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Abstract. Let A and B be two unital prime complex -algebras such that A has a nontrivial projection.
In this paper, we study the structure of the bijective mappings @ : A — B preserving sum of products

a1ab” + apb*a + asba” (resp., a1ab™ + axb*a + aza™b), where the scalars {ak}i’:l are rational numbers satisfying
some conditions.

1. Introduction

Let A and B be complex algebras. We say that a mapping @ : A — B is additive if ®(a +b) = P(a) + D(b),
for all elements a,b € A, and that it is multiplicative or that preserves product if ®(ab) = ®(a)P(b), for all
elements a,b € A. Denote by Q[i] = Q + Qi. We say that an additive mapping @ : A — B is a Q[i]-linear map
(resp., conjugate Q[i]-linear map) if ®(aa) = ad(a) (resp., P(aa) = aP(a)), for all elements a € Q[i] and
ae A

Let Aand Bbe complex *-algebras. We say thata mapping @ : A — B preserves involutionif ®(a*) = ®(a)*,
for all elements a € A.

An algebra A is said to be prime if a.Ab = 0 implies that a = 0 or b = 0. An element p of a *-algebra A is
said to be projection if it is an idempotent element satisfying the condition p* = p. The opposite algebra is a
new algebra, denoted by A%, obtained from the algebra A by redefining multiplication by a2 © b = ba, for all
elements a,b € A%, called reverse multiplication. It is evident that * is an involution on A if and only if  is
an involution on A%, that an element is the multiplicative identity (resp., a projection) of A if and only if it
is also the multiplicative identity (resp., a projection) of A% and that A is prime if and only if A% is prime.

Recently, many mathematicians devoted themselves to study bijective mappings preserving new pro-
ducts on x-algebras (see the works [1], [2] and [3] and the references therein). These products play very
important roles in some research fields. In particular, the authors in [1] showed that bijective mappings
® : A - B, on factor von Neumann algebras and satisfying ®(ab* — b*a) = ®(a)P(b)* - O(b)*D(a), for
all elements a,b € A, are of the form ¢ + 7, where ¢ is a linear *-isomorphism, or a conjugate linear
+-isomorphism, or the negative of a linear *-anti-isomorphism, or the negative of a conjugate linear *-anti-
isomorphism of A onto B and 7 is a mapping of A into C1 4 which maps commutators into zero and the
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authors in [2] showed that bijective mappings @ : A — B, on factor von Neumann algebras and satisfying
D(ab* +b*a) = P(a)D(b)* +D(b)*D(a), for all elements a,b € A, are +-ring isomorphisms. The purpose of the
present paper is to study the structure of bijective mappings preserving two families of sums of products,
related to products ab* - b*a and ab™ + b*a.

Let A and B be two complex *-algebras and {ay}?_, arbitrary rational numbers. We say that a mapping
® : A — B preserves sum of products a1ab* + axb*a + azba* (resp., a1ab™ + axb*a + aza*b) if

D(ayab* + axb™a + azba™) = a1 @(a)P(b)* + a,®(b)*D(a) + azP(b)P(a)* (1)
(resp., @(a1ab™ + azb*a + aza™b) = a1 P(a)P(b)* + ;@ (b)* D(a) + a3 D(a)*D(D)),

for all elements a,b € A.

Lemma 1.1. Let Aand B be two *-algebras, A% and B their respective opposite algebras, {ay};_, arbitrary rational
numbers, @ : A — B a map and % : A% — B% q map defined by ®% (a) = D(a), for all elements a of AP. Then, ®
preserves sum of products a1ab* +apb* a+asa*bif and only if O preserves sum of products a,a®b* +a1b* ©a+azboa*.

Our main result reads as follows.

Theorem 1.2 (Main Theorem). Let aq, an be two nonzero rational numbers and a3 a rational number such that
| + aa| — |az| # 0, A and B two unital prime complex »-algebras with 14 and 1p their multiplicative identities,
respectively, and such that A has a nontrivial projection. Then every bijective mapping @ : A - B preserving
sum of products a1ab* + axb*a + asba* (resp., a1ab* + axb*a + aza*b) is additive. Moreover, @ is a Q[i]-linear
multiplicative map preserving involution or a conjugate Q[il-linear multiplicative map preserving involution, if the
following condition holds: oy — ay + as # 0 (resp., —a1 + ax + a3 # 0).

