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Nonlinear maps preserving the mixed triple *-product between factors

Fangjuan Zhang?

?School of Science, Xi'an University of Posts and Telecommunications, Xi’an 710121, P. R China

Abstract. Let A and B be two factors. In this paper, it is proved that a not necessarily linear bijective
map ¢ : A — B satisfies ¢([A, B]. ® C) = [p(A), p(B)]. ® ¢(C) for all A,B,C € A if and only if ¢ is a linear
+-isomorphism, a conjugate linear *-isomorphism, the negative of a linear *-isomorphism, or the negative
of a conjugate linear *-isomorphism.

1. Introduction

Let A and B be two *-algebras and ¢ : A — B be a map. We consider that ¢ preserves the mixed
triple *-product if ¢([A, B]. ® C) = [¢(A), p(B)]. ® ¢(C) for all A,B,C € A, where [A, B]. = AB — BA" is the
skew Lie product and A e B = AB + BA" is the Jordan *product of A and B. Recently, some authors have
considered the mixture of (skew) Lie product and Jordan *-product [3-17]. For example, Yang and Zhang
[8] proved the nonlinear maps preserving the mixed skew Lie triple product [[A, B]., C] on factors. Zhao et
al. [17] proved the nonlinear maps preserving mixed product [A e B, C] on von Neumann algebras. Yang
and Zhang [9] proved the nonlinear maps preserving the second mixed Lie triple product [[A, B], C]. on
factors. In this article, motivated by the above results, we will obtain the structure of the nonlinear maps
preserving the mixed triple *-product [A, B].  C on factors.

As usual, R and C denote respectively the real field and complex field. A von Neumann algebra A is
a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing the identity operator I.
A is a factor means that its center only contains the scalar operators. It is well known that the factor A is
prime, that is, for A, B € A, if AAB = {0}, then A =0 or B = 0.

Lemma 1.1. [16] Let A be a factor and A € A. Then AB + BA* = 0 for all B € A implies that A € iRI (i is the
imaginary number unit).

Lemma 1.2. [7] Let A be a factor von Neumann algebra and A € A. If [A, B]. € CI forall B € A, then A € CI.

Lemma 1.3. ([2, Problem 230]) Let ‘A be a Banach algebra with the identity I. If A,B € A and A € C are such that
[A,B] = AL, where [A,B] = AB — BA, then A = 0.
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2. The main result and its proof

Theorem 2.1. Let A and B be two factor von Neumann algebras with dim A > 2. Then a bijective map ¢ : A — B
satisfies p([A, B].® C) = [¢p(A), p(B)]. e H(C) forall A, B, C € A if and only if ¢ is a linear +-isomorphism, a conjugate
linear »-isomorphism, the negative of a linear *-isomorphism, or the negative conjugate linear +-isomorphism.

Proof. Choose an arbitrary nontrivial projection P; € A, write P, = I — P1. Denote A;; = PiAP;,i,j = 1,2,
then A = Z%jzl Ajj. We can write every A € Aas A = Z%,j:l Ajj, where A;j denotes an arbitrary element of
Ajj. We denote by P(A) and P(B) all projections of A and B, respectively. Clearly, we only need to prove
the necessity.
Claim 1. ¢(0) =

Since ¢ is surjective, there exists A € A such that ¢(A) = 0. Hence ¢(0) = ¢([0, Al. ® A) = [¢(0), p(A)]. ®
$(A) =0.
Claim 2. (1‘[)(22 _1A,‘j) = Zz%j:l(i)(Aif) for all Aij < ﬂi]’.

Let X = Z,] 1 Xij € A such that ¢(X) = Zl%j:l(i)(A,-]-). We have ¢([Py, X]. @ P,) = Ziz’].:lqb([Pl,Aij]* e D)), ie.,
P(X12 + X],) = ¢(A12 + A},), which implies that X, = Az In the same manner, Xy = A;.

For every T1, € Ap, we obtain ¢([T12, X]. ® Pp) = 2 1(;[)([T12, ijl- ® P2), i.e., ¢(T12X22 + X;szz) =
P(T12A2 + A* T*z) By the injectivity of ¢, we obtain T12X22 + X T:, = T1pA»n + Al for all Ty € Arp. By

212
the primeness of A, we get X2 = Ap. In the same manner, we obtain Xj; = Aj;.

