
Hence, since (3.33) we deduce

F,, — f [u] strongly in L? (Qr) . (3.35)
We also note that

et = g 1|2y < (1 VT) M2 (54 1) Rt ()t = il - (3.36)
On the other hand, for all v € V, we have

|t (D)@ (s (£) , 0) = e [u] () (u (1), )| (3.37)

< |ttm (B @ (i (8) = 1 (), 0)| + |12 (8) = p [u] (B)] la (e (8) , )]

< (1 + 1) Ryt () Nt () = e @), N0lly + Q1+ h) |t — o ] )] e ()1, N0l

< (1 + 1) Ry () 1ol s =l

+ (L + 1) el 10l [ (E) = 2 Tua] (2)]
Hence, since (3.33), (3.36) and (3.37) we obtain

T T
‘ fo b (B (1 (£),0) ) (1) dlt fo ulul B a (), o)) @t (3:38)
< (L + 1) Rag () oll (|6l . e = 2l

T
(14 1)l ol fo () — g 1] ()] | 0]

< (1) Ry (i) 0l ||| g 7 Netos = wllw oy
+ (1 + ) lallw, o Wolle || 2 0. et = 1] 2o,y = O
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YoeV,¥$ e L*(0,T).
Letting m = m; — o0 in (3.5), (3.6) and using (3.34), (3.35) and (3.38), we get that there exists u € W (M, T)
satisfying the equation

@’ @),y +Aa@ #),v)+plula@t),v)=(flu]lt),v), YveV, (3.39)
and the initial conditions
u (0) = i, u’ (0) = .
Moreover, since the assumptions (H;) and (H3) we obtain from (3.34), and (3.39) that
W’ =AM+ p[u] Au+ f € L (o, T;LZ),

thus we have u € Wi (M, T) . The proof of existence is completed.
Finally, we need to prove the uniqueness. Let u, u, € Wi (M, T) be two weak solutions of the problem
(1.1). Then u = uy — u, satisfies the variational proplem

W’ (t),0) + Aa (' (t),0) + fi (a(u(t),v)

=(F1(t) = F2(t),v) + [ (t) — f2 ()] (Aua (£) ,0), Yo €V,
u(0)=u"(0)=0,

where

B () = ] () = s (£, (1 O, 1, ), s (P, s D),
Fi(t) = f[ui] ()
= f (x4, Vg a (s (), ] (1), s OIF s (1), £ = 1,2.

Taking v = u/(t) and integrating in time from 0 to ¢, we get
t t
20)= [ @@ mERds+2 [ (Fi©-F0) G 3.40)
0 0

t
+2 fo ({11 (s) — {2 (5)) (Aua (s) , u’ (s))ds,

where

t

Z (1) = llw’ OIF + () llu (BIfF + 24 f 1’ (s)II5 ds. (3.41)
0

Putg(s) = Dy + ﬁ fi} (s)|, where Dy is a constant as follows
_ ~ 1 (24 5M + hM) Ky ()
Dy = 2(\//I+ b (2 4+ 5M + hM) K (f)
1 5+h) MZIZM ([J) )5
+2(\/E+ ] 5+ h) M“Kp (u).

Then, by simple calculations, it follows from (3.40) that

t
Z(t)sj;q(s)Z(s)ds. (3.42)

We note that

|27 )| < R () [1+ G +2m) M2 + (1 + 1) M

uy G)],].
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and since u}' € L?(0,T; V), we obtain i1, € L?(0,T),so j € L*(0,T).

Therefore, by (3.42) we have that

t
220 < il fo 7 (s)ds.

By Gronwall lemma, it follows that Z (f) = 0, i.e., 11 = u,. The uniqueness is proved. Consequently, this
completes the proof of Theorem 3.3. O

4. Asymptotic expansion of the solution

In this section, we consider the following perturbed problem, where & is a small parameter, with
0<h<1:

g = Aty = o (£ @, ut), 0 (1), TuOIP MO, ) e

ey = F ot @), 0 ®), @, lu@)l;,), 0<x<1,0<t<T,
uy (0,8) = hu(0,t) =u(1,£) =0,
u(x, O) = ﬁo(x), u,(x, O) = ﬁl('x)/

where A > 0 is a given constant, a,(-, ) is the symmetric bilinear form on H! X H! (depends on h) defined by
1
ay(u,v) = f 1 (X)0,(x)dx + hu(0)0(0), Yu, v € HY,
0

and |[vll,, = yan(v,v), Yv € H.
First, we note that if the functions (i, #11), f, u satisfy (H;) — (H3) respectively, then a priori estimates
of the Galerkin approximation sequence { u) in the proof of Theorem 3.1 for Prob. (1.1), corresponding to

0<h<1,1lead to
u® e Wi (M, T), forall m, k € N,

where M, T are constants which are independent of .

