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Nonlinear maps preserving the mixed triple ∗-product between factors
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Abstract. Let A and B be two factors. In this paper, it is proved that a not necessarily linear bijective
map ϕ : A → B satisfies ϕ([A,B]∗ • C) = [ϕ(A), ϕ(B)]∗ • ϕ(C) for all A,B,C ∈ A if and only if ϕ is a linear
∗-isomorphism, a conjugate linear ∗-isomorphism, the negative of a linear ∗-isomorphism, or the negative
of a conjugate linear ∗-isomorphism.

1. Introduction

Let A and B be two ∗-algebras and ϕ : A → B be a map. We consider that ϕ preserves the mixed
triple ∗-product if ϕ([A,B]∗ • C) = [ϕ(A), ϕ(B)]∗ • ϕ(C) for all A,B,C ∈ A, where [A,B]∗ = AB − BA∗ is the
skew Lie product and A • B = AB + BA∗ is the Jordan ∗-product of A and B. Recently, some authors have
considered the mixture of (skew) Lie product and Jordan ∗-product [3–17]. For example, Yang and Zhang
[8] proved the nonlinear maps preserving the mixed skew Lie triple product [[A,B]∗,C] on factors. Zhao et
al. [17] proved the nonlinear maps preserving mixed product [A • B,C] on von Neumann algebras. Yang
and Zhang [9] proved the nonlinear maps preserving the second mixed Lie triple product [[A,B],C]∗ on
factors. In this article, motivated by the above results, we will obtain the structure of the nonlinear maps
preserving the mixed triple ∗-product [A,B]∗ • C on factors.

As usual, R and C denote respectively the real field and complex field. A von Neumann algebra A is
a weakly closed, self-adjoint algebra of operators on a Hilbert space H containing the identity operator I.
A is a factor means that its center only contains the scalar operators. It is well known that the factor A is
prime, that is, for A,B ∈ A, if AAB = {0}, then A = 0 or B = 0.

Lemma 1.1. [16] Let A be a factor and A ∈ A. Then AB + BA∗ = 0 for all B ∈ A implies that A ∈ iRI (i is the
imaginary number unit).

Lemma 1.2. [7] LetA be a factor von Neumann algebra and A ∈ A. If [A,B]∗ ∈ CI for all B ∈ A, then A ∈ CI.

Lemma 1.3. ([2, Problem 230]) LetA be a Banach algebra with the identity I. If A,B ∈ A and λ ∈ C are such that
[A,B] = λI, where [A,B] = AB − BA, then λ = 0.
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2. The main result and its proof

Theorem 2.1. LetA andB be two factor von Neumann algebras with dimA ≥ 2. Then a bijective map ϕ : A→ B
satisfiesϕ([A,B]∗•C) = [ϕ(A), ϕ(B)]∗•ϕ(C) for all A,B,C ∈ A if and only ifϕ is a linear ∗-isomorphism, a conjugate
linear ∗-isomorphism, the negative of a linear ∗-isomorphism, or the negative conjugate linear ∗-isomorphism.

Proof. Choose an arbitrary nontrivial projection P1 ∈ A, write P2 = I − P1. Denote Ai j = PiAP j, i, j = 1, 2,
then A =

∑2
i, j=1Ai j. We can write every A ∈ A as A =

∑2
i, j=1 Ai j, where Ai j denotes an arbitrary element of

Ai j. We denote by P(A) and P(B) all projections ofA and B, respectively. Clearly, we only need to prove
the necessity.
Claim 1. ϕ(0) = 0.

Since ϕ is surjective, there exists A ∈ A such that ϕ(A) = 0. Hence ϕ(0) = ϕ([0,A]∗ • A) = [ϕ(0), ϕ(A)]∗ •
ϕ(A) = 0.
Claim 2. ϕ(Σ2

i, j=1Ai j) = Σ2
i, j=1ϕ(Ai j) for all Ai j ∈ Ai j.