Claim 3. Let i, j € {1,2} with i # j. Then (;[)(AU + B,']') = (P(Aij) + (P(Bij) for all A,‘j € ﬂij and Bi]' € fﬂ,‘]‘.
It follows from A;j + Bjj + A;‘j + Bz-jA;fj = [-31,iP; + iA;j]. ® (P; + B;;) and Claim 2 that

22 12

P(Aij + Bij) + p(Ay) + ¢(BijA;;
= @(Aij + Bij + Aj; + BjjA})

- qb([—%l, iP; +iAj]. » (Pj + By}))

- [<P(——I) P(P; +1A;)]. @ G(P; + Byj)

= [dJ(—-I),qb(iPi )+ (P(iAij)]»« o (¢(P)) + ¢(By)))
= o(- 21 iP;]. ® Pj) + ¢([- IIP] e Bj)

+o ([~ 1 1Al P)) + o([- 1, iA;j]. » Byj)

= (P(Bij) + (;Z)(Az] + Ai]') + (P(BZ] U)
= Q(Bij) + ¢(Aij) + P(Ay) + ¢(BijA})),

which indicates that (P(A,] + B,]) = ¢)(A1]) + (p(B,])
Claim 4. Let i € {1,2}. Then ¢(A;; + Bi;) = Pp(Aii) + P(Bj;) for all A; € A;; and B; € Aji.
Choose X = Ziz,]-:l Xij € Asuch that ¢(X) = ¢(A;;) + P(Bi;). We obtain

P(Xij + X3)) = @([Pi, X]. ® Pj) = ¢([P;, Aji]. @ Pj) + $([Pi, Bii]. @ Pj) =
Thus we get X;; = 0. In the same manner, X;; = 0. For every T;; € A;j, i # j, we have
O(T3Xji + X T3) = ([T, X1. o P)) = $((Tyj, Ail. » Pj) + ([T, Byl o P) =

which implies that T;;X;; = X T =0.By the primeness of A, we obtain X;; = 0. Therefore,

d(Xii) = ¢(Aii) + P(Bii). (1)
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For every T;; € Ajj,i # j, it follows from Claims 2 and 3 that
O(XiiTi; + T:X3) = (X, Tij]. ® Pj)

ij“Nii
= Q([Aii, Tij]. ® Pj) + ¢([Bii, Tij]. ® P;)
= G(AGTy + T,AL) + G(ByT,; + T;.BY)

i i ijii

= (P(A“Tl]) + ¢(sz 11) + (p(BllTl]) + (P Tl]Blz)
= qb(AllTl] + BiiTz]) + (P(T A+ T:B: )

ij* il ijii

= ¢(AiTij + B;iTij + T} A} + T;.B}),

ij* i ij i
which indicates that Xj; = A;; + B;;. This together with Eq. (1) shows that ¢(A;; + Bj;) = ¢(Ai;) + ¢(Bii).
Claim 5. ¢ is additive.
By Claims 24, ¢ is additive.
Claim 6. ¢(IRI) = RI, ¢(CI) = CI and ¢ preserves self-adjoint elements in both directions.
Let A € R be arbitrary. It is easily seen that

0 = ¢([AL B. o C) = [p(A]), p(B)]. ® $(C)
holds true for any B, C € A. Since ¢ is surjective, by Lemma 1.1, which indicates that
[p(AD), p(B)]. € iRI.

Then [¢(Al), B]. € CI for any B € 8. We obtain from Lemma 1.2 that ¢p(Al) € CI, so exists Ag € C such that
(Ao — Ag)B € CI for any B € B, then ¢(Al) € RI. Note that ¢! has the same properties as ¢. In the same
manner, if $(A) € RI, then A € RI. Therefore, p(IRI) = RI

Due to ¢(RI) = RI, exists A € R such that ¢p(AI) = I. For any A = A* € A and B € A, we obtain

0= ¢(lA, All o B) = [p(A), I]. ® p(B),

from the surjectivity of ¢ and Lemma 1.1, the above equation indicates [¢(A), I]. € iRI. Then exists A € iR
such that p(A)* = $(A) + AL. However,

0=¢([A, Al o B) = [¢(A), p(A)]. ® $(B)

forall A = A* € A and B € A. In the same manner, [¢(A), p(A)]. € iRI. Then Ap(A) € iRI. If A # 0, then
¢(A) € RI. It follows from ¢(RI) = RI that A = A* € RI, which is contradiction. Thus A = 0. Now we get
that p(A) = $(A)". In the same manner, if p(A) = ¢(A)*, then A = A* € A. Therefore ¢ preserves self-adjoint
elements in both directions.