We also note that the positive constants M and T are chosen as in (3.19), Lemma 3.2, with Ky(f) = Ku(h, f),
Ru(p) = Ru(h, ), a(-,) = ay(-,-) and o7(T), standing for Ku(1, ), Kn(1, 1), a1 (-, ), Kna(1, 1) [ (1 + 7M) VT + 2M?]
respectively.

Hence, the limit u;, in suitable function spaces of the sequence {uﬁ,’?} as k — +oo, after m — +o0, is a
unique weak solution of the problem (P},) satisfying

u, € Wi(M, T).

When h = 0, (Py) is denoted by (Pp). We shall study the asymptotic expansion of the solution u;, of (Py)
with respect to a small parameter h.

We use the following notations. For a multi-index a = (a1, -+ ,an) € ZN,and x = (x1,--- ,xn) € RN, we
put

lal =a1+---+an, al =aq!---an!,
Q@ — 31 40N
X% = xg Xy

a,pezZN, a<pe a;<pi Vi=1,---,N.

First, we shall need the following lemmas.
Lemma4.1. Let m, N € N, x = (x1,--- ,xny) € RN, and h € R. Then

N " mN
[Z xkhk} =Y PN, i, 4.1)
k=m

k=1
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where the coefficients P,[:"](N, x), m < k < mN depending on x = (x1,-- -, xn) are defined by the formula

Xk, 1<k<N, m=1,
|
P]Em](N,x) = Y ﬂ"x"‘, m<k<mN, m>2,
aeAll(n) &
with A(N) = {a € ZV : ol = m, T, io; =k}.
Lemma4.2. Let N € N, (xo,- -+ ,xn), (Yo, -, yn) € RN, and h € R. Then

N N 2N ( k
Z Xk]’lk (Z ykhk = Z {Z XiYk—i hk.
k=0 0

k=0 k=0 i=
In the case of xo = yo = 0, we have

N 2N (k-1
thk (Z ykhk = Z {Z XiYk—i hk.
k=1 k=2

i=1

N

k=1
The proof of these lemmas is easy, and we omit the details. O
Now, we assume that
(HéN)) @ € CNTY([0, T*] X R x R2) and there exists a constant p, > 0 such that
H(tr Vi, 1y3) 2 Hos V(t, Vi, 1y3) € [O/ T*] X R X ]R-zw
HY")  fe1([0,1] x [0, T*] x R* x IR2) such that
f(1,4,0,0,y3,-+ ,¥6) =0, ¥t € [0, T*], Y(y3,- -, y6) € RXR2 X R.
We also use the notations

FilnlGe ) = f (%t sy Cu(t), o (0, MO eI
fldent) = foot,uuuy, (ug(t), w0, lu@®), luOIF),
unld® = (b an (), ' O), @I, @)z, ),
uladt) = g (8 G, w0, IR e (DIP)
D"f = DMDIDDMDIDIf, m = (my, -, me) € ZS,
D'u = DyDPEDYu, n=(ny,n,ns3) € Z3.
According to the above, ug € W1 (M, T) is the weak solution of the problem

ufl — AAu) — plugl())Aug = flugl = Fo, 0 <x<1,0<t<T,
(PO) qu (O/ t) = ”O (1r t) = 0/
uO(x/ 0) = ﬁo(X), u(’)(x, O) = ﬁl(x)'

Considering the sequence of weak solutions u; € Wi(M, T), 1 < k < N, of the following problems:

u! = AAu, — plugl(DAux = F, 0<x < 1,0 <t <T,
(Pk) ukx(or t) = uk—l(ol t)/ le(l, t) = 0/
ur(x,0) = u;(x,0) =0,

where Fy, 1 < k < N, are defined by the recurrent formulas

| ;1 %D’”f[uo]fbl[m, IZ(] + Aug HZ‘l %D”y[uo]@)l[n, L_l),,], k=1,
m|= n|=
mezs nezs3
i Y LD flugl®[m, ] + Aug Y, D" ufugld[n, it.]
Fk — 1<|m|<k 1<|n|<k
mezs nezs
k-1 A
+Y Y LID"uluo)diln, ] Au;, 2<k<N,
i=11<pl<i
nezs