Let X =
∑2

i, j=1 Xi j ∈ A such that ϕ(X) = Σ2
i, j=1ϕ(Ai j). We have ϕ([P1,X]∗ • P2) = Σ2

i, j=1ϕ([P1,Ai j]∗ • P2), i.e.,
ϕ(X12 + X∗12) = ϕ(A12 + A∗12), which implies that X12 = A12. In the same manner, X21 = A21.

For every T12 ∈ A12, we obtain ϕ([T12,X]∗ • P2) = Σ2
i, j=1ϕ([T12,Ai j]∗ • P2), i.e., ϕ(T12X22 + X∗22T∗12) =

ϕ(T12A22 +A∗22T∗12). By the injectivity of ϕ, we obtain T12X22 +X∗22T∗12 = T12A22 +A∗22T∗12 for all T12 ∈ A12. By
the primeness ofA, we get X22 = A22. In the same manner, we obtain X11 = A11.
Claim 3. Let i, j ∈ {1, 2}with i , j. Then ϕ(Ai j + Bi j) = ϕ(Ai j) + ϕ(Bi j) for all Ai j ∈ Ai j and Bi j ∈ Ai j.

It follows from Ai j + Bi j + A∗i j + Bi jA∗i j = [− i
2 I, iPi + iAi j]∗ • (P j + Bi j) and Claim 2 that

ϕ(Ai j + Bi j) + ϕ(A∗i j) + ϕ(Bi jA∗i j)

= ϕ(Ai j + Bi j + A∗i j + Bi jA∗i j)

= ϕ([−
i
2

I, iPi + iAi j]∗ • (P j + Bi j))

= [ϕ(−
i
2

I), ϕ(iPi + iAi j)]∗ • ϕ(P j + Bi j)

= [ϕ(−
i
2

I), ϕ(iPi) + ϕ(iAi j)]∗ • (ϕ(P j) + ϕ(Bi j))

= ϕ([−
i
2

I, iPi]∗ • P j) + ϕ([−
i
2

I, iPi]∗ • Bi j)

+ϕ([−
i
2

I, iAi j]∗ • P j) + ϕ([−
i
2

I, iAi j]∗ • Bi j)

= ϕ(Bi j) + ϕ(Ai j + A∗i j) + ϕ(Bi jA∗i j)

= ϕ(Bi j) + ϕ(Ai j) + ϕ(A∗i j) + ϕ(Bi jA∗i j),

which indicates that ϕ(Ai j + Bi j) = ϕ(Ai j) + ϕ(Bi j).
Claim 4. Let i ∈ {1, 2}. Then ϕ(Aii + Bii) = ϕ(Aii) + ϕ(Bii) for all Aii ∈ Aii and Bii ∈ Aii.

Choose X =
∑2

i, j=1 Xi j ∈ A such that ϕ(X) = ϕ(Aii) + ϕ(Bii). We obtain

ϕ(Xi j + X∗i j) = ϕ([Pi,X]∗ • P j) = ϕ([Pi,Aii]∗ • P j) + ϕ([Pi,Bii]∗ • P j) = 0.

Thus we get Xi j = 0. In the same manner, X ji = 0. For every Ti j ∈ Ai j, i , j, we have

ϕ(Ti jX j j + X∗j jT
∗

i j) = ϕ([Ti j,X]∗ • P j) = ϕ([Ti j,Aii]∗ • P j) + ϕ([Ti j,Bii]∗ • P j) = 0,

which implies that Ti jX j j = X∗j jT
∗

i j = 0. By the primeness ofA, we obtain X j j = 0. Therefore,

ϕ(Xii) = ϕ(Aii) + ϕ(Bii). (1)



F. Zhang / Filomat 37:8 (2023), 2397–2403 2399

For every Ti j ∈ Ai j, i , j, it follows from Claims 2 and 3 that

ϕ(XiiTi j + T∗i jX
∗

ii) = ϕ([X,Ti j]∗ • P j)

