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Lipschitz functions class for the generalized Dunkl transform
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Abstract. This paper is intented to establish the analogue of Titchmarsh’s theorem for the Dunkl general-
ized transform on the real line.

1. Introduction

Consider the first-order singular differential-difference operator on R

X X

where @ > —1/2 and n = 0,1, ... For n = 0, we obtain the classical Dunkl operator with parameter o + %
associated with the reflection group Z; on the real line.

Do = L 4 (a

dx

1\ f(x) — f(—x)
+§) X ’

These operators D have been generalized the calssical theory of Dunkl harmonics. The one-dimensional
Dunkl introduced by Dunkl [6-8] and plays an important role in the study of quantum harmonic oscillators
governed by Wigner’s commutation rules ([9]).

We construct in this paper class of Lipschitz functions in the Hilbet space L%(R, |x|***1dx), where a > —1/2,
and we define the relationship between these classes.

Titchmarsh'’s [[10], Theorem 85] characterized the set of functions in L?(RR) satisfying the Cauchy Lips-
chitz condition by means of an asymptotic estimate growth of the norm of their Fourier transform, namely
we have

Theorem 1.1. [10] Let a € (0,1) and assume that f € L?(R). Then the following are equivalents:
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LIf(+h) = fOllew) = O(h*) ash — 0

2 fIMZV Iﬁ/\)lsz =0 ) asr — o

where f\stands for the Fourier transform of f.

Using essentially the properties of the Dunkl generalized transform associated to D, we establish the
analogue of Titchmarsh’s theorem.

2. Preliminaries

In this section, we collect some notations and results on Dunkl generalized operator and Dunkl gener-
alized transform (see [2, 3]).
In all what follows assume that « > —=1/2and n = 0,1, ... Let j,(z) is the normalized spherical Bessel function
of index a, i.e.,

+oo (—1)" (§)2n

Ja(z) = T(a +1) ; m,

(ze©) (1)

The function j, is infinitely differentiable and even, in addition j,(0) = 1. Moreover from formula (1)
we see that
() -1
lim / (2)2
z—0 Z

# 0. )

The one-dimensional Dunkl kernel is defined by

.o Z . .
ea(2) = jaliz) + m]aﬂ(lz) (zeO).
The function y = e,(x) satisfies the equation D,y = iy with initial condition y(0) = 1. If o = -1/2 the
one-dimentional Dunkl kernel coincides with the usual exponential function e**.

Using the correlation
 Xjas1(%)
2+ 1)

Jalx) =
We conclude that the function e, (x) admits the representation
ea(x) = fali) — i, (%) 3)
For all x € IR, we have ([2])
lea(ix)] < 1 (4)
Lemma 2.1. For x € R the following inequalities are fulfilled.

L a0l <1,
2. 11 = ju(x)| = c with |x| > 1, where c > 0 is a certain constant which depends only on a.

Proof. (analog of Lemma2.9in[4]). O
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In the terms of j,(x), we have (see [1])

1-ja(x)=0(1), x> 1, ()
1-ja(x)=0(%), 0<x <1, (6)
We denote by

e S(R) the space of C* functions f on R, which are rapidly decreasing together with their devatives,
i.e., such that forallm,n=0,1, ...

n

d

< 00,

Pum(f) = sup(l + [x[)™

xeR

The topology of S(R) is defined by the semi-norms p,; .

e 5,(IR) the subspace of S(IR) consisting of functions f such that
fO) = .= f2D0) =0

e L2(R) the class of measurable functions f on R for which

+00 1/2
||f||z,a=( f |f(x)|2|x|2“”dx) < oo,

0

From [2], we have

Definition 2.2. The Dunkl generalized transform of a function f € S,(IR) is defined by

F(HA) = f+°° F(X)earan(=iAx)x** dx, A € R

If n = 0 then ¥ reduces to Dunkl transform classical associated with reflection group Z, on the real line.

Theorem 2.3. The Dunkl generalized transform ¥ is a to topological isomorphism S,(IR) onto S(R). The inverse
transform is given by

+00

f(X) = ma+2nx2” T(f)(A)ecHZn(i/\x)l/\|2a+4n+1dA,

—00

where
1

My = ———————.
22042 (T (ar + 1))
Theorem 2.4. 1. For every f € S,(IR) we have the Plancherel formula

f If(x)|2|x|2a+1dx = Mgy+42n f |7—‘(f)(/\)|2|)\|2a+4n+1d/\.

0o —00

2. The Dunkl generalized transform F extends uniquely to an isometric isomorphism from L3(R) onto L2, =
Lz(]R, ma+2n|/\|2a+4n+1dA)‘

Definition 2.5. The generalized translation operators Ty, x € R, tied to D are defined by

2n 1 \/x2 2 _ Dxyt —
Ty = O ! L i ) (1 b — )A(t)dt
2 Jq (2 +y2-2xyt) VA2 + 12 = 2xyt
(o)™ f 1f (= Va2 + P - 2up) [1 _ X-y ] A(bdt
2 Ja (24 y2-2xyt)" V2 ¥ Y2 = 2yt ’
where I+ 1)
_ a+ _2\at2n-1/2
A(t) FONas D %)(1 L1 - P) .
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Proposition 2.6. [2] Let x € Rand f € L2(R). Then T, f € L2(R) and

ITeflla < 2| fll2,a-

Furthermore
F(Tef)A) = ¥ earan((IAX)F ()(A). @)

Lemma 2.7. Let f € L2(R). Then

+00

IThf () + Tonf() = 28" FOI = 4mar2ah™ f 1= JaranARPIF ()PP AA.

