

Published by Faculty of Sciences and Mathematics, University of Niš, Serbia Available at: http://www.pmf.ni.ac.rs/filomat

Lipschitz functions class for the generalized Dunkl transform

M. El Hamma^a, A. Laamimi^a, H. El Harrak^a

^aUniversité Hassan II,Faculté des Sciences Aïn Chock, Département de mathématiques et informatique, Laboratoire Mathématiques Fondamentales et Appliquées, Casablanca, Maroc

Abstract. This paper is intented to establish the analogue of Titchmarsh's theorem for the Dunkl generalized transform on the real line.

1. Introduction

Consider the first-order singular differential-difference operator on R

$$Df(x) = \frac{df(x)}{dx} + \left(\alpha + \frac{1}{2}\right) \frac{f(x) - f(-x)}{x} - 2n \frac{f(-x)}{x},$$

where $\alpha > -1/2$ and n = 0, 1, ... For n = 0, we obtain the classical Dunkl operator with parameter $\alpha + \frac{1}{2}$ associated with the reflection group \mathbb{Z}_2 on the real line.

$$D_{\alpha}f(x) = \frac{df(x)}{dx} + \left(\alpha + \frac{1}{2}\right)\frac{f(x) - f(-x)}{x}.$$

These operators D have been generalized the calssical theory of Dunkl harmonics. The one-dimensional Dunkl introduced by Dunkl [6–8] and plays an important role in the study of quantum harmonic oscillators governed by Wigner's commutation rules ([9]).

We construct in this paper class of Lipschitz functions in the Hilbet space $L^2(\mathbb{R}, |x|^{2\alpha+1}dx)$, where $\alpha > -1/2$, and we define the relationship between these classes.

Titchmarsh's [[10], Theorem 85] characterized the set of functions in $L^2(\mathbb{R})$ satisfying the Cauchy Lipschitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namely we have

Theorem 1.1. [10] Let $\alpha \in (0,1)$ and assume that $f \in L^2(\mathbb{R})$. Then the following are equivalents:

2020 Mathematics Subject Classification. Primary 47B48; Secondary 33C67

Keywords. Dunkl generalized transform, Generalized translation operators

Received: 23 March 2022; Accepted: 04 December 2022

Communicated by Dragan S. Djordjević

Email addresses: m_elhamma@yahoo.fr (M. El Hamma), afaf.la.2018@gmail.com (A. Laamimi), elharrak.hala21@gmail.com (H. El Harrak)

1.
$$||f(.+h) - f(.)||_{L^2(\mathbb{R})} = O(h^{\alpha}) \text{ as } h \longrightarrow 0$$

2.
$$\int_{|\lambda|>r} |\widehat{f}(\lambda)|^2 d\lambda = O(r^{-2\alpha}) \text{ as } r \longrightarrow \infty$$

where \widehat{f} stands for the Fourier transform of f.

Using essentially the properties of the Dunkl generalized transform associated to D, we establish the analogue of Titchmarsh's theorem.

2. Preliminaries

In this section, we collect some notations and results on Dunkl generalized operator and Dunkl generalized transform (see [2, 3]).

In all what follows assume that $\alpha > -1/2$ and n = 0, 1, ... Let $j_{\alpha}(z)$ is the normalized spherical Bessel function of index α , i.e.,

$$j_{\alpha}(z) = \Gamma(\alpha + 1) \sum_{i=0}^{+\infty} \frac{(-1)^n \left(\frac{z}{2}\right)^{2n}}{j! \Gamma(j + \alpha + 1)}, \ (z \in \mathbb{C})$$
 (1)

The function j_{α} is infinitely differentiable and even, in addition $j_{\alpha}(0) = 1$. Moreover from formula (1) we see that

$$\lim_{z \to 0} \frac{j_{\alpha}(z) - 1}{z^2} \neq 0. \tag{2}$$

The one-dimensional Dunkl kernel is defined by

$$e_{\alpha}(z) = j_{\alpha}(iz) + \frac{z}{2(\alpha+1)} j_{\alpha+1}(iz) \quad (z \in \mathbb{C}).$$

The function $y = e_{\alpha}(x)$ satisfies the equation $D_{\alpha}y = iy$ with initial condition y(0) = 1. If $\alpha = -1/2$ the one-dimentional Dunkl kernel coincides with the usual exponential function e^{ix} .