= ϕ([Aii,Ti j]∗ • P j) + ϕ([Bii,Ti j]∗ • P j)
= ϕ(AiiTi j + T∗i jA

∗

ii) + ϕ(BiiTi j + T∗i jB
∗

ii)

= ϕ(AiiTi j) + ϕ(T∗i jA
∗

ii) + ϕ(BiiTi j) + ϕ(T∗i jB
∗

ii)

= ϕ(AiiTi j + BiiTi j) + ϕ(T∗i jA
∗

ii + T∗i jB
∗

ii)

= ϕ(AiiTi j + BiiTi j + T∗i jA
∗

ii + T∗i jB
∗

ii),

which indicates that Xii = Aii + Bii. This together with Eq. (1) shows that ϕ(Aii + Bii) = ϕ(Aii) + ϕ(Bii).
Claim 5. ϕ is additive.

By Claims 2–4, ϕ is additive.
Claim 6. ϕ(RI) = RI, ϕ(CI) = CI and ϕ preserves self-adjoint elements in both directions.

Let λ ∈ R be arbitrary. It is easily seen that

0 = ϕ([λI,B]∗ • C) = [ϕ(λI), ϕ(B)]∗ • ϕ(C)

holds true for any B,C ∈ A. Since ϕ is surjective, by Lemma 1.1, which indicates that

[ϕ(λI), ϕ(B)]∗ ∈ iRI.

Then [ϕ(λI),B]∗ ∈ CI for any B ∈ B. We obtain from Lemma 1.2 that ϕ(λI) ∈ CI, so exists λ0 ∈ C such that
(λ0 − λ0)B ∈ CI for any B ∈ B, then ϕ(λI) ∈ RI. Note that ϕ−1 has the same properties as ϕ. In the same
manner, if ϕ(A) ∈ RI, then A ∈ RI. Therefore, ϕ(RI) = RI.

Due to ϕ(RI) = RI, exists λ ∈ R such that ϕ(λI) = I. For any A = A∗ ∈ A and B ∈ A, we obtain

0 = ϕ([A, λI]∗ • B) = [ϕ(A), I]∗ • ϕ(B),

from the surjectivity of ϕ and Lemma 1.1, the above equation indicates [ϕ(A), I]∗ ∈ iRI. Then exists λ ∈ iR
such that ϕ(A)∗ = ϕ(A) + λI. However,

0 = ϕ([A,A]∗ • B) = [ϕ(A), ϕ(A)]∗ • ϕ(B)

for all A = A∗ ∈ A and B ∈ A. In the same manner, [ϕ(A), ϕ(A)]∗ ∈ iRI. Then λϕ(A) ∈ iRI. If λ , 0, then
ϕ(A) ∈ RI. It follows from ϕ(RI) = RI that A = A∗ ∈ RI, which is contradiction. Thus λ = 0. Now we get
that ϕ(A) = ϕ(A)∗. In the same manner, if ϕ(A) = ϕ(A)∗, then A = A∗ ∈ A. Therefore ϕ preserves self-adjoint
elements in both directions.

Let λ ∈ C be arbitrary. For every A = A∗ ∈ A, we obtain

0 = ϕ([A, λI]∗ • B) = [ϕ(A), ϕ(λI)]∗ • ϕ(B)

for any B ∈ A. By the surjectivity of ϕ and Lemma 1.1 again, the above equation indicates [ϕ(A), ϕ(λI)]∗ ∈
iRI. Due to A = A∗, we have ϕ(A) = ϕ(A)∗. Hence [ϕ(A), ϕ(λI)] ∈ iRI. We obtain from Lemma 1.3 that
[ϕ(A), ϕ(λI)] = 0, and then Bϕ(λI) = ϕ(λI)B for any B = B∗ ∈ B. Thus for any B ∈ B, since B = B1 + iB2 with
B1 =

B+B∗
2 and B2 =

B−B∗

2i , we get
Bϕ(λI) = ϕ(λI)B

for any B ∈ B. Hence ϕ(λI) ∈ CI. In the same manner, if ϕ(A) ∈ CI, then A ∈ CI. Therefore, ϕ(CI) = CI.
Claim 7. ϕ(P(A)) = P(B).