2. The proof of Main Theorem

Due to Lemma 1.1, we prove the Main Theorem only for the map preserving sums of products aab* +
axb*a + azba®. The proof is made by considering several lemmas. The first two lemmas have easy proofs,
and we omit the details.

Lemma 2.1. If ®(c) = D(a) + D(b), for elements a, b, c of A, then the following identity holds: ®(ayct* + azt*c +
astc™) = D(arat™ + apt*a + azta*) + D(a1bt* + axt*b + azth*), for all elements t of A.

Lemma 2.2. ®(0) =0.

Lemma 2.3. If a, a; are two nonzero rational numbers and az a rational number such that |y + az| - |as| # 0, then
D is an additive mapping.

We will establish the proof of Lemma 2.3 in a series of Properties. We begin, though, with a well-known
result that will be used throughout this paper: Let p; be an arbitrary nontrivial projection of A and write
pj = 14 - pi. Then A has a Peirce decomposition A = A; ® A;; ® Aj; ® Ajj, where A;; = p;Ap; (i,j =1,2).

Property 2.4. For arbitrary elements a; € Ay, bij € Ajj and cj; € A (i # j;i,j = 1,2) the following hold: (i)
(I)(ﬂii + bl]) = CD(Clii) + q)(sz) and (11) @(ﬂii + Cﬁ) = @(ﬂii) + q)(Cﬂ)

Proof. According to the hypothesis on @ there exists f = fii + fi; + fi + fij € Asuch that ®(f) = O(a;) + P(b;;).
Hence, by Lemma 2.1, we have
D(arfp] +aop; f +aspif*) = O(araip] + aop;ai + aspjaj;
+ (D(Ollb,]p;r + azp}*bij + 0(3;7]17:}) = cD(O(lb,']' + a3bf/)

This implies that a1 fp +aop} f +asp;f* = arbij+ asbj; which leads to ay fij + az fii + as fi; + (a1 +ao)fjj+ asffi =
aabij + asb;. It follows from this last identity that (t1) a1fij = aabij, (12) aofji + asf;j = asbj; and (13)
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(a1+a) fjj+as fjj = 0, by directness of the Peirce decomposition, and (t4) as fj; + (a1 +az) f]’; =0, by applying
involution on (13). From (11) and (+2), we obtain f;; = b;; and f;; = 0. Next, multiplying (13) by a1 + as,
(t4) by a3 and subtracting from each other we arrive at (Ja; + ao|? - |as[*) f;; = 0 which shows that fj; = 0.
This shows that ®(f;; + b;;) = ®(a;;) + P(b;;). Hence, for an arbitrary element dj; € Aj;, we have

Qo1 (fii + bij)dj; + cndj(fii + bi) + asdji( fii + bij)")
= CD(Oélﬂiid + (de iAii + Oégd]ﬂ ) + qD(alb,-]-d + Oézd bl] + (X3dﬂbl])
which yields that ®(a; fud* +asdjif;) = (I)(alaud* +asdjiaj;). As consequence, we obtain a; f,-,-d;; +azdjifii =

aqzz,,d + asdjia;; which allows to conclude that a; ﬁ,d = alal,d;’i. Therefore, fi; = a;.
Slmllarly, we prove the case (ii). [

Property 2.5. For arbitrary elements b;; € A;; and c;; € Aji (i # j;i,j = 1,2) the following holds: ®(b;; + cji) =
@(bij) + D(cji)-
Proof. Choose f = fi + fij + fii + fij € A such that ®(f) = O(b;j) + ®(cj;). Hence, for an arbitrary element
d;j € Aij, we have

CD((led;} + azd;jf + 053dijf*) = q)((llb,']'d + (de b’] + (Xg,d,]blj)

+ (D(alc],d + aod;, iCji + asd;jc ]1) (D(albijd + aod blj + oz3d,]b1])