Using the correlation

$$j_{\alpha}'(x) = -\frac{xj_{\alpha+1}(x)}{2(\alpha+1)}.$$

We conclude that the function $e_{\alpha}(x)$ admits the representation

$$e_{\alpha}(x) = j_{\alpha}(ix) - ij_{\alpha}'(ix) \tag{3}$$

For all $x \in \mathbb{R}$, we have ([2])

$$|e_{\alpha}(ix)| \le 1 \tag{4}$$

Lemma 2.1. For $x \in \mathbb{R}$ the following inequalities are fulfilled.

- 1. $|j_{\alpha}(x)| \leq 1$,
- 2. $|1-j_{\alpha}(x)| \ge c$ with $|x| \ge 1$, where c > 0 is a certain constant which depends only on α .

Proof. (analog of Lemma 2.9 in [4]). \square

In the terms of $j_{\alpha}(x)$, we have (see [1])

$$1 - j_{\alpha}(x) = O(1), \ x \ge 1, \tag{5}$$

$$1 - j_{\alpha}(x) = O(x^2), \ 0 \le x \le 1. \tag{6}$$

We denote by

• S(\mathbb{R}) the space of \mathbb{C}^{∞} functions f on \mathbb{R} , which are rapidly decreasing together with their devatives, i.e., such that for all m, n = 0, 1, ...

$$p_{n,m}(f) = \sup_{x \in \mathbb{R}} (1 + |x|)^m \left| \frac{d^n}{dx^n} f(x) \right| < \infty.$$

The topology of $S(\mathbb{R})$ is defined by the semi-norms $p_{n,m}$.

• $S_n(\mathbb{R})$ the subspace of $S(\mathbb{R})$ consisting of functions f such that

$$f(0) = \dots = f^{(2n-1)}(0) = 0$$

• $L^2_{\alpha}(\mathbb{R})$ the class of measurable functions f on \mathbb{R} for which

$$||f||_{2,\alpha} = \left(\int_{-\infty}^{+\infty} |f(x)|^2 |x|^{2\alpha+1} dx\right)^{1/2} < \infty.$$

From [2], we have

Definition 2.2. The Dunkl generalized transform of a function $f \in S_n(\mathbb{R})$ is defined by

$$\mathcal{F}(f)(\lambda) = \int_{-\infty}^{+\infty} f(x)e_{\alpha+2n}(-i\lambda x)|x|^{2\alpha+2n+1}dx, \ \lambda \in \mathbb{R}$$

If n = 0 then \mathcal{F} reduces to Dunkl transform classical associated with reflection group \mathbb{Z}_2 on the real line.

Theorem 2.3. The Dunkl generalized transform \mathcal{F} is a to topological isomorphism $S_n(\mathbb{R})$ onto $S(\mathbb{R})$. The inverse transform is given by

$$f(x) = m_{\alpha+2n} x^{2n} \int_{-\infty}^{+\infty} \mathcal{F}(f)(\lambda) e_{\alpha+2n}(i\lambda x) |\lambda|^{2\alpha+4n+1} d\lambda,$$

where

$$m_{\alpha} = \frac{1}{2^{2\alpha+2} \left(\Gamma(\alpha+1)\right)^2}.$$

Theorem 2.4. 1. For every $f \in S_n(\mathbb{R})$ we have the Plancherel formula

$$\int_{-\infty}^{+\infty} |f(x)|^2 |x|^{2\alpha+1} dx = m_{\alpha+2n} \int_{-\infty}^{+\infty} |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda.$$

2. The Dunkl generalized transform \mathcal{F} extends uniquely to an isometric isomorphism from $L^2_{\alpha}(\mathbb{R})$ onto $L^2_{\alpha,n} = L^2(\mathbb{R}, m_{\alpha+2n}|\lambda|^{2\alpha+4n+1}d\lambda)$.