Fix a nontrivial projection P ∈ P(B). Based on Claim 6, exists A = A∗ ∈ A such that ϕ(A) = P + RI. For
any B = B∗ ∈ A and C ∈ A, we obtain

ϕ([A,B]∗ • C) = [ϕ(A), ϕ(B)]∗ • ϕ(C)
= [P, ϕ(B)]∗ • ϕ(C) = [([P, ϕ(B)]∗ • P),P]∗ • ϕ(C)
= [([ϕ(A), ϕ(B)]∗ • ϕ(A)), ϕ(A)]∗ • ϕ(C) = ϕ([([A,B]∗ • A),A]∗ • C).
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By the injectivity of ϕ, we concur that [([A,B]∗ • A),A]∗ • C = [A,B]∗ • C for all C ∈ A, from Lemma 1.1, we
obtain

[([A,B]∗ • A),A]∗ − [A,B]∗ ∈ iRI (2)

for all B = B∗ ∈ A. For every X ∈ A, we have X = X1 + iX2, where X1 =
X+X∗

2 and X2 =
X−X∗

2i are self-adjoint.
From Eq. (2), we obtain [A, [A, [A,X]]] − [A,X] ∈ CI, i.e.,

A3X − 3A2XA + 3AXA2
− XA3

− AX + XA ∈ CI (3)

for all X ∈ A.
Let U be the group of unitary operators of A and let φ be the set of the functions U → f (U) defined

onU with non-negative real values, zero except on a finite subset ofU and such that
∑

U∈U f (U) = 1. For
A ∈ A and f ∈ φ, we define f · A =

∑
U∈U f (U)UAU∗.

For all U ∈ U, by Eq. (3),

(A3
− A)U − 3A2UA + 3AUA2

−U(A3
− A) = αI (4)

for certain α ∈ CI. Multiplying by U∗ from the right of Eq. (4) gives

A3
− A − 3A2UAU∗ + 3AUA2U∗ −U(A3

− A)U∗ = αU∗,

then A3
−A− 3A2 f ·A+ 3A f ·A2

− f ·A3 + f ·A = αU∗ for any f ∈ φ. Due toA is a factor, from [1, Lemma 5
(Part III, Chapter 5)], exist λ1, λ2, λ3 ∈ C such that

A3
− A − 3λ1A2 + 3λ2A − (λ3 − λ1)I = αU∗.

Thus U(A3
−A)U∗−3λ1UA2U∗+3λ2UAU∗−(λ3−λ1)I = αU∗ and then f ·A3

− f ·A−3λ1 f ·A2+3λ2 f ·A−(λ3−λ1)I =
αU∗ for any f ∈ φ. From [1, Lemma 5 (Part III, Chapter 5)], we obtain αU∗ = 0 for any U ∈ U. Hence α = 0.
Thus we obtain

(A3
− A)U − 3A2UA + 3AUA2

−U(A3
− A) = 0 (5)

and
A3
− A = 3λ1A2

− 3λ2A + (λ3 − λ1)I (6)

for any U ∈ U. From Eqs. (5)–(6), we conclude that

(λ1A2
− λ2A)U − A2UA + AUA2

−U(λ1A2
− λ2A) = 0. (7)

Multiplying by AU∗ from the right of Eq. (7) gives

(λ1A2
− λ2A)UAU∗ − A2UA2U∗ + AUA3U∗ −U(λ1A2

− λ2A)AU∗ = 0

for any U ∈ U. Thus

(λ1A2
− λ2A) f · A − A2 f · A2 + A f · A3

− λ1 f · A3 + λ2 f · A2 = 0

for any f ∈ φ. By applying [1, Lemma 5 (Part III, Chapter 5)] again, we obtain

λ1(λ1A2
− λ2A) − λ2A2 + λ3A + (λ2

2 − λ1λ3)I = 0,

i.e.,
(λ2

1 − λ2)A2 + (λ3 − λ1λ2)A + (λ2
2 − λ1λ3)I = 0. (8)