This implies that alfd* +aod; f+ asd;if* = albljd + aod] blj + a3dl]b* which results in (11) alf,]d +azd;ifi: it
0(3d1]f” + alfj]d + azdl]fn + azdljfl] = albz]dlj + 0(3d1]b + azd bz] By d1rectness of the Peirce decomposmon

we obtain that Oézdlj fij = azdl]b” which shows that f,] = bjj. As a consequence (11) becomes (12) aad;;f;; I
a1 ]‘jjd;*j + azdfj fii = 0. Now, for an arbitrary element d;; € A;;, we have

CD((led;i + szd}:-f + 053djif*) = q)((llb,']'d + (de b,] + (Xg,d],blj)
+ (I)(alcjid + azd iCji + Ol3d/1C ) = q)(alcﬁd + azd iCji + ag,d],c],)
that shows that alfd* + azd f rasdif* = alc],d + azd iCji + a3dﬂc] This results in azd fii + alf,,d]l + azdﬂf]]

asdjifii + alfﬂd + a3dﬂfﬂ = azdﬂcﬂ + aqcﬂd + a3d lc wh1ch shows that azdﬂf], = azdﬂcﬂ and which leads to
fii=cji. It therefore follows that

D(ar fp; +aap] f +aspif ™) = P(arbijp] + azp; bij + azpib};)
+@(ancip] + aopjcji + aspicy;) = P(azbij) + P(arcji + ascy)
which implies that CI)((al +a2) fii + asfi + aobij + axcji + ascy) = @(azbij) + P(aicji + ascy). Define r; =

(a1 + o) fii + asf;7, 1ij = aobjj + ascy and rji = aiCji, = 1 + 1ij + Tji, Sij = axbij and £ + £ = alc,, + azcs, then
rij = 8ij + tij, 1ji = tji and D(r) = O(s;j) + D(tj; + t;;). Hence, for an arbitrary element d;; € Aj;, we have

jir

(lerd + oczd T +asdr’) = CD(als,]d + azd 1Sij + agd]lsl])
+ CD(Ch(t]'i + tz’j)dﬁ‘ + apd 'i(tji + t,']') + 0(3dji(t]',' + tl']')*) = (D(ozltﬁd + Olzd]l ji + agdﬁt]ﬁ).

This shows that alrd;’i + azd;r +asdjir’ = alt],d + azd i + agd],t which leads to alrl,dj + alrﬂd + azd i +
asdjiry; + Oé3d],1’ = alt]-,-d}‘i + azd;tﬁ + 0(3d]'it] As a result we have alrud] 0 which implies that ri =0,
that is (a1 + a2) fii + asf;; = 0. By using similar reasoning to that in the proof of Property 2.4, we arrive at
(o + az|* - |@s]?) fii = 0 which shows that f; = 0. It hence follows that a; fijd?; = 0, by identity in (2), which
allows to conclude that f;; =0. O

Property 2.6. For arbitrary elements a;; € A, bij € Aij, cji € Ajjand djj € Aj; (i # j;1,j = 1,2) the following hold: (i)
(I)(ai,- + bi]‘ + C]'i) = (D(ﬂ,‘i) + (D(blj) + q)(C]'i) and (ll) q)(blj + C]'i + d”) = (I)(b,]) + q—)(Cﬁ) + (D(d”)
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Proof. Choose f = fii + fij + fji + fjj € A such that ®(f) = ®(a;;) + D(bjj) + P(cji). By Property 2.5 we can write
@(f) = D(a;) + P(bj; + cji). Hence, we have

O fpj +aop f +aspif”) = O(aaaip; + aop;aii + aspa;;

+ D (a1 (bij + cji)p; + aap; (bij + cji) + aspj(bij + ¢ji)™)
which implies that a1 fp} + aop; f + aspf* = a1(bij + cji)p; + aop; (bij + cji) + aspj(bij + cji)*. This results
that a1 fij + aofji + asfi; + (a1 + a2) fjj + asff; = aabij + aacji + asbj; which implies that (1) a1 fi; = aabij, (12)
arfji + as f; = @ocji + a3b;‘j and (13) (a1 + a2)fj; + as f; = 0, by directness of Peirce decomposition. As
consequence of (1) and (12) we obtain f;; = b;; and f;; = cj;, respectively. By using similar reasoning to
that in the proof of Property 2.4, then (13) becomes (|a; + as|* - |a3|?) f;; = 0 which results in f;; = 0. Hence,
O(fii +bij+cji) = D(a;;) + D(bij) + D(cji) = D(aii + bij) + P(c;i). Next, for an arbitrary element d;; € A;;, we have