Definition 2.5. The generalized translation operators T_x , $x \in \mathbb{R}$, tied to D are defined by

$$T_{x}f(y) = \frac{(xy)^{2n}}{2} \int_{-1}^{1} \frac{f\left(\sqrt{x^{2} + y^{2} - 2xyt}\right)}{(x^{2} + y^{2} - 2xyt)^{n}} \left(1 + \frac{x - y}{\sqrt{x^{2} + y^{2} - 2xyt}}\right) A(t)dt + \frac{(xy)^{2n}}{2} \int_{-1}^{1} \frac{f\left(-\sqrt{x^{2} + y^{2} - 2xyt}\right)^{n}}{(x^{2} + y^{2} - 2xyt)^{n}} \left(1 - \frac{x - y}{\sqrt{x^{2} + y^{2} - 2xyt}}\right) A(t)dt,$$

where

$$A(t) = \frac{\Gamma(\alpha+1)}{\Gamma(\frac{1}{2})\Gamma(\alpha+\frac{1}{2})} (1+t)(1-t^2)^{\alpha+2n-1/2}.$$

Proposition 2.6. [2] Let $x \in \mathbb{R}$ and $f \in L^2_\alpha(\mathbb{R})$. Then $T_x f \in L^2_\alpha(\mathbb{R})$ and

$$||T_x f||_{2,\alpha} \le 2x^{2n} ||f||_{2,\alpha}.$$

Furthermore

$$\mathcal{F}(T_x f)(\lambda) = x^{2n} e_{\alpha+2n}(i\lambda x) \mathcal{F}(f)(\lambda). \tag{7}$$

Lemma 2.7. Let $f \in L^2_\alpha(\mathbb{R})$. Then

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2,\alpha}^2 = 4m_{\alpha+2n} h^{4n} \int_{-\infty}^{+\infty} |1 - j_{\alpha+2n}(\lambda h)|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda.$$

Proof. From formula (7), we have $\mathcal{F}(T_h f)(\lambda) = h^{2n} e_{\alpha+2n}(i\lambda h) \mathcal{F}(f)(\lambda)$ and $\mathcal{F}(T_{-h} f)(\lambda) = h^{2n} e_{\alpha+2n}(-i\lambda h) \mathcal{F}(f)(\lambda)$. Then

$$\mathcal{F}\left(\mathsf{T}_h f + \mathsf{T}_{-h} f - 2h^{2n} f\right)(\lambda) = h^{2n}(e_{\alpha+2n}(i\lambda h) + e_{\alpha+2n}(-i\lambda h) - 2)\mathcal{F}(f)(\lambda)$$

By formula (3) and the function $j_{\alpha+2n}$ is even, we obtain

$$\mathcal{F}\left(\mathrm{T}_h f + \mathrm{T}_{-h} f - 2h^{2n} f\right)(\lambda) = 2h^{2n} (j_{\alpha+2n}(\lambda h) - 1) \mathcal{F}(f)(\lambda).$$

Invoking Plancherel identity gives

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2,\alpha}^2 = 4m_{\alpha+2n} h^{4n} \int_{-\infty}^{+\infty} |1 - j_{\alpha+2n}(\lambda h)|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda.$$

which ends the proof. \Box

3. Lipschitz class Functions

Definition 3.1. Let $f \in L^2_\alpha(\mathbb{R})$, and let

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2,\alpha} \le Ch^{\alpha}, \ \alpha > 0,$$

i.e

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2\alpha} = O(h^{\alpha})$$

for all x in \mathbb{R} and for all sufficiently small h, C being a positive constant. Then we say that f satisfies a Dunkl generalized Lipschitz of order α , or f belongs to Lip(α).

Definition 3.2. *If however*

$$\frac{\|T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)\|_{2,\alpha}}{h^{\alpha}} \to 0 \text{ as } h \to 0.$$

i.e

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2,\alpha} = o(h^{\alpha}) \text{ as } h \to 0, \ \alpha > 0$$

then f is said to be belong to the little Dunkl generalized Lipschitz class $lip(\alpha)$.

Remark It follows immediately from these definitions that

$$lip(\alpha) \subset Lip(\alpha)$$
 and $Lip(\alpha + \gamma) \subset lip(\alpha)$, $\gamma > 0$.

Theorem 3.3. Let $\alpha > 1$. If $f \in Lip(\alpha)$, then $f \in lip(1)$.

Proof. For h small, $x \in \mathbb{R}$ and $f \in Lip(\alpha)$ we have

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2,\alpha} \le Ch^{\alpha}.$$

Then

$$0 \le \frac{||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2,\alpha}}{h} \le Ch^{\alpha - 1}$$

since $\lim_{h\to 0} h^{\alpha-1} = 0$ ($\alpha > 1$). Thus

$$\frac{\|T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)\|_{2,\alpha}}{h} \to 0 \text{ as } h \to 0.$$

Then $f \in lip(1)$. \square

Definition 3.4. A function $f \in L^2_\alpha(\mathbb{R})$ is said to be in the ψ -Dunkl generalized Lipschitz class, denoted by Lip_n(ψ), if

$$||T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)||_{2,\alpha} \le K\psi(h)$$

i.e.,

$$||T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)||_{2,\alpha} = O(\psi(h))$$
 as $h \to 0$

for all $x \in \mathbb{R}$, C being a positive constant and

- 1. $\psi(t)$ is continuous function in $[0, \infty[$,
- 2. $\psi(0) = 0$,
- 3. $\psi(t)$ is derivable and $\psi'(0) = 0$.