2336

4.2)

4.3)

(4.4)

(4.5)
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with i, = (up, uy, -+, uy) and @x[m, i2.], D[n,.], 1 < k < N, defined by the formulas:

(a) Formula ®[m, ii,] :

Oy [m, 7] = Z PIE’I’”](N,L?)P,ETZ](N,J’)P][(T”(N,z?x)P,ET‘*](ZN+1,51)

keAx(m)

x PN, )P 2N +1, &),

in which
Am) = K = (kn, - ke) € Z5 - |1?| k4t ke =k,
m; <ki<Nm;, i=1,2,3;
m; <kj < (2N +1)m;, j=4,6; ms < ks < 2Nms},
m=(my,--- ,mé)EZﬁ,
|m| =my + -+ mg,

m! =mq!---mgl,

1,?: (ulr"' /MN)/ 17 = (ui’. . ,M;\]),
ﬁx = (u1XI Tty uNx) = (Vull Tty qu)r
and
& = (En, - ,&1an+1) € RNV
& =&, ,&on) € R,
&= (&, e, E3on1) € RAVH,
are defined by
k k-1
2(Vu,-, Vi, )+ Z ui(0,u_,_.(0,4), 1<k<2N,
=1 5 =0
Z ui(ol t)uéN_i(Or t)/ k=2N+1,
i=0
k
£ = Y (i), 1<K <N,
i=0
k k-1
Y (Vui, Vi) + X ui0, Hug1-4(0, 1), 1<k <2N,
k=1 5N =0
Z Mj(o, t)”ZN—i(Or t)r k=2N+1.
i=0
(b) Formula ®y[n, i2.] :
Oeln,it]= Y PUIEN +1,8)PIRN, )PIEIRN +1,8),
keAi(n)
where

A = (k= (ko ko) € Z2 2 ] =Ky + e+ ks =
nj < k]' < (2N + 1)I’lj, ] =1,3; n, <k, <2Nnyp},
n= (nlan/ n3) € Zi/

|n| = ny + ny + n3, n! = nylny!ngl.

2337

(4.6)

A7)

(4.8)

(4.9)

(4.10)

(4.11)

(4.12)
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Now, we need the lemma below, its proof is easy so we omit.

N
Lemma 4.3. Let H = Y, uyh, then
k=0

2N+1 r
51 =ay (H/ H,) - <u0x, u(l)x> = Z élkh 7
=1

& = [HIP = lluoll® = Z Ex, (4.13)

& = IHIG, = ol = Z &,

where &1k, Eak, (k =1,2N + 1), Ex, (k = 1,2N) are defined by the formulas (4.10).
Therefore, we can prove the following key lemmas (Lemma 4.4 and Lemma 4.5).
Lemma 4.4. Let ®[m, il.], &¢[n,iZ.], 0 < k < N, be the functions defined by formulas (4.6) and (4.11). Let

N
H =Y u.e". Then we have

r=0
filH u0]+Z Y- LD flug ylm, 1| + BNFIRAL, 2., (4.14)
k=1 1<|m\<k !
mezs
and
= 1
wilH] = pluol + ) | Y D" pluolbiln, ] [H* + BN Ruly, 2. ], (4.15)
k=1 |1<nl<k
nezs

with ||RN[f, ﬁ"’h]”L""(O,T;LZ) + ||ﬁN[y, i, h]||L°°(O,T) < C, where C is a constant depending only on N, T, f, u, ux,

k=0,N.
Proof of Lemma 4.4. (i) In the case of N = 1, the proof of (4.14) is easy, hence we omit the details. We only

N
prove the case of N > 2. Let H = up + ), el = ug + Hy. We rewrite as below
k=1

filH) = f (x,t, H, H', Hy, ay(H, H'), I|HI?  [|HIZ, (4.16)