CD(Otl(ﬁi + bi]‘ + Cﬂ)dl*] + (de;j(fﬁ + bij + C]'j) + 0(3d1']'(ﬂ1‘ + b,']' + Cji)*)
= ®(ay(a; + bl])d;; + szd;}(aii + bz‘j) + a{_o,dij(llz‘l‘ + bi]«)*) + CI>(a1cjid,-*]- + Oézd;jC]j + a3dijc;-*,-)
= O(aq(a;; + b”)dl’; + agdfj(aﬁ + bi]') + a3dij(a,-,- + b,‘j)*).
This shows that a; (f,, + b,']' + Cﬁ)d;j + Oézd;]-(fii + b,']' + Cﬁ) + 0(3d,']'(f,'i + b,']' + C]',')* = (a,-,- + bz])d;; + Oczd;}(aii + bij) +
asd;j(a; + b;j)* which implies that azd;*j fii = ozzdfjaii. As consequence, we have f;; = a;;.
Similarly, we prove the case (ii). O
Property 2.7. For arbitrary elements a;; € Aji, bjj € Aij, cji € Ajiand djj € Ajj (i # j;i,j = 1,2) the following holds:
(D(El,',' + bi]‘ + le‘ + djj) = CI)(a,-,-) + (I)(b,‘j) + q)(Cji) + (D(d]‘j).
Proof. Choose f = fii+ fij + fii + fjj € Asuch that ®(f) = ®(a;) + P(b;;) + D(cji) + D(d;;). By Property 2.6(i) we
have CD(f) = @(ai,- + bi]‘ + Cji) + q)(d]]) which implies that
O(ar fp; +aop f +aspif”) = Plaa(aii + bij + cji)pi
+ azpf (al-,- + bz’j + le‘) + agpi(aii + bij + Cji)*) + CI)(aldjjpi* + azpfdjj + a3p,-d;j).
It follows that ay fp; +aop; f+aspif* = ai(aii+bij+cji)p; +aop; (ai+bij+cji) +aspi(a; +bj;+cj;)* which implies
that (11) (a1 +a2) fi+asf; = (a1+ay)az+aszaj;, (12) azﬁj+oc3f]?§ = azbi]-+a3c;§ and (13) a1 fji = aicji, by directness
of Peirce decomposition. Now, again as seen earlier (11) becomes (|a; + az|* - |a3|*) fii = (Ja1 + aaf* - |3 )aii

which implies that f;; = a; and combining (12) and (13) we get f;; = b;; and f;; = c;i.
By a similar reasoning, we obtain f;; =d;;. O

Property 2.8. For arbitrary elements a;;, b;; € A;j (i # j;i,j = 1,2) the following holds: ®(a;; +b;;) = ®(a;j) + D(b;;).
Proof. Two cases are considered. First case: a3 # 0. In this case, we observe that the following identity holds

a1 (pj +aij) (pi + bij) ™ + az(pi + bij) " (pj + aij) + as(pi + bij) (p; + aij)”

= azai]‘ + a3b,-]- + aqb;} + alaijbfj + a3b,-]-a;} + azbfja,-]-.

Hence, by Property 2.7 we have

CD(OQHI']' + aSbij) + CD(alb,*]) + (D(Otlaijb;j + 0(3b1']'£l;; + azb;;ai]')

= @(azai]‘ + 0(3191‘]‘ + alb;} + 0(1{11‘]‘19;} + 0(317,']'0?]» + azb;}a,‘]‘)

= (aa (pj +aij) (pi + bij)" + qa(pi + bi) " (pj + aif)