Theorem 3.5. Let $f \in L^2_\alpha(\mathbb{R})$ and let ψ be a fixed function satisfying the condition of Definition 3.4. If $f \in Lip_n(\psi)$, then $f \in lip(1)$.

Proof. For $x \in \mathbb{R}$ and h small. If $f \in Lip_n(\psi)$ we have

$$||T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)||_{2,\alpha} = O(\psi(h)) \text{ as } h \to 0.$$

Then

$$\frac{\|T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)\|_{2,\alpha}}{h} \le C \frac{\psi(h)}{h}$$

i.e.,

$$0 \le \frac{\|\mathsf{T}_h f(x) + \mathsf{T}_{-h} f(x) - 2h^{2n} f(x)\|_{2,\alpha}}{h} \le C \frac{\psi(h) - \psi(0)}{h}$$

since, $\lim_{h\to 0} \frac{\psi(h)-\psi(0)}{h} = \psi'(0) = 0$. Thus

$$\frac{\|T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)\|_{2,\alpha}}{h} \to 0 \text{ as } h \to 0$$

Then $f \in lip(1)$. \square

Theorem 3.6. *If* $\alpha < \beta$, then $Lip(\alpha) \supset Lip(\beta)$ and $lip(\alpha) \supset lip(\beta)$.

Proof. We have $0 \le h \le 1$ and $\alpha < \beta$, then $h^{\beta} \le h^{\alpha}$. Thus the proof of this theorem. \square

Theorem 3.7. Let $f \in L^2_{\alpha}(\mathbb{R})$. If f belong to $Lip(\alpha)$ then $T_h f \in Lip(\alpha + 2n)$.

Proof. Assume that $f \in Lip(\alpha)$. Then

$$||T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)||_{2,\alpha} \le Ch^{\alpha},$$

i.e.,

$$4m_{\alpha+2n}h^{4n}\int_{-\infty}^{+\infty}|1-j_{\alpha+2n}(\lambda h|^2|\mathcal{F}(f)(\lambda)|^2|\lambda|^{2\alpha+4n+1}d\lambda\leq C^2h^{2\alpha}.$$

Since $\mathcal{F}(T_h f)(\lambda) = h^{2n} e_{\alpha+2n}(i\lambda h) \mathcal{F}(f)(\lambda)$, we have

$$\mathcal{F}(\mathsf{T}_h(\mathsf{T}_hf))(\lambda) = h^{2n}e_{\alpha+2n}(i\lambda h)\mathcal{F}(\mathsf{T}_hf)(\lambda) = h^{4n}e_{\alpha+2n}^2(i\lambda h)\mathcal{F}(f)(\lambda).$$

and

$$\mathcal{F}(T_{-h}(T_h f))(\lambda) = h^{2n} e_{\alpha+2n}(-i\lambda h) \mathcal{F}(T_h f)(\lambda) = h^{4n} e_{\alpha+2n}(-i\lambda h) e_{\alpha+2n}(i\lambda h) \mathcal{F}(f)(\lambda).$$

Then

$$\mathcal{F}(\mathsf{T}_{h}(\mathsf{T}_{h}f) + \mathsf{T}_{-h}(\mathsf{T}_{h}f) - 2h^{2n}\mathsf{T}_{h}f)(\lambda)$$

$$= ((h^{4n}e_{\alpha+2n}^{2}(i\lambda) + h^{4n}e_{\alpha+2n}(-i\lambda h)e_{\alpha+2n}(i\lambda h) - 2h^{4n}e_{\alpha+2n}(i\lambda h))\mathcal{F}(f)(\lambda)$$

$$= h^{4n}e_{\alpha+2n}(i\lambda h)(e_{\alpha+2n}(i\lambda h) + e_{\alpha+2n}(-i\lambda h) - 2)\mathcal{F}(f)(\lambda)$$

$$= 2h^{4n}e_{\alpha+2n}(i\lambda h)(j_{\alpha+2n}(\lambda h) - 1)\mathcal{F}(f)(\lambda).$$

