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Abstract. This paper presents the concepts of (L,M)-remotehood spaces and (L,M)-convergence spaces in
the framework of (L,M)-fuzzy convex spaces. Firstly, it is shown that the category of (L,M)-remotehood
spaces is isomorphic to the category of (L,M)-fuzzy convex spaces. Secondly, it is proved that the cat-
egory of (L,M)-fuzzy convex spaces can be embedded in the category of (L,M)-convergence spaces as a
reflective subcategory. Finally, the concepts of preconvex (L,M)-remotehood spaces and preconvex (L,M)-
convergence spaces are introduced and it is shown that the category of preconvex (L,M)-remotehood spaces
is isomorphic to the category of preconvex (L,M)-convergence spaces.

1. Introduction

Since the concept of fuzzy sets was proposed by Zadeh in [38], fuzzy set theory has been greatly
developed. Many mathematical structures have been endowed with fuzzy sets, such as fuzzy topology
[9, 26, 35], fuzzy convergence structures [2–4, 7, 8, 11, 12, 20, 33, 34], fuzzy uniformity [5, 36, 37, 40–42] and
so on. Following this approach, convex structures have also been extended to the fuzzy case. Rosa [22]
presented the notion of fuzzy convex structures with the unit interval as the truth-value table. Maruyama
[15] generalized it to L-lattice valued case, where L denotes a completely distributive lattice. Fuzzy convex
structures in the sense of Rosa and Maruyama are called L-convex structures nowadays. Recently, Shi and
Xiu [24] proposed the concept of M-fuzzifying convex structures, in which each subset can be regarded as
a convex set to some degree. Combining the ideas in [9] and [26], Shi and Xiu [25] introduced the notion of
(L,M)-fuzzy convex structures which is a generalization of L-convex structures and M-fuzzifying convex
structures. In this sense, each L-fuzzy subset can be regarded as an L-convex set to some degree. Up to
know, many scholars have extensively studied L-convex structures [18, 19, 21, 32, 43, 44], M-fuzzifying
convex structures [13, 16, 27, 30, 31] and (L,M)-fuzzy convex structures [10, 14].

Characterizations of fuzzy convex structures are important parts of the theory of fuzzy convex structures.
Many scholars introduced different types of fuzzy hull operators to characterize the corresponding fuzzy
convex structures, including M-fuzzifying restricted hull operators [23] for M-fuzzifying convex structures,
L-hull operators [18] for L-convex structures, (L,M)-fuzzy (restricted) hull operators [17] for (L,M)-fuzzy
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convex structures. Recently, M-fuzzy convex structures and L-convex structures have been characterized
from the aspect of fuzzy convergence structures. Pang [16] introduced the concept of M-fuzzifying conver-
gence structures and proved that the category of M-fuzzifying convex convergence spaces is isomorphic
to the category of M-fuzzifying convex spaces. Xiu et al [29] proposed the concept of L-convex ideals and
used it to define L-convergence structures, and proved that the category of convex L-convergence spaces
is isomorphic to the category of L-convex spaces. Convexities and concavities are dual concepts and we
usually do not distinguish them. From the concave aspect, Xiu [28] proposed the concept of L-convergence
structures based on L-concave prefilters, and showed that the category of concave L-convergence spaces is
isomorphic to the category of L-concave spaces. Zhang and Pang [39] introduced the notion of (concave)
L-convergence structures by using L-ordered c-filters and proved that the category of strong L-concave
spaces can be embedded in the category of L-convergence spaces as a reflective subcategory. However,
for (L,M)-fuzzy convex structures which is the more general lattice-valued convex structures, there is no
corresponding description from the aspect of fuzzy convergence structures. This motivates us to propose a
new type of fuzzy convergence structures in the framework of (L,M)-fuzzy convex spaces and study their
relationships with (L,M)-fuzzy convex spaces.

Based on the above-mentioned motivations, we will first propose the concept of (L,M)-convex ideals
and use it to define (L,M)-convergence structures. Further, we will investigate the categorical relationships
between (L,M)-fuzzy convex spaces and (L,M)-convergence spaces.

This paper is organized as follows. In Section 2, we will recall some necessary concepts and notations.
In Section 3, we will introduce the notion of (L,M)-convex remotehood systems and study its relationships
with (L,M)-fuzzy convex structures. In Section 4, we will propose the concept of (L,M)-convergence
structures and study its relationships with (L,M)-fuzzy convex spaces. In Section 5, we will propose
concepts of preconvex (L,M)-convergence structures and preconvex (L,M)-remotehood structures, then
show the resulting categories are isomorphic.