+ 0(3(]7,‘ + bij)(Pj + 117‘]‘)*) = Dllq)(p]‘ + aij)(D(pi + b,‘]‘)*
+ O(Zq)(pi + bl])*q)(p] + ﬂi]') + a;,(ID(pl- + bz])q)(p] + Llij)*
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= a1 (P(p;) + (i) ) (D(pi)* + D(bij)")
+az(P(pi)" + D(bij)" ) (P(py) + P(asj))
+a3(D(pi) + O (bij) ) (O(p;)™ + P(a;)”)
= @(pj)P(pi)" + aP(pi)" C(p)) + as®(pi)P(p;)”
+a1D(p;)D(bij)" + axP(bij) " P(p)) + asP(bi))P(p;)*
+a1®(a;)@(pi)" + 2@(pi)* @(aij) + a3 P(pi)P(a;;)”
+ a1 D (a;)P(bij)" + a2 ®(bij) *P(aij) + azP(bij)P(aij)*
= D(apjpi + aopipj + aspipj) + P(aap;ibi; + axbjp; + asbijp;)
+ O (aaijp; + aop; aij + aspia;) + P(aragbj; + azbiai; + asbijar;)
= q)(albfj) + O(azbij) + (aza;;) + @(alaubi*j + azbi*ja,«j + a:;b,«,«afj)
which shows that ®(asa;; + asbi;) = ®(aoa;j) + ©(azbij). Therefore, @(a;; + bij) = P(a;;) + P(b;j). Second case:
asz = 0. In this case, we observe that the following identity holds
ar(pi +aij) (pj + b;j)* +ax(pj + b?j)*(Pi +a;j) +0(pj + bf})(i’i +a;)" = aaij + anbyj,
for all elements 4;;, b;j € A;j;. Hence, by Property 2.7 again, we have
O(a1a;j + arbij) = ©(ar(pi +aij) (pj + bi*j)* +aa(pj+ bi*j)*(pi +aij)
+0(pj + b)) (pi + aij)*) = a1 ®(pi + aij )P (p; + b}y)*
+ax®(p; +bj;) O (p; + aij) + 00 (p; + bj;) O (p; + ai)*
= a1 (D(pi) + D(aij) ) (P (p;)”" + P(by;)")
+az(P(py)* + @(bj;)" ) (P(pi) + P(asj))
+0(D(py) + @(b;)) (P(pi)* + P(a;)")
= @(p))P(py)” + ax®(p)* ©(pi) + 0D(p;)P(pi)"
+a1P(p)P(b})" + ar@(bf;) " @(p;) + 0D(bj)D(pi)*
+ a1 @(a; )D(p;)* + e ®P(p;)* P(ajj) + 0P (p;)P(a;;)*
+a1P(ai)D(bj;)" + ar®(b;) P (aij) + 0D (b};)D(ai)*
= D(apipj +aop;pi+Opjpi ) + P(arpi(bj;)” + az(bj) " pi
+ Obl-*]-p,-*) + (I)(oqa,-]-;o}e + azp]*aij + Op]'a,-*]-) + (D((Xlaij(bf,-)*
+az(bjj) aij + 0bjaj;) = @(araij) + D(arbiy)
which leads to ®(aa;; + a1bij) = @(asa;;) + P(asib;j). As consequence, we conclude that ®(a;; + b;j) =
D(a;j) +D(bij). O
Property 2.9. For arbitrary elements a;;, bi; € A;i (i = 1,2) the following holds: ®(a;; + bii) = ®(a;;) + P(bys).
Proof. Choose f = fi; + fij + fii + fij € Asuch that ®(f) = ®(a;;) + ®(b;;). Then
Qa1 fpj +aopj f +aspif”) = Planaipj + aopjai + aspja;) + @(arbip; + azp;bii + azp;bj;) = 0.
This imples that a: fp +azp; f +aspf* = 0 which leads to a1 fij = 0, az fji + as f;; = 0 and (ar1+a2)fj +asf: =0.
As the third of the last three identities turns into (|a; +ay[* - |az[?) fij = 0, then we conclude that f;; = 0, f;; = 0
and fj; = 0. It therefore follows that ®(f;;) = ®(a;;) + ®(b;;). Hence, for an arbitrary element d;; € A;; we have
O(an fudj; + asdjifiy ) = ©an fudj; + aodj fir + azdifii)
= O(araudy; + aodja; + azdjiag;) + P(anbid}; + axdjibii + asd;ibj; )
= O(aaid; + azdjiag;) + P(anbidj; + azd;ib;) = O(an (ai; + bi)dj; + azd,ji(aii + bir)*)



A. Taghavi et al. / Filomat 37:9 (2023), 2799-2806 2804

which shows that a1 fud; + asd;ifiy = a1(aii + bii)dj; + asdji(aii + bii)”. This results in ey fydj; = a1 (aii + bir)dj;
which leads to fi; = a;; + bj. O

Property 2.10. © is an additive mapping.
Proof. The result is an immediate consequence of Properties 2.7, 2.8 and 2.9. O

To prove the second part of the Main Theorem, we assume that the condition a1 — a, + a3 # 0 holds. We
start by proving the following Lemma.