By Plancherel identity, we obtain

$$\begin{split} & || \mathcal{T}_h(\mathcal{T}_h f)(.) + \mathcal{T}_{-h}(\mathcal{T}_h f(.)) - 2h^{2n} \mathcal{T}_h f(.) ||_{2,\alpha}^2 \\ & = 4 m_{\alpha + 2n} h^{8n} \int_{-\infty}^{+\infty} |e_{\alpha + 2n}(i\lambda h)|^2 |1 - j_{\alpha + 2n}(\lambda h)|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha + 4n + 1} d\lambda \end{split}$$

From formula (4), we have

$$\begin{split} & || \mathcal{T}_h(\mathcal{T}_h f)(.) + \mathcal{T}_{-h}(\mathcal{T}_h f(.)) - 2h^{2n} \mathcal{T}_h f(.) ||_{2,\alpha}^2 \\ & \leq 4m_{\alpha+2n} h^{8n} \int_{-\infty}^{+\infty} |1 - j_{\alpha+2n}(\lambda h)|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda \\ & = 4m_{\alpha+2n} h^{8n} \cdot \frac{1}{4m_{\alpha+2n} h^{4n}} || \mathcal{T}_h f(.) + \mathcal{T}_{-h} f(.) - 2h^{2n} f(.) ||_{2,\alpha}^2 \\ & \leq C^2 h^{4n} h^{2\alpha} = Ch^{2\alpha+4n}. \end{split}$$

which completes the proof. \Box

Theorem 3.8. Let $\alpha > 2$. If f belong to Dunkl generalized Lipschitz class, i.e.,

$$f \in Lip(\alpha)$$
.

Then f is equal to the null function in \mathbb{R} .

Proof. Assume that $f \in Lip(\alpha)$. Then

$$||T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)||_{2,\alpha} \le Ch^{\alpha}$$

$$4m_{\alpha+2n}h^{4n}\int_{-\infty}^{+\infty}|1-j_{\alpha+2n}(\lambda h)|^2|\mathcal{F}(f)(\lambda)|^2|\lambda|^{2\alpha+4n+1}d\lambda\leq C^2h^{2\alpha}$$

Then

$$\frac{4m_{\alpha+2n}h^{4n}\int_{-\infty}^{+\infty}|1-j_{\alpha+2n}(\lambda h)|^2|\mathcal{F}(f)(\lambda)|^2|\lambda|^{2\alpha+4n+1}d\lambda}{h^4}\leq C^2h^{2\alpha-4}$$

Since $\alpha > 2$, we have $\lim_{h \to 0} h^{2\alpha - 4} = 0$.

Therefore

$$\lim_{h\to 0} 4m_{\alpha+2n}h^{4n} \int_{-\infty}^{+\infty} \left(\frac{|1-j_{\alpha+2n}(\lambda h)|}{\lambda^2 h^2}\right)^2 |\lambda|^4 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda = 0$$

From this, (2) and Fatou's theorem we get

$$|||\lambda|^2 \mathcal{F}(f)(\lambda)||_{\mathcal{L}^2_{\alpha,n}} = 0.$$

Thus $|\lambda|^2 \mathcal{F}(f)(\lambda) = 0$ for all $\lambda \in \mathbb{R}$, then f(x) is the null function. \square

Analog of theorem 3.8 we obtai these theorems

Theorem 3.9. Let $f \in L^2_\alpha(\mathbb{R})$ and ψ be a fixed function satisfying the conditions of Definition 3.4. If

$$||T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)||_{2,\alpha} \le Ch^{\beta} \psi(h),$$

where C a positive constant and $\beta \geq 3$. Then f is equal to the null function in \mathbb{R} .

Theorem 3.10. Let $f \in L^2_\alpha(\mathbb{R})$. If f belong to lip(4), i.e.,

$$||T_h f(x) + T_{-h} f(x) - 2h^{2n} f(x)||_{2,\alpha} = o(h^4) \text{ as } h \to 0.$$

Then f is equal to null function in \mathbb{R} .

4. Analog of Titchmarsh's theorem

Now, we give another the main result of this paper analog of theorem 1.1.