Let A € C be arbitrary. For every A = A* € A, we obtain

0= ¢([A, All o B) = [p(A), p(AD)]. ® H(B)

for any B € A. By the surjectivity of ¢ and Lemma 1.1 again, the above equation indicates [¢(A), p(A])]. €
iRI. Due to A = A*, we have ¢(A) = ¢$(A)". Hence [¢p(A), p(Al)] € iRI. We obtain from Lemma 1.3 that
[p(A), p(AD)] = 0, and then Bp(AI) = d)(/\I)B for any B = B* € 8. Thus for any B € 8, since B = By +iB; with
B; = B+B and B, = % we get
BH(AD) = $(ADB

for any B € 8. Hence ¢(Al) € CI. In the same manner, if ¢p(A) € CI, then A € CI. Therefore, ¢p(CI) =
Claim 7. ¢p(P(A)) = P(B).

Fix a nontrivial projection P € P(8). Based on Claim 6, exists A = A* € A such that $(A) = P + RI. For
any B = B* € Aand C € A, we obtain

P([A, Bl o C) = [¢(A), p(B)]. ® H(C)
[P, ¢(B)]. @ ¢(C) = [([F, $(B)]. ® P), Pl. & ¢(C)
[([P(A), $(B)]. @ p(A)), p(A)]. @ H(C) = P([([A, B]. o A), A » C).
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By the injectivity of ¢, we concur that [([A, B]. @ A), A]. ¢ C = [A,B]. e C for all C € A, from Lemma 1.1, we
obtain

[([A,B]. e A),Al. — [A, B]. € iRI )
for all B = B* € A. For every X € A, we have X = X; +iX,, where X; = #£ and X, = % are self-adjoint.
From Eq. (2), we obtain [A, [A, [A, X]]] - [A, X] € Cl, ie.,

A3X —3A%XA +3AXA?* - XA® - AX + XA e CI (3)

forall X € A.

Let U be the group of unitary operators of A and let ¢ be the set of the functions U — f(U) defined
on U with non-negative real values, zero except on a finite subset of U and such that }_ .4, f(U) = 1. For
AeAand f € g, wedefine f - A = Y, jeqy fF(LHUAU".

For all U € U, by Eq. (3),

(A3 — A)U - 3A2UA + 3AUA? - U(A® - A) = al (4)
for certain o € CI. Multiplying by U* from the right of Eq. (4) gives
A% — A = 3AZUAU" + 3AUA*U" - U(A® - AU = all’,

then A3 — A—-3A%f-A+3Af-A>—-f-A%+ f-A =alU" forany f € . Due to A is a factor, from [1, Lemma 5
(Part ITI, Chapter 5)], exist A1, A5, A3 € C such that

A3 — A -3MA% +31,A - (A3 — A = all".

Thus U(A3-A)U*-3A UA?U* +31,UAU—(A3—A1)I = al* and then f-A3— f-A-3A; f-A%43A, f-A—(A3— A1)l =
al* for any f € ¢. From [1, Lemma 5 (Part III, Chapter 5)], we obtain al* = 0 for any U € U. Hence a = 0.
Thus we obtain

(A3 — A)U - 3A%UA + 3AUA%? - U(A* - A) =0 (5)

and
A3 — A =30A% =31,A + (A3 — A))I (6)

for any U € U. From Egs. (5)—(6), we conclude that
(MA% = L AU — A’UA + AUA? — U(11A% — 1,A) = 0. (7)
Multiplying by AU* from the right of Eq. (7) gives
(AMA? — LAUAU - A2UA*U" + AUAU - UM A% — L A)AU =0
for any U € U. Thus
(MAZ = VLA f-A-Af- A2+ Af - A3 — A1 f A3+ Aof - A2 =0

for any f € ¢. By applying [1, Lemma 5 (Part IlI, Chapter 5)] again, we obtain

MAMA% = VA) = A% + A3A + (A3 = LA =0,

ie.,
(A2 = A2)A? + (A3 — MA)A + (A3 — A1A3)I = 0. (8)
IfA, = A%, we obtain from ¢(CI) = CI and ¢(A) = P+ RI ¢ CI that A ¢ CI, then A3 = 1A, = /\?. From
Eq. (6), we have (A - M3 = A — Al Take B = A — A41, we obtain

B® =B and [B,[B,[B, X]]] = [B, X]
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for any X € A, which indicates that
B>XB - BXB* =0 9)

for any X € A. Take E; = 1(B*+B) and E, = 1(B? - B). We obtain from B® = B that E; and E; are idempotents
of A, then
B=E,—E,, B*=E+E, EE;=EE =0.