Lemma 2.11. ®(14) =15.

Proof. Choose an element a € A such that ®(a) = 1g. Then
D((a1 +az)a” +aza) = D(aglaa” + apa™ 1 g + azal’y) = 1 O (14)P(a)”
+a®P(a) " D(14) + 3D (a)D(14)" = (a1 + a2)P(14) + 3D(14)"

and

D((a1 +a)a+aza®) = D(aral’y + axla+ azl 4a™) = a1 P(a)P(14)*
+ 0 ®(14)"®(a) + a3®@(1.4)P(a)* = (1 + a2)D(14)" + azD(1 4).

Hence, multiplying the first identity by aq + a; and the second by a3, we get ®(|aq + wlPa* + (g + a)aza) =
lag+a2PD(14) + (a1 +a2) a3 @(1.4)* and Pz (a1 +az )a+|as?a*) = az(ar+az) (1 4)* +|as[*@(1.4), respectively.
Subtracting the last identity from the previous one, we arrive at ®((|a; + azf* - |az*)a*) = (Jaq + aof? -
las*)®@(14) which leads to (|a; +az|* - |as[*)D(a*) = (Jag +az* - |az[>)P(14). This results that a* = 14 which
yieldsa=14. O
Lemma 2.12. @ preserves involution on the both sides.
Proof. For an arbitrary element a € A we have

O((ag +az)a* +aza) = D(arlaa” + ara™1 4 + azal’y) = a1 P(14)P(a)*

+aP(a) " D(14) + a3D(a)D(14)" = (a1 + a2)D(a)* + asP(a)

and

D((a1 +an)a+aza®) = D(aal’y + a1a+ azl 4a™) = a1 P(a)P(14)*
+ 0 P(14) " D(a) + a3 (1 4)P(a)" = (a1 + a2)P(a) + azP(a)*.
Using a reasoning similar to the previous proof, we arrive at (|ag +as|* —|az[*)@(a*) = (|oq +az]* ~|as[*)D(a)*.

As consequence, we obtain ®(a*) = ®(a)*. Since @' has the same characteristics of @, then ® preserves
involution on the both sides. [

Lemma 2.13. (i) ®(il4)? = 15 and (ii) if a1 — ap + a3 # 0, then ®(ia) = O(il 4)D(a) = ©(a)D(ily), for all
elements a € A, where (il 4) = +ilp.

Proof. By Lemmas 2.11 and 2.12 we have

(1 +az +az)P(14) = P((a1 + a2 + a3)1a) = (a1 (i14)({14)" +a2(i14)* (11a) + az(il14)(i14)")
= D1 )D(1 1) + ar®(i14) D(i14) + 4D (L) D(A)* = —(a1 +ata + a3)D(i14)2,
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which implies that @ (i1 4)* = -15. Next, for an arbitrary self-adjoint element a € A we have

(al + ap — ag)CD(ia) = q)((a1 + dp — a3)i{1) = —(D(Cklﬂ(ilA)* + az(ilA)*a + Ck3(l.1A)ﬂ*)
= —(a1P(a)D(i14)" + ax@(il4) P (a) + azD(il 4 )D(a)*) = 1 P(a)D(il 4)
+ ap®(i1 4)P(a) — az®@(il4)D(a) (2)

and

(a1 +az —a3)P(in) = O((a1 + ax — az)ia) = (a1 (il )a” + axa™ (il 4) + aza(ily)”*)
= @1 4)D(a)* + i ®@(a) D(il 4) + azP(a)D(il4)* = a1 P(i1 4)D(a)
+ayP(a)D(il4) — a3®(a)P@(il4). (3)