Theorem 4.1. Let $\alpha \in (0,1)$ and $f \in L^2_{\alpha}(\mathbb{R})$. The following are equivalent

1.
$$f \in Lip(\alpha + 2n)$$

2.
$$\int_{|\lambda|>s} |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda = O(s^{-2\alpha}) \text{ as } s \to +\infty$$

Proof. 1) \Longrightarrow 2) Assume that $f \in Lip(\alpha + 2n)$. Then

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2,\alpha} = O(h^{\alpha+2n}) \text{ as } h \to 0.$$

By Lemma 2.7, we obtain

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2,\alpha}^2 = 4m_{\alpha+2n} h^{4n} \int_{-\infty}^{+\infty} |1 - j_{\alpha+2n}|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda.$$

If $|\lambda| \in \left[\frac{1}{h}, \frac{2}{h}\right]$, then $|\lambda h| \ge 1$ and (2) of Lemma 2.1 implies that

$$1 \le \frac{1}{c^2} |1 - j_{\alpha+2n}(\lambda h)|^2.$$

Then

$$\begin{split} \int_{\frac{1}{h} \leq |\lambda| \leq \frac{2}{h}} |\mathcal{F}(f)(\lambda)|^{2} |\lambda|^{2\alpha + 4n + 1} d\lambda & \leq & \frac{1}{c^{2}} \int_{\frac{1}{h} \leq |\lambda| \leq \frac{2}{h}} |1 - j_{\alpha + 2n}(\lambda h)|^{2} |\mathcal{F}(f)(\lambda)|^{2} |\lambda|^{2\alpha + 4n + 1} d\lambda \\ & \leq & \frac{1}{c^{2}} \int_{-\infty}^{+\infty} |1 - j_{\alpha + 2n}(\lambda h)|^{2} |\mathcal{F}(f)(\lambda)|^{2} |\lambda|^{2\alpha + 4n + 1} d\lambda \\ & \leq & \frac{1}{c^{2}} \frac{1}{4m_{\alpha + 2n} h^{4n}} ||T_{h}f(.) + T_{-h}f(.) - 2h^{2n}f(.)||_{2,\alpha}^{2} \\ & = & O(h^{2\alpha}). \end{split}$$

We obtain

$$\int_{s<|\lambda|<2s} |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda = O(s^{-2\alpha}) \ as \ s \to +\infty.$$

There exists a positive constant K > 0 such that

$$\int_{s<|\lambda|<2s} |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda \le K s^{-2\alpha}.$$

So that

$$\int_{|\lambda| \geq s} |\mathcal{F}(f)(\lambda)|^{2} |\lambda|^{2\alpha + 4n + 1} d\lambda = \left(\int_{s \leq |\lambda| \leq 2s} + \int_{2s \leq |\lambda| \leq 4s} + \int_{4s \leq |\lambda| \leq 8s} + \dots \right) |\mathcal{F}(f)(\lambda)|^{2} |\lambda|^{2\alpha + 4n + 1} d\lambda \\
\leq Ks^{-2\alpha} + K(2s)^{-2\alpha} + K(4s)^{-2\alpha} + \dots \\
\leq Ks^{-2\alpha} \left(1 + 2^{-2\alpha} + (2^{-2\alpha})^{2} + (2^{-2\alpha})^{3} + \dots \right) \\
\leq K_{\alpha}s^{-2\alpha}.$$

where $K_{\alpha} = K(1 - 2^{-2\alpha})^{-1}$ since $2^{-2\alpha} < 1$.

This proves that

$$\int_{|\lambda|>s} |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda = O(s^{-2\alpha}) \ as \ s \to +\infty.$$

2) \Longrightarrow 1) Suppose now that

$$\int_{|\lambda| \ge s} |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha + 4n + 1} d\lambda = O(s^{-2\alpha}) \text{ as } s \to +\infty.$$

We write

$$\int_{-\infty}^{+\infty} |1 - j_{\alpha+2n}(\lambda h)|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda = I_1 + I_2,$$

where

$$I_1 = \int_{|\lambda| < \frac{1}{h}} |1 - j_{\alpha+2n}(\lambda h)|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha + 4n + 1} d\lambda$$

and

$$\mathrm{I}_2 = \int_{|\lambda| \geq \frac{1}{h}} |1 - j_{\alpha+2n}(\lambda h)|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda.$$

Estimate the summands I_1 and I_2 .