This along with Eq. (9) shows that E;XE, = 0 for any X € A. Thus E; = 0 or E; = 0. Therefore A = A1 + E4
orA = /\11 - Ez.
If Ay # A%, from Eq. (8), we obtain A% = AA + ul for certain A, u € C. This along with Eq. (5) indicates
that
(A* +4u-1)(AU - UA) =0 (10)

forany U € U. From A ¢ CI, we obtain AU — UA # 0 for some U € U. By Eq. (10), we obtain A> +4u—1 = 0.
Take E = A + %(1 — A)I, we have

E? = A2+(1—/\)A+31(1—A)2[:AA+MI+(1—A)A+}I(l—A)ZI
= A+}L(A2+4‘u—2/\+1)I:A+%(1—/\)125

Therefore A = %(/\ —1I+E.Since A = A, then A =al+E,a € RLE € P(A). If E=0or E = I, from
¢(A) = P + RI, we obtain ¢(IRI) = P + RI. It follows ¢(IRI) = RI that P = 0 or P = I, since P is a nontrivial
projection, which is a contradiction. Thus, A is the sum of a real number and a nontrivial projection of A.
Applying the same argument to ¢!, we can obtain the reverse inclusion and ¢(P(A) + RI) = P(B) + RI. By
Claims 5 and 6, we obtain ¢p(P(A)) = P(B).

remark 1. Since [P;,B]. e C = [B,P,]. e C for all B=B* € Aand C € A, from Claim 7, we obtain

[Q1, ¢(B)]. ® ¢(C) = [¢(B), Q21. ® ¢(C),

where Q; € P(8),i = 1,2. The surjectivity of ¢ indicates that [Q1, ¢(B)]. — [¢(B), Qz]. € iRI. It follows from
Claim 6 that [Q1 + O, B] € iRl holds true for all B = B* € 8. By Lemma 1.3, [Q; + Q», B] = 0. Thus for every
B € B, because B = By +iB, with B; = % and B, = %, we get [Q1 + Q2,B] = 0 for all B € B. From this,
exists A € R such that
Q1 + Q2 = AL
Multiplying by Q; and Q; from the left and right respectively in the above equation, we obtain Q; +

Q1Q2 = AQq and Q1Q2 + Q2 = AQ,. Therefore, we can concur that (1 — A)(Q1 — Q2) = 0 by subtracting
the above two equations. By the injectivity of ¢, exists P; # P, such that Q; # Q,. Thus A = 1 and then

Q=1-0Q1.
Claim 8. ¢(A;j) = Bij, p(Aj;) € Bjj, 1 <i# j<2.

Leti, j € {1,2} withi # jand A;; € A;;. By the factiA;; = [%I, P;]. e A;jj, we obtain
. i i, i, i
P(iA;}) = (QD(EI) - ¢(§I) )Qip(Ai)) + (¢(§1) - ¢(§I))¢(Aij)Qi-

From this and Remark 1, we get Q;¢(iA;})Q; = Q;jp(iA;;)Q; = 0. Thus

P(Aij) = Qip(iA;)Q; + Q;Pp(iA;)Q;. (11)
Forevery B € A, we obtain from the fact [iA;;, P;].eB = 0 that [(iA;}), Q;].e(B) = 0. Thus [¢(iA;)), Qi]. € iRI,
which together with Eq. (11) indicates that Q;¢(iA;;)Q; — Qi¢(iA;j)*Q; € iRI. Multiplying by Q; and Q; from
the left and right respectively in the above equation, we have Q;¢(iA;;)Q; = 0. It follows from Eq. (11) that

$(iAi)) = Qip(iA;;)Q;. Since Aj; is arbitrary, we obtain ¢(A;j) C Bj;. Applying the same argument to ¢!, we
obtain Bi]’ c (P(ﬂl]) Thus (P(ﬂz]) = Bi]',i #].
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Let Ajj € Ajjand i # j. It follows from Claim 7 and Remark 1 that
0= @([Pi, Ajjl. o Pj) = [Qi, p(Aj)]. ® Qj = Qicp(Ajj)Q; + Qjp(Aj) Qi
and
0=o¢([P},Ajjl. o Pi) = [Q), p(Aj)]. ® Qi = Q;p(Aj;)Qi + Qip(A;)) Qj,
which indicates that Q;(p(A;;)Q; = Q;p(A;;)Q; = 0. Now we obtain
P(Ajj) = Qip(A;)Qi + Qjp(Aj)Q;. (12)
For every Aji € Aj and C € A, we have Tj; = ¢p(Aj;) € Aj;. Therefore
0=0¢(Aji, Ajjl.  C) = [Tji;, p(Ajj)]. @ P(C).
Using the surjectivity of ¢, the above equation indicates [T;, p(A;;)]. € iRI. It follows from Eq. (12) that
Tid(A)Qs — Qub(AyT; € iRL. (13)