2 2
= f (%, 1o + Hy, uf + HY, uoy + Hiy, Cttoy, uf) + &, ol + Ex, lluonl* + &3),

where &1 = ay (H, H') — (ugy, 1f ), & = [IHIP = lluol*, & = I1HIE — ol -
By using Taylor’s expansion of the function f,[H] = f,[uo + h1] around the point
[0] = (x,t, to, ), o, (ttos, ), ol lutox)
up to order N + 1, we obtain
1 /
fulH] = fluo] + Z — D" fluolHY" (HY)™ (Hin)™ €7 E5" (4.17)

1<|m|<N
m=(rmy - ,mg)EZ8

+ Rﬁ)[f, T/_l)*/ Hl/ 51/ 62/ 53]/
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where
ROLf, it Hi, &1, &, &]
N 7 *y 1/ 1/ 2/ 3

N+1
-y = ( f (1= OND" F(O)d0 | Hy ()™ (Ha)™ &)
[m|=N+1
mezs

— hN+1R§3) [f/ iL., K

and

D" f(6) = D" f (x,t,ug + OHy, u} + OH}, gy + OHuy, (tige, 1), ) + 0&1,
il + O3, o> + 6&3).

By the formulas (4.1), (4.3), (4.4), it follows that

N m Nmy
H =Y ukhk] =Y PN, i,
k=1 k=m
N m2 - Nm,
Hy™ =) u,;hk] = Y PNyt
k=1 k=m;
N M3 Nms
(H)"™ = | ) xh"] = ) PN, i),
k=1 k=ms3
2N+1 My ON+1)my
& = &khk] Y., PN +1,8),
k=1 k=my
2 M5 2Nms
&=y 52khk) = ), PN, &y
k=1 k=ms
2N+1 Ms  (2N+1)mq
ge=Y] 53khk] Y PN +1, &)
k=1 k=mg
Therefore, it follows from (4.20), that
N Ny
I (H)™ (i)™ Eeye = ). aglm, @i+ Y dylm, a0,
k=|m| k=N+1

where

Ofm, . = ) PN, DPYN, PN, it
keA(m)
x PII@N +1,8)PII2N, &)PII 2N +1, &),

N, = N (jm| + my + ms + mg) + my + mg,

with Ai(m) as in (4.7).

2339

(4.18)

(4.19)

(4.20)

(4.21)

(4.22)
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Hence, we deduce from (4.17), (4.18) and (4.21) that

N
FilH = flugl + ), %Dmf[uo]Zch[m,m]hk (4.23)

1<|m|<N k=|m|

N

Y —D”’ fluol Y lm, i I + MR, ik, h]

1<|m|<N m! k=N+1

—fuo]+Z Y D" fluoludm, 1 |+ 1 RL, 2]

k=1 1<|m\<k
where
N,
WN*IRNL, iT., h] = Z Fluo] Z e, @JHE + INORO[f, 12, B, (4.24)
1<|m|<N m! k=N+

with @ [m,i.], 1 < k < N,, are defined by (4.22), and HRN < C, where C is a constant
depending only on N, T, f, ux, k = 0,N.

Hence, the formula (4.14) is proved.

(ii) In the case of yy[H] = p (t a(H,H'), |H|I?, |H”a;,) Applying the formulas (4.6) - (4.10) and (4.14)

d d
Wlthf = f(t’ylfyZ/yS) = Au'(t’yllyZ/y3)/ D]f = O/ ] = 1/3/4/5; DZf = Dl# = a[’l D6f Dz,,l = a:

h]||L°°(0 T;L2) —

d d
D7f =Dsu = a]‘:l Dgf = Dy = (9: , we obtain formulas (4.11), (4.12) and the formula (4.15) is proved.

This completes the proof of Lemma 4.4. O

N
Let u = u, € W1(M, T) be a unique weak solution of the problem (P;). Thenv = u — Y, uyh* =u—H =
k=0
u — up — H; satisfies the problem

v’ — ANV — v+ H]Av = fy[v + H] = fu[H] + (unlv + H] — un[H]) AH
+Eu(x,1),0<x<1,0<t<T,

v(0, 1) — ho(0, ) = WN*1un(0, 1), v(1, 1) = 0, (4.25)
v(x,0) =v'(x,0) =0,
where
N
En(x, ) = filH1 = fluol + (un[H] - plugl) AH - Y Fh. (4.26)
Lemma 4.5. Under the assumptions (H1) — (H3), (H;N )) and (H;N )), we have
IEallso,;2) < CHNY, (4.27)

where C, is a constant depending onlyon N, T, f, u, ux, 0 < k < N.