—00

Proof. From formula (7), we have F (T, f)(A) = h¥"eq12,(IAR)F (f)(A) and F (T_p, f)(A) = h? eqs0n(—iAR)F (f)(A).
Then
F (Thf + T, f - 2h2”f) (A) = B*"(eqron(iAh) + eqsan(—iAR) — 2)F (F)(A)

By formula (3) and the function ju.2, is even, we obtain

F (Tf +Tonf =202 £) (A) = 212" (jasan(Ah) = DF (F)(A).

Invoking Plancherel identity gives
+00
ITf() + T f() = 28 fOI, = dimgszaht™ f 11 = JarznARPIF (HA)PIAPSH A,

—00

which ends the proof. [

3. Lipschitz class Functions
Definition 3.1. Let f € L2(IR), and let
T f() +Tonf() = 20 fOllo.a < Ch?, >0,
ie
ITuf () + T f() = 222" f()lloa = O(%)

for all x in R and for all sufficiently small h, C being a positive constant. Then we say that f satisfies a Dunkl
generalized Lipschitz of order a, or f belongs to Lip(a).

Definition 3.2. If however

IThf() + Tonf () = 287" fOlloa

o —0ash — 0.

ie
ITwf() + Tonf() = 2H*" f()llow = o(h*) ash — 0, a >0
then f is said to be belong to the little Dunkl generalized Lipschitz class lip(c).

Remark It follows immediately from these definitions that
lip(er) € Lip(a) and Lip(e + ) C lip(at), y > 0.

Theorem 3.3. Let o > 1. If f € Lip(a), then f € lip(1).
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Proof. For h small, x € R and f € Lip(a) we have

T fC) + T f() = 202 f()lloe < ChE.

Then
0< ITf () + T f() = 20% f (2,

< a-1
A <Ch

since %ing h*1=0 (a > 1). Thus

IThf() + Tonf() = 287" fO)llo,
h

—0ash— 0.

Then f € lip(1). O
Definition 3.4. A function f € L2(R) is said to be in the \-Dunkl generalized Lipschitz class, denoted by Lip,(V), if

Ty f(x) + Topf (x) = 20" F(0) |20 < Kip(h)

ie.,

Ty f(x) + Topf (x) = 20°" f()llo,a = O (P(h)) ash — 0

forall x € R, C being a positive constant and

1. (t) is continuous function in [0, o],
2. (0) =0,
3. Y(t) is derivable and 1’(0) = 0.

Theorem 3.5. Let f € L2(IR) and let 1 be a fixed function satisfying the condition of Definition 3.4. If f € Lip,(y),
then f € lip(1).

Proof. For x € R and h small. If f € Lip,({) we have
IThf(x) + Ty f(x) = 287" f(¥)ll2.a = O (P()) as h — 0.

Then

T3 f(x) + T f(x) = 287" £ ()2, < CIP(h)
h ~  h
ie.,
0 < Ty f(x) + T—hf(;;) = 217" f(O)ll2,a < Cll/(h) ; ¥(0)

since, }lln(} w =1’(0) = 0. Thus

(T f(x) + Ty f(x) = 20 f (%),
h

—0ash—0
Then f € lip(1). O
Theorem 3.6. If a < B, then Lip(a) D Lip(B) and lip(a) D lip(B).
Proof. We have 0 <h <1and & < f, then hf < h®. Thus the proof of this theorem. [

Theorem 3.7. Let f € L2(R). If f belong to Lip(a) then T),f € Lip(a + 2n).
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Proof. Assume that f € Lip(ar). Then
T f(x) + Top f(x) = 20 f(¥)|oa < ChE,

ie.,

+00
AMsanh® f 11~ jarzaARPIF (DARIAR41dA < 120,

0o

Since F (T f)(A) = h*eqs0n(iAR)F (f)(A), we have
F(T(Tn)A) = B easan(ANF (Thf)A) = B¢}, GANF (F)(A)-
and
F(Tw(ThfDA) = heqsan(=IADF(Tif)A) = B eqron(=iAN)eqs2a(ARF (f)(A)-
Then
F(Tu(Thf) + T-n(Tuf) = 28" Ty f)(A)
= ((h*"€2 5, (i) + H¥"eqan(—iA)eqs2(iAR) = 2h¥"eq 120 (IAR)) F (F)(A)
= 1M eqran(iAh) (earan(iAN) + earn(=iAh) = 2) F(f)(A)
= 21" eq0n(iAR) (jasan(AR) — 1) F(F)(A).
By Plancherel identity, we obtain

ITh(Tif)() + Ton(Ti f()) = 20°" T f O3,

+00
= e [ s AP~ o R (DPAE 2

0

From formula (4), we have

ITH(Tuf)() + T-n(Tuf () = 20 T f Il

+00
A ionh® f 11 = jas2n ARPIF (HA)PIAPAH 1A

0

IA

n 1 n
= 4ma+2nh8 -WHThf(-) + T f() - 2K f(-)”%,oé
C2h4nh2a — Ch2a+4n'

IA

which completes the proof. [

Theorem 3.8. Let o > 2. If f belong to Dunkl generalized Lipschitz class, i.e.,

f € Lip(a).
Then f is equal to the null function in R.