From inequality (1) of Lemma 2.1, we have

$$I_{2} = \int_{|\lambda| \geq \frac{1}{h}} |1 - j_{\alpha+2n}(\lambda h)^{2} |\mathcal{F}(f)(\lambda)|^{2} |\lambda|^{2\alpha+4n+1} d\lambda$$

$$\leq 4 \int_{|\lambda| \geq \frac{1}{h}} |\mathcal{F}(f)(\lambda)|^{2} |\lambda|^{2\alpha+4n+1} d\lambda$$

$$= O(h^{2\alpha})$$

Set

$$\phi(x) = \int_{x}^{+\infty} |\mathcal{F}(f)(\lambda)|^{2} |\lambda|^{2\alpha + 4n + 1} d\lambda.$$

An integration by parts, we obtain

$$\int_0^x \lambda^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha + 4n + 1} d\lambda = \int_0^x -\lambda^2 \phi'(\lambda) d\lambda$$

$$= -x^2 \phi(x) + 2 \int_0^x \lambda \phi(\lambda) d\lambda$$

$$\leq 2 \int_0^x O(\lambda^{1 - 2\alpha}) d\lambda$$

$$= O(x^{2 - 2\alpha}).$$

We use the formula (6)

$$\begin{split} &\int_{-\infty}^{+infty} |1-j_{\alpha+2n}(\lambda h)|^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda \\ &= O\left(h^2 \int_{|\lambda| < \frac{1}{h}} \lambda^2 |\mathcal{F}(f)(\lambda)|^2 |\lambda|^{2\alpha+4n+1} d\lambda\right) + O(h^{2\alpha}) \\ &= O(h^2 h^{-2+2\alpha}) + O(h^{2\alpha}) \\ &= O(h^{2\alpha}). \end{split}$$

Therefore

$$4m_{\alpha+2n}h^{4n}\int_{-\infty}^{+infty}|1-j_{\alpha+2n}(\lambda h)|^2|\mathcal{F}(f)(\lambda)|^2|\lambda|^{2\alpha+4n+1}d\lambda=O(h^{2\alpha+4n}).$$

Then

$$||T_h f(.) + T_{-h} f(.) - 2h^{2n} f(.)||_{2\alpha}^2 = O(h^{2\alpha + 2n}) \text{ as } h \to 0.$$

and this ends the proof. \Box

Theorem 4.1 in the case n = 0 can be found in the work of [5].

Acknowledgment

The authors would like to thank the anonymous referees for their helpful comments and suggestions which have improved the original manuscript.

References

- [1] V. A. Abilov and F. V. Abilova, *Approximation of Functions by Fourier-Bessel Sums*, Izv. Vyssh. Uchebn. Zaved., Mat., No. 8, 3–9 (2001).
- [2] R. F. Al Subaie and M. A. Mourou, Equivalence of K-Functionals and Modulus of Smoothness Generated by a Generalized Dunkl Operator on the Real Line, Advances in Pure Mathematics, 2015, 5, 367–376.
- [3] S. A. Al Sadhan, R. F. Al Subaie and M. A. Mourou, *Harmonic Analysis Associated with A First-Order Singular Differential-Difference Operator on the Real Line*, Current Advances in Mathematics Research, 2014, 1, 23–34.
- [4] E. S. Belkina and S.S. Platonov, Equivalence of K-Functionals and Modulus of Smoothness Contructed by Generalized Dunkl Translations, Izv. Vyss. Ucheb. Zaved. Math, (2008), pp. 3–15.
- [5] R. Daher and M. El Hamma, An Analog of Titchmarsh's Theorem for the Dunkl Transform in the Space $L^2_{\alpha}(\mathbb{R})$, Int. J. Nonlinear Anal. 3 (2012) No. 1, pp. 55–60.
- [6] C.F. Dunkl, Differential- difference operators associated to refletion groups, Trans. Amer. Math Soc. 311(1989), 167–183.
- [7] C.F. Dunkl, Hankel transforms associated to finite reflection groups, in Proc. of Special Session on Hypergeometric Functions in Domains of Positivity, Jack Polynomials and Applications (Tampa, 1991), Contemp. Math. 138 (1992), 123–138.
- [8] C.F. Dunkl, Integral Kernels with reflection group invariance, Canad. J. Math. 43(1991), 1213–1227.
- [9] S. Kamefuchi and Y. Ohnuki, Quantum Field Theory and Parastatistics, University of Tokyo Press, Springer-Verlag, Tokyo, Berlin.
- [10] E.C. Titchmarsh, Introduction of the Theory of Fourier Integrals, Oxford University Press (1937).