If λ2 = λ2
1, we obtain from ϕ(CI) = CI and ϕ(A) = P + RI < CI that A < CI, then λ3 = λ1λ2 = λ3

1. From
Eq. (6), we have (A − λ1I)3 = A − λ1I. Take B = A − λ1I, we obtain

B3 = B and [B, [B, [B,X]]] = [B,X]
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for any X ∈ A, which indicates that
B2XB − BXB2 = 0 (9)

for any X ∈ A. Take E1 =
1
2 (B2+B) and E2 =

1
2 (B2
−B).We obtain from B3 = B that E1 and E2 are idempotents

ofA, then
B = E1 − E2, B2 = E1 + E2, E1E2 = E2E1 = 0.

This along with Eq. (9) shows that E1XE2 = 0 for any X ∈ A. Thus E1 = 0 or E2 = 0. Therefore A = λ1I + E1
or A = λ1I − E2.

If λ2 , λ2
1, from Eq. (8), we obtain A2 = λA + µI for certain λ, µ ∈ C. This along with Eq. (5) indicates

that
(λ2 + 4µ − 1)(AU −UA) = 0 (10)

for any U ∈ U. From A < CI,we obtain AU−UA , 0 for some U ∈ U. By Eq. (10), we obtain λ2+4µ−1 = 0.
Take E = A + 1

2 (1 − λ)I, we have

E2 = A2 + (1 − λ)A +
1
4

(1 − λ)2I = λA + µI + (1 − λ)A +
1
4

(1 − λ)2I

= A +
1
4

(λ2 + 4µ − 2λ + 1)I = A +
1
2

(1 − λ)I = E.

Therefore A = 1
2 (λ − 1)I + E. Since A = A∗, then A = αI + E, α ∈ RI,E ∈ P(A). If E = 0 or E = I, from

ϕ(A) = P + RI, we obtain ϕ(RI) = P + RI. It follows ϕ(RI) = RI that P = 0 or P = I, since P is a nontrivial
projection, which is a contradiction. Thus, A is the sum of a real number and a nontrivial projection ofA.
Applying the same argument to ϕ−1,we can obtain the reverse inclusion and ϕ(P(A)+RI) = P(B)+RI. By
Claims 5 and 6, we obtain ϕ(P(A)) = P(B).
remark 1. Since [P1,B]∗ • C = [B,P2]∗ • C for all B = B∗ ∈ A and C ∈ A, from Claim 7, we obtain

[Q1, ϕ(B)]∗ • ϕ(C) = [ϕ(B),Q2]∗ • ϕ(C),

where Qi ∈ P(B), i = 1, 2. The surjectivity of ϕ indicates that [Q1, ϕ(B)]∗ − [ϕ(B),Q2]∗ ∈ iRI. It follows from
Claim 6 that [Q1 +Q2,B] ∈ iRI holds true for all B = B∗ ∈ B. By Lemma 1.3, [Q1 +Q2,B] = 0. Thus for every
B ∈ B, because B = B1 + iB2 with B1 =

B+B∗
2 and B2 =

B−B∗

2i , we get [Q1 + Q2,B] = 0 for all B ∈ B. From this,
exists λ ∈ R such that

Q1 +Q2 = λI.

Multiplying by Q1 and Q2 from the left and right respectively in the above equation, we obtain Q1 +
Q1Q2 = λQ1 and Q1Q2 + Q2 = λQ2. Therefore, we can concur that (1 − λ)(Q1 − Q2) = 0 by subtracting
the above two equations. By the injectivity of ϕ, exists P1 , P2 such that Q1 , Q2. Thus λ = 1 and then
Q2 = I −Q1.
Claim 8. ϕ(Ai j) = Bi j, ϕ(A j j) ⊆ B j j, 1 ≤ i , j ≤ 2.