Proof. Assume that f € Lip(ar). Then
T f () + T f(x) = 20" f(@)||o.e < Ch

So
+00
PR f 1= jusanADPIF APIAR140 < Coe

Then »
Azl [ 1= jusan MPIF(HAPIAP41d

h4 < CZ hZa—4
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Since a > 2, we have lim h?*~* = 0.

h—0

Therefore
e (Il = Ja+2n(AR)]

2
pe ) AFIF (AARIARH1GA = 0

e f i}
From this, (2) and Fatou’s theorem we get
IAPF(HA)lz, = 0.
Thus [APF (f)(A) = 0 for all A € R, then f(x) is the null function. [J
Analog of theorem 3.8 we obtai these theorems
Theorem 3.9. Let f € L2(RR) and 1 be a fixed function satisfying the conditions of Definition 3.4. If
ITif () + Topf (x) = 26" f()lloa < CHPY(h),
where C a positive constant and p > 3. Then f is equal to the null function in R.
Theorem 3.10. Let f € L2(R). If f belong to lip(4), i.e.,
T f () + Tp () = 22" f ()0 = 00 as Tt = 0.

Then f is equal to null function in R.

4. Analog of Titchmarsh’s theorem
Now, we give another the main result of this paper analog of theorem 1.1.

Theorem 4.1. Let a € (0,1) and f € L2(R). The following are equivalent
1. f € Lip(a + 2n),
2. fwzs IF(F)A)PIARH1GA = O(s™2) as s — +0o
Proof. 1) = 2) Assume that f € Lip(a + 2n). Then
IThf() + Tonf() = 28" F()llpe = OH***") as h — 0.

By Lemma 2.7, we obtain

IThf() + Tonf() = 28" FOI = 4mar2nh™ f 1= JaraaPIF (A PIAPH A,

—00

If A € [%, %], then |[Ah] > 1 and (2) of Lemma 2.1 implies that

1 .
1< C—2|1 — jaron(AR)P.

Then
1 .
ﬁ FAWPAP A < 5 [ = jaaARPIF (PP dA
ESM‘SE ﬁﬁl/\lﬂﬁ
1 [ )
< 3 [ M WP
1 1
< IThf () + Tonf() = 28" O3

C_Z 4ma+2nh4n
= O(h™).
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We obtain
f IF(FAPIALPHIGL = O(s™*) as s — +o0.
s<|A|<2s

There exists a positive constant K > 0 such that

[ e <k
s<|A|<2s
So that

[ rpaenessa = ([
|A|>s

—2“ +K(25)” 20 + K(4s)™ 2“ .....

< Ks‘z‘* (142720 + @22+ @2 +.....)
K,s72,

|

—_——
H
n
=

IA

N

53
h
5
4N
=

IA

NN

1)
h
&
n
=

IA

(o)

&

+
—
By
~
)
~

=
W
=
N4

8
3
S

=

3
A
u
>~

A A

IA

where K, = K(1 = 272%)"! since 272 < 1.
This proves that

f |7:(f)(A)|2|/\|2a+4n+1d/\ - O(S—Za) 4s s — +o0o.
[Alzs

2) = 1) Suppose now that

f IF (FMPIAPHIIN = O(s™2) as s — +oo.
|Al=s

We write
+00
f 11 = jarznAR)PIF (HAPIAPF AL = 1) + 1,
where
L = f 1= JueanARIF (AR
A<}
and

I = f 1= juean A RIF(HAEIAR1 41,
|M>ﬁ

Estimate the summands I; and 1.
From inequality (1) of Lemma 2.1, we have

b= [ - e GHREOWRAEa)
=h
<4 fm F (DA77
= O(h%;)h
Set

(x) = f F(ORAR14,
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An integration by parts, we obtain

fx AZIT(f)(A)|2|AI2a+4n+1d/\ — fx —A2¢)/(A)dA
0 0

—x? XA A)dA
x¢<x>+zf0 o)

2 f OAT™2)dA
0
= O™,

IN

We use the formula (6)

+infty
f 11— jasan ABPIF (AR 14

0

0] [h2 f AZ|7:(f)(/\)|2|A|2a+4n+1dA] + O(hch)
Al<1

n
O(hZh—2+2a) + O(hZa)
= O(h™).

Therefore »
+in y
o [ (P (OQPIART 1A = 0(+),

Then
T f() + Tonf () = 20 FOll3 , = OK****") as h — 0.

and this ends the proof. [

Theorem 4.1 in the case n = 0 can be found in the work of [5].
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