2. Preliminaries

Throughout this paper, both L and M denote completely distributive lattices and ′ is an order-reversing
involution on L. The largest element and the smallest element in L (M) are denoted by ⊤L (⊤M) and ⊥L
(⊥M), respectively. For a, b ∈ M, we say that a is wedge below b in M, in symbols a ≺ b, if for every
subset D ⊆ M, b ≤

∨
D implies a ≤ d for some d ∈ D. Let β(a) = {b ∈ M | b ≺ a}. A complete lattice M

is completely distributive if and only if a =
∨
β(a) for each a ∈ M. We can define a residual implication

operation→: M ×M −→M corresponding to ∧ by

a→ b =
∨
{c ∈M | a ∧ c ≤ b}.

Further, ∧ and→ form an adjoint pair in the sense of

a ∧ b ≤ c⇐⇒ b ≤ a→ c.

For some properties about the adjoint pair (∧,→), we refer to [6].
Let X be a nonempty set. An L-subset on X is a mapping from X to L, and the family of all L-subsets on

X will be denoted by LX, called the L-power set of X. By ⊥X
L and ⊤X

L , we denote the constant L-subsets on X
taking the value⊥L and⊤L, respectively. LX is also a completely distributive lattice with an order-reversing
involution operation ′ when it inherits the structure of the lattice L in a natural way, by defining

∨
,
∧
,≤

and ′ pointwisely. For each x ∈ X and λ ∈ L, the L-subset xλ, defined by xλ(y) = λ if y = x, and xλ(y) = ⊥L
if y , x, is called a fuzzy point. Put J(LX) = {xλ | x ∈ X, λ ∈ L\{⊥}}. For convenience, let P(J(LX)) denote
the powerset of J(LX). We say {A j} j∈J is a directed subset of LX, if for each A j1 ,A j2 ∈ {A j} j∈J, there exists
A j3 ∈ {A j} j∈J such that A j1 ≤ A j3 ,A j2 ≤ A j3 . We usually use the symbols {A j} j∈J ⊆

dir
A to denote that {A j} j∈J is

a directed subset ofA.
Let φ : X −→ Y be a mapping. Define φ→ : LX

−→ LY and φ← : LY
−→ LX by φ→(A)(y) =

∨
φ(x)=y A(x) for

A ∈ LX and y ∈ Y, and φ←(B) = B ◦ φ for B ∈ LY, respectively.
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Lemma 2.1. ([1]) Suppose that F : A −→ B and G : B −→ A are concrete functors. Then the following conclusions
are equivalent:

(1) {idY : F ◦ G(Y) −→ Y | Y ∈ B} is a natural transformation from the functor F ◦ G to the identity functor idB
on B, and {idX : X −→ G ◦ F(X) | X ∈ A} is a natural transformation from the identity functor idA on A to
the functor G ◦ F.

(2) For each Y ∈ B, idY : F ◦ G(Y) −→ Y is a B-morphism, and for each X ∈ A, idX : X −→ G ◦ F(X) is an
A-morphism.

In this case, (F,G) is called a Galois correspondence between A and B.

If (F,G) is a Galois correspondence, then F is called a left adjoint of G or equivalently, G is called a right
adjoint of F.

Definition 2.2. ([25]) An (L,M)-fuzzy convex structure on X is a mapping C : LX
−→M which satisfies

(LMC1) C(⊥X
L ) = C(⊤X

L ) = ⊤M;
(LMC2)

∧
j∈J C(A j) ≤ C(

∧
j∈J A j), for every {A j} j∈J ⊆ LX;

(LMC3)
∧

i∈I C(Ai) ≤ C(
∨

i∈I Ai), for every {Ai}i∈I ⊆
dir LX.

For an (L,M)-convex structure C on X, the pair (X,C) is called an (L,M)-fuzzy convex space.
A mappingφ : (X,CX) −→ (Y,CY) between (L,M)-fuzzy convex spaces is called LM-convexity-preserving

(LM-CP, in short) provided that CY(B) ≤ CX(φ←(B)) for each B ∈ LY.

It is easy to verify that all (L,M)-fuzzy convex spaces as objects and all LM-convexity-preserving map-
pings as morphisms form a category, which is denoted by LM-CS.