Let i, j ∈ {1, 2}with i , j and Ai j ∈ Ai j. By the fact iAi j = [ i
2 I,Pi]∗ • Ai j, we obtain

ϕ(iAi j) = (ϕ(
i
2

I) − ϕ(
i
2

I)∗)Qiϕ(Ai j) + (ϕ(
i
2

I)∗ − ϕ(
i
2

I))ϕ(Ai j)Qi.

From this and Remark 1, we get Qiϕ(iAi j)Qi = Q jϕ(iAi j)Q j = 0. Thus

ϕ(iAi j) = Qiϕ(iAi j)Q j +Q jϕ(iAi j)Qi. (11)

For every B ∈ A,we obtain from the fact [iAi j,Pi]∗•B = 0 that [ϕ(iAi j),Qi]∗•ϕ(B) = 0.Thus [ϕ(iAi j),Qi]∗ ∈ iRI,
which together with Eq. (11) indicates that Q jϕ(iAi j)Qi −Qiϕ(iAi j)∗Q j ∈ iRI.Multiplying by Q j and Qi from
the left and right respectively in the above equation, we have Q jϕ(iAi j)Qi = 0. It follows from Eq. (11) that
ϕ(iAi j) = Qiϕ(iAi j)Q j. Since Ai j is arbitrary, we obtain ϕ(Ai j) ⊆ Bi j. Applying the same argument to ϕ−1, we
obtain Bi j ⊆ ϕ(Ai j). Thus ϕ(Ai j) = Bi j, i , j.
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Let A j j ∈ A j j and i , j. It follows from Claim 7 and Remark 1 that

0 = ϕ([Pi,A j j]∗ • P j) = [Qi, ϕ(A j j)]∗ •Q j = Qiϕ(A j j)Q j +Q jϕ(A j j)∗Qi

and
0 = ϕ([P j,A j j]∗ • Pi) = [Q j, ϕ(A j j)]∗ •Qi = Q jϕ(A j j)Qi +Qiϕ(A j j)∗Q j,

which indicates that Qiϕ(A j j)Q j = Q jϕ(A j j)Qi = 0. Now we obtain

ϕ(A j j) = Qiϕ(A j j)Qi +Q jϕ(A j j)Q j. (12)

For every A ji ∈ A ji and C ∈ A, we have T ji = ϕ(A ji) ∈ A ji. Therefore

0 = ϕ([A ji,A j j]∗ • C) = [T ji, ϕ(A j j)]∗ • ϕ(C).

Using the surjectivity of ϕ, the above equation indicates [T ji, ϕ(A j j)]∗ ∈ iRI. It follows from Eq. (12) that

T jiϕ(A j j)Qi −Qiϕ(A j j)T∗ji ∈ iRI. (13)

By Remark 1, multiplying by Q j and Qi from the left and right respectively in Eq. (13), we can get that
T jiϕ(A j j)Qi = 0 for all T ji ∈ B ji. By the primeness of B, we obtain that Qiϕ(A j j)Qi = 0, thus ϕ(A j j) ⊆ B j j.
Claim 9. ϕ(AB) = ϕ(A)ϕ(B) for all A,B ∈ A.

It follows from Remark 1 and Claim 8 that

ϕ([Pi,Ai j]∗ • B ji) = [ϕ(Pi), ϕ(Ai j)]∗ • ϕ(B ji) = [Qi, ϕ(Ai j)]∗ • ϕ(B ji).

Thus
ϕ(Ai jB ji) = ϕ(Ai j)ϕ(B ji). (14)

For T ji ∈ B ji, we have X ji = ϕ−1(T ji) ∈ A ji by Claim 8. Therefore

ϕ(AiiBi j)T ji = ϕ(AiiBi jX ji) = ϕ([Aii,Bi j]∗ • X ji) = ϕ(Aii)ϕ(Bi j)T ji.