Subtracting (3) from (2), we arrive at a1(P(a)P(ila) — P(i14)D(a)) — a2(P(a)P(il4) — P(i14)D(a)) +
az(O(a)D(ily) — (il 4)P(a)) = 0 which results in (a1 — a2 + a3)(P(a)P(il4) — P(i14)P(a)) = 0. This
shows that ®(ia) = ©(i1 4)P(a) = P(a)D(il ), in views of identity (2). It therefore follows that, for an
arbitrary element a € A, write a = a; + iay, where a; and a, are self-adjoint elements. Then, by (i) we have

@(in) = D(iag — az) = (i1 4)D(ay) + D(i1.4)*D(a2) = (i1 4)(D(ar) + D(i1.4)P(az))
= D(il4)(P(a1) + D(iap)) = (il 4)P(a).

Similarly, we prove that ®(ia) = ®(a)PD(il 4). In particular, this shows that ®(il 4) is a central element of 5.
As aresult, by part (i) again, we have (®(il 4) —ilp)B(®(il 4) +i1g) = 0 which implies that ®(i1 4) = il or
D(il4) = —ilp, in view of the primeness of B. [

Lemma 2.14. @ is a Q[i]-linear map preserving involution or a conjugate Q[i]-linear map preserving involution.

Proof. By Lemmas 2.3, ® is a Q-linear map. Thus, by Lemmas 2.12 and 2.13(ii) @ is a Q[i]-linear map
preserving involution or a conjugate Q[i]-linear map preserving involution. [J

Lemma 2.15. If az # 0, then ® is multiplicative.

Proof. For arbitrary self-adjoint elements a,b ¢ A we have ®(a1ab+ayba+aszba) = a1 D(a)D(b) +a, P (b)P(a) +
as®(b)d(a), and P(a1a(ib)* + ax(ib)*a + az(ib)a*) = a1 P(a)D(ib)* + a,P(ib)*D(a) + azP(ib)d(a)* which
implies that ®(-ajab — azxba + azba) = —a;P(a)D(b) — ;@ (b)D(a) + azP(b)P(a), by Lemmas 2.12 and 2.13.
Hence, adding the first identity to the third we get ®(azba) = a3®(b)P(a) which results in az®(ab) =
az®(a)P(b). As consequence, we obtain ®(ab) = O(a)D(b). It therefore follows that, for two arbitrary
elements a,b € A with a = a; + ia; and b = by + iby, where a1, a,, by, b, are self-adjoint elements of .4, we have

q’([lb) = @((111 + iaz)(bl + lbz)) = q)(ﬂlbl + ia1b2 + iﬂzbl - azbz) = q)(lll)q)(bl) + CD(llA)CD(lll)CD(bz)
+ D(114)D(a2)D(by) + D(i1.4)2D(a2)D(b2) = D(a1) (P(by) + D(iby)) + D(iar) (P (by) + D(ib))
=®(ay +1a)D(by +iby) = D(a)D(b).

Thus, @ is multiplicative. [
Lemma 2.16. If a1 — a # O, then ® is multiplicative.

Proof. Two cases are considered. First case: a3 # 0. In this case, the result follows directly from Lemma
2.15. Second case: a3 = 0. For arbitrary self-adjoint elements a,b € A we have ®(a1ab + ayba) = a1 P(a)D(b) +
a,®(b)d(a) and, replacing a by b and b by a, ®(a1ba + azab) = a1 P(b)P(a) + axD(a)P(b). Hence, adding
and subtracting the two last identity, we arrive at ®(ab + ba) = ®(a)P(b) + ©(b)P(a) and D(ab - ba) =
D(a)D(b) - D(b)P(a), respectively. This results that ®(ab) = @(a)D(b). Thus, for arbitrary elements a,b € A,
using a reasoning similar to the previous proof, we arrive at ®(ab) = ®(a)P(b). This shows that ® is
multiplicative. [
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Lemma 2.17. ® is a Q[i]-linear multiplicative map preserving involution or a conjugate Q[i]-linear multliplicative
map preserving involution.

Proof. First, note that a; — ap + a3 # 0, implies that a3 # 0 or a1 — a; # 0. In either case we have that @ is a
multiplicative map, by Lemmas 2.15 and 2.16. Thus, the result follows from Lemma 2.14. O

The Theorem is proved.
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