By Remark 1, multiplying by Q; and Q; from the left and right respectively in Eq. (13), we can get that
Tjip(Ajj)Q; = 0 for all Tj; € Bji. By the primeness of B, we obtain that Q;((A;))Q; = 0, thus ¢(Aj;) € B;j.
Claim 9. ¢(AB) = ¢(A)p(B) for all A, B € A.

It follows from Remark 1 and Claim 8 that

O([P;, Aijl« @ Bji) = [@(P;), p(Aij)]. @ ¢(Bji) = [Qi, p(Aij)]- ® p(Bji).
Thus
P(AijBji) = ¢(Aij)p(Bji).- (14)
For T;; € Bj;, we have X; = qb_l(Tﬁ) € Aj; by Claim 8. Therefore
O(AiBi))Tji = p(AiiBiiXji) = P([Aii, Bijl« @ Xji) = ¢(Aii)p(Bij)Tji.
By the primeness of 8, we obtain
P(AiiBij) = P(Air)p(Byj)- (15)
It follows from Egs. (14)—(15) that
P(AijBjTji = P(AijBjiXii) = P(AijP(B)iXji) = p(Aij)p(Bj) T
In the same manner, we obtain
¢(AiBjj) = ¢(Aij)p(Bjp)- (16)
From Eq. (15), we have
O(AjiBjTji = (A)iBjiXji) = d(Ajj)P(Bj; Xji) = P(A;)P(B;j) T
Thus
O(AjiBjj) = O(A;)P(Bj))- (17)
From Egs. (14)—(17) and Claim 5, we obtain ¢(AB) = ¢p(A)p(B) for all A, B € A.
Claim 10. ¢ is a linear *-isomorphism, or a conjugate linear *-isomorphism, or the negative of a linear
+-isomorphism, or the negative of a conjugate linear *-isomorphism.
It follows from Claims 5 and 9 that ¢ is a ring isomorphism. By Claim 6, exists A € R\ {0} such that
¢(I) = AL By the equality ¢(I*) = ¢(I)*, we concur that ¢(I) = I or ¢(I) = —I. In the rest of this section, we

deal with these two cases respectively.
Case 1. ¢(I) = I.
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For every rational number g, we obtain ¢(gI) = gI. Take A be a positive element in A. Then A = B?, B* =
B € A. It follows that ¢(A) = ¢(B)* and ¢(B) = ¢(B)*. We concur ¢(A) is positive, i.e., ¢ preserves positive
elements.

Take A € R. Choose sequences {a,} and {b,} of rational numbers such that a, < A < b, for all n and
lim a, = lim b, = A. From a,I < AI < b,I, we concur a,I < ¢p(Al) < b,l. Taking the limit, we get ¢(Al) = Al

n—oo n—oo

for any A € R. Then for every A € A, we obtain ¢p(AA) = P((AD)A) = P(ADP(A) = AP(A).

For every A € 4, it follows from —¢(A) = ¢(i’A) = P(I)>P(A) that ¢(il)> = —1, which indicates that
¢(il) = il or ¢(@il) = —il. From Claim 9, we obtain that ¢(iA) = ip(A) or p(iA) = —ip(A) for all A € A.

Forall A € A,A = Ay +iA,, where A| = AEA* and A, = % are self-adjoint elements. If p(iA) = ip(A),
then

P(AT) = P(A1 —iA) = P(A1) — P(iA2) = P(A1) — ip(A2) = P(A1)" —iP(A2)" = P(A1)" + (iP(A2))" = P(A)".

In the same manner, if p(iAd) = —ip(A), we also obtain ¢p(A*) = ¢P(A)*. Therefore ¢ is either a linear *-
isomorphism or a conjugate linear *-isomorphism.
Case 2. ¢(I) = -1

Consider that the map i : A — B defined by Y/(A) = —¢p(A) for all A € A. We concur that ¢ satisfies
Y([A,Bl. ¢ C) = [{(A), Y(B)]. @ (C) for all A, B, C € A and ¢(I) = I. From Case 1, ¢ is either the negative of
a linear *-isomorphism or the negative of a conjugate linear *-isomorphism. [J
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