By the primeness of B, we obtain
ϕ(AiiBi j) = ϕ(Aii)ϕ(Bi j). (15)

It follows from Eqs. (14)–(15) that

ϕ(Ai jB j j)T ji = ϕ(Ai jB j jX ji) = ϕ(Ai j)ϕ(B j jX ji) = ϕ(Ai j)ϕ(B j j)T ji.

In the same manner, we obtain
ϕ(Ai jB j j) = ϕ(Ai j)ϕ(B j j). (16)

From Eq. (15), we have

ϕ(A j jB j j)T ji = ϕ(A j jB j jX ji) = ϕ(A j j)ϕ(B j jX ji) = ϕ(A j j)ϕ(B j j)T ji.

Thus
ϕ(A j jB j j) = ϕ(A j j)ϕ(B j j). (17)

From Eqs. (14)–(17) and Claim 5, we obtain ϕ(AB) = ϕ(A)ϕ(B) for all A,B ∈ A.
Claim 10. ϕ is a linear ∗-isomorphism, or a conjugate linear ∗-isomorphism, or the negative of a linear
∗-isomorphism, or the negative of a conjugate linear ∗-isomorphism.

It follows from Claims 5 and 9 that ϕ is a ring isomorphism. By Claim 6, exists λ ∈ R \ {0} such that
ϕ(I) = λI. By the equality ϕ(I3) = ϕ(I)3, we concur that ϕ(I) = I or ϕ(I) = −I. In the rest of this section, we
deal with these two cases respectively.
Case 1. ϕ(I) = I.
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For every rational number q, we obtain ϕ(qI) = qI. Take A be a positive element inA. Then A = B2,B∗ =
B ∈ A. It follows that ϕ(A) = ϕ(B)2 and ϕ(B) = ϕ(B)∗. We concur ϕ(A) is positive, i.e., ϕ preserves positive
elements.

Take λ ∈ R. Choose sequences {an} and {bn} of rational numbers such that an ≤ λ ≤ bn for all n and
lim
n→∞

an = lim
n→∞

bn = λ. From anI ≤ λI ≤ bnI, we concur anI ≤ ϕ(λI) ≤ bnI. Taking the limit, we get ϕ(λI) = λI
for any λ ∈ R. Then for every A ∈ A, we obtain ϕ(λA) = ϕ((λI)A) = ϕ(λI)ϕ(A) = λϕ(A).

For every A ∈ A, it follows from −ϕ(A) = ϕ(i2A) = ϕ(iI)2ϕ(A) that ϕ(iI)2 = −1, which indicates that
ϕ(iI) = iI or ϕ(iI) = −iI. From Claim 9, we obtain that ϕ(iA) = iϕ(A) or ϕ(iA) = −iϕ(A) for all A ∈ A.

For all A ∈ A,A = A1 + iA2, where A1 =
A+A∗

2 and A2 =
A−A∗

2i are self-adjoint elements. If ϕ(iA) = iϕ(A),
then

ϕ(A∗) = ϕ(A1 − iA2) = ϕ(A1) − ϕ(iA2) = ϕ(A1) − iϕ(A2) = ϕ(A1)∗ − iϕ(A2)∗ = ϕ(A1)∗ + (iϕ(A2))∗ = ϕ(A)∗.

In the same manner, if ϕ(iA) = −iϕ(A), we also obtain ϕ(A∗) = ϕ(A)∗. Therefore ϕ is either a linear ∗-
isomorphism or a conjugate linear ∗-isomorphism.
Case 2. ϕ(I) = −I.

Consider that the map ψ : A → B defined by ψ(A) = −ϕ(A) for all A ∈ A. We concur that ψ satisfies
ψ([A,B]∗ • C) = [ψ(A), ψ(B)]∗ • ψ(C) for all A,B,C ∈ A and ψ(I) = I. From Case 1, ϕ is either the negative of
a linear ∗-isomorphism or the negative of a conjugate linear ∗-isomorphism.
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