Proof of Lemma 4.5. In the case of N = 1, the proof of Lemma 4.5 is easy. The details are omitted. We only
consider N > 2.
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By using formulas (4.4), (4.15), we obtain

(un[H] = uluol) AH

N
_ Z[ Y Lotutulbdn, i

k=1 \1<n|<k

HAH + INTI Ry, i2., h]]AH

N N
= Z [ Z %D”y[uo]@([n, L_A]] h* {Auo + Z Aukhk] + WNH Ry [, it., h]]AH

k=1 \1<n|<k k=1

N 1 X }
= AuOZ[ Z D" uluo]biln, u*]}hk

k=1 \1<|n|<k
N
)

k=1

[Z D" uluolbyln, . ]]thAukhk + INY Ry [, i, h]]JAH

1<|n|<k k=1

N
1 5 ,
Auoz Z n—D”y[uO]CDk[n,u*]]hk

2N
+ [ Z %D”y[uo]ﬁ)i[n, m]JAuk,-hk + N Ry [, i, h]JAH
i=1 \1 ’

n|=1
> 1, 1
2 1 Y, D uluoldiln, . ]Auo+2[ Zapny[uo]qai[n,ﬁ*]]mk_i
k=2 |1<|n|<k i=1 \1<|n|<i
N k-1 1
+hN*L [ { Z — D" ufug]®i[n, J*]]Auk_ihk‘N‘l + Rnly, it., h]]JAH
n!
k=N+1 i=1 \1<|n|<i
1 - S,
N [Z — D" uluoli[n, u*])h
=1 """
1 2, -
+Z Z —D” [uo]Diln, 1. Auo+Z[ Z ED”y[uo]qu[n,u*]]Auki
k=2 1<|n|<k : i=1 \1<n|<i =~

+HNRY [, i, 1],

where

2N k-1
ROy, 2., h] [2 Z( 2 —D” [uo]®iln, i ]]Auk_ihkN1+f<N[y,1L,h]]AH .

k=N+1 i=1 1<|n|<1

hk

hk

2341

(4.28)

(4.29)
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By using formulas (4.14), (4.26), (4.29), we deduce from (4.5) that

N
En(x,t) = fulH] = fluol + (un[H] — pluo]) AH — Z Fuitt (4.30)
k=1
= LZ %Dmf[uo]q% [m, LZ] + AMO [lz %D”lu[uo]@)l [1’1, IZ]] - Fl h
m|=1 n|j=1
N 1 1
+Z[ Y, D" fluolelm, ]+ Y — D" uluoliln, i1Aug
k=2 |1<im|<k 1<|11|<k
+Z[ Y —D”[J[uo]q) [n, iL.] | Aue ,-—Fklhk
i=1 1<\n|<z !

+ WM (R, i2., H] + R [, 2., h)
= WY (Ru[f, i, i+ R [, ., 1)

By the functions ux € W1(M, T), 0 < k < N, we obtain from (4.24), (4.29) and Lemma 4.4 that Ry[f, i., h] +
Rg\l,)[[u, if., h] is bounded in L*(0, T; L?) by a constant C, depending only on N, T, f, u, ux, 0 <k < N, i.e.,

IEnllr=@,r12) < CHNTL (4.31)

This completes the proof of Lemma 4.5. O
Now, we estimate v = u — Y5 uh.

By multiplying the two sides of (4.25) by v’, we verify without difficulty that

t t
S(t)=2f<Eh(s),v'(s))ds—2hN+1f fin(s)un(0, s)v’ (0, s)ds (4.32)
0 0
— 2ARN* f 1u,(0,8)0'(0, s)ds
Lf @M@Mﬁ+{fmw+m FiIHL, o (5)ds

+{fwm+m—mwmmw%Ws
0

6

= Si
i=0 1%

where
fin(s) = uplo+H] = (t, ap(o+H,o' +H), o+ HI?, o+ HI}, ) = plo + H], (4.33)
t
sm=mﬁW+mmmmﬁ+ijW@@%
0

¢
> |l (DI + Jim ||v(t)||§h + ZAf ||v’(s)||§h ds.
0
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Put M; = (N + 2)M, it is not difficult to prove that the following inequalities hold
t ; ¢
S = 2f (En(s),v'(s))ds < TC?h*N+2 +f S(s)ds;
0 0
t
Sy = —2KnN*! f fin(s)un(0,s)v' (0, s)ds
0

t
< 2]/1N+1MIZM1 (y)f
0

v;(s)” ds

< ih2N+2M2K§41 (1) +2BA f

t
< 2 | v;(s)”2 ds

T _
< Zﬁ—AhZN“MZKiAl (W) + BS(t);

t
Sy = —2AKN*! f 1y (0,8)v (0, s)ds
0

t
< 2AMHKN* fo v, (s)|| ds

T t
< —AMZH2N*2 4 287 f
26 P,

v;(s)”2 ds

T 21,2N+2
< —AM2h p).
< 55 M +BS(t)

On the other hand

fi}(s) = Dyfo + H] + Dopl[o + H] [Ilo” + H'I]}, + an(o + H,0” + H")]
+2Dsulv + H{v + H,v" + H') + 2Dgulv + Hlay(v + H,v" + H’).

2343

(4.34)

(4.35)

By uy, u € Wi(M,T),k=0,1,--- ,N, we can deduce the existence of a constant Dy; > 0 independent on /

and s € [0, T] such that

()| < Dy (1+

o) + HYO)[]) = Wn(s).

Moreover

T T
fo W2 (s)ds < D,zwf(; (1+]

T
<2D%, [T + f u;’(s)“2 ds}
0

= 2%, (T + 1" P20 121) < 2D (T + M?).

2
v (s) + H;’(s)”) ds

It follows from (4.36) that

t 1 t
$i= [ BEROE &< - [ wEseds
0 He Jo
By the fact that

lfulo + HI - AlH]|| < @ + 6M1)Kas, () (110G, + 17/ Gl )

(4.36)

(4.37)

(4.38)

(4.39)
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we get
55=2 fo il + H = fi[H], o' (5))ds
t
<22+ 6MIK () [ (I, + IO, ) I 6Nl ds
t
< 201f0 ( \/1_ VS(s) + “U,(S)”m,) VS(s)ds

S(s)ds + 15 f S(s)ds + f 1o’ )II7, ds
s B ’ ,,
201 1 ﬁ
< ( + )I) S(s)ds + 2/\S(if).
Similarly, by the following estimate

|unlo + H] = w[H]| < 6Mi Ko, () (106, + 10/ G)l, )

we obtain

t
Se=2 fo (uulo + H] - [H]) (AH, 0/ (s))ds
t
< 12V, (1) fo (I, + /G, ) I Gl ds
f
<20, fo (\/1_\/8(s)+ ||v'(s)||ﬂ,,) VS(s)ds

<(i7i ; )fS(s)ds+£S(t)

2344

(4.40)

(4.41)

(4.42)

We can choose g > 0 such that 8 (2 + %) < 1/2, combining (4.32), (4.34), (4.38), (4.40) and (4.42), we then

obtain

t
S(t) < TDOnN+*2 4+ 2 f DY + ”l\yM(s)] S(s)ds,
0 *

where
1) 2 2 2
2 2
Dﬁ):1+201 + 20, 01+02
N

By Gronwall’s lemma, we obtain from (4.37), (4.43) that

[ T

S(t) < TD()H?N*2 exp |2 f (D;? + yl\I’M(s))ds]
| 0

2\/_ ]

< TD\)n*N*2 exp [2TD{) +

2( D2 4 \/ZT T+ M?) DMH

< TDSI)hZN 2 exp

= DO(T)HN*2,

(4.43)

(4.44)

(4.45)
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Hence

1 1 o
”UHWl(T) < (1 + \/_[J_ + E) DES’I)(T)hNH’

or

< CrhN+L, (4.46)
Wi(T)

N
=)
I oo W

Consequently, we obtain Theorem 4.6 below.

Theorem 4.6. Let (Hy) — (H3), (H;N )) and (HgN)) hold. Then there exist constants M > 0 and T > O such that,
for every h, with 0 < h < 1, the problem (Py) has a unique weak solution u, € Wi(M, T) satisfying an asymptotic
estimation up to order N + 1 as in (4.46), where the functions uy, k = 0,1,--- ,N are weak solutions of (Py), (Py),
k=1,---,N, respectively. O
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