3. (L,M)-convex remotehood spaces

In this section, we will propose the concept of (L,M)-convex remotehood spaces and then study its
relationships with (L,M)-fuzzy convex spaces.

Definition 3.1. An (L,M)-convex remotehood system on X is a setQ = {Qxλ | xλ ∈ J(LX)}, whereQxλ : LX
−→

M satisfies

(LMCQ1) Qxλ (⊥
X
L ) = ⊤M,Qxλ (⊤

X
L ) = ⊥M;

(LMCQ2) Qxλ (A) , ⊥M implies λ ≤ A′

(x);
(LMCQ3) B ≤ A implies Qxλ (A) ≤ Qxλ (B);
(LMCQ4) ∀{A j} j∈J ⊆

dir LX,
∧

j∈J Qxλ (A j) ≤ Qxλ (
∨

j∈J A j);

(LMCQ5) Qxλ (A) =
∨

xλ≤B≤A′
∧

yµ≺BQyµ (B
′

).

For an (L,M)-convex remotehood system Q on X, the pair (X,Q) is called an (L,M)-convex remotehood
space.

Definition 3.2. A mapping φ : (X,QX) −→ (Y,QY) between (L,M)-convex remotehood spaces is called
LM-convexity-preserving (LM-CP, in short) provided that QY

φ(x)λ
(B) ≤ QX

xλ (φ
←(B)) for all xλ ∈ J(LX) and

B ∈ LY.

It is easy to verify that all (L,M)-convex remotehood spaces as objects and all LM-convexity-preserving
mappings as morphisms form a category, which is denoted by LM-CQ.

Now let us show that an (L,M)-convex remotehood space can induce an (L,M)-fuzzy convex space.
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Proposition 3.3. Let (X,Q) be an (L,M)-convex remotehood space on X. Then the mapping CQ : LX
−→M defined

by

∀A ∈ LX, CQ(A) =
∧

xλ≺A′
Qxλ (A),

is an (L,M)-fuzzy convex structure on X.

Proof. It suffices to show that CQ satisfies (LMC1)–(LMC3).

(LMC1) Take each xλ ∈ J(LX). It follows from (LMCQ1) that Qxλ (⊥
X
L ) = ⊤M. Then we have

C
Q(⊥X

L ) =
∧

xλ≺(⊥X
L )′
Qxλ (⊥

X
L ) ≥

∧
xλ∈J(LX)

Qxλ (⊥
X
L ) = ⊤M

and

C
Q(⊤X

L ) =
∧

xλ≺(⊤X
L )′
Qxλ (⊤

X
L ) =

∧
∅ = ⊤M.

(LMC2) Take each {A j} j∈J ⊆ LX. Since

{xλ | ∃ j ∈ J, xλ ≺ A
′

j} = {xλ | xλ ≺
∨
j∈J

A
′

j},

we have

C
Q(
∧
j∈J

A j) =
∧

xλ≺(
∧

j∈J A j)
′

Qxλ (
∧
j∈J

A j)

=
∧

xλ≺
∨

j∈J A′j

Qxλ (
∧
j∈J

A j)

=
∧
j∈J

∧
xλ≺A′j

Qxλ (
∧
j∈J

A j)

≥

∧
j∈J

∧
xλ≺A′j

Qxλ (A j) (by (LMCQ3))

=
∧
j∈J

C
Q(A j).

(LMC3) Take each {A j} j∈J ⊆
dir LX. Since

{xλ | xλ ≺
∧
j∈J

A
′

j} ⊆ {xλ | ∀ j ∈ J, xλ ≺ A
′

j},
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we have

C
Q(
∨
j∈J

A j) =
∧

xλ≺(
∨

j∈J A j)
′

Qxλ (
∨
j∈J

A j)

=
∧

xλ≺
∧

j∈J A′j

Qxλ (
∨
j∈J

A j)

≥

∧
∀ j∈J,xλ≺A′j

Qxλ (
∨
j∈J

A j)

≥

∧
∀ j∈J,xλ≺A′j

∧
j∈J

Qxλ (A j) (by (LMCQ4))

≥

∧
j∈J

∧
xλ≺A′j

Qxλ (A j)

=
∧
j∈J

C
Q(A j).

Proposition 3.4. If φ : (X,QX) −→ (Y,QY) is LM-CP, then so is φ : (X,CQX
) −→ (Y,CQY

).

Proof. Since φ : (X,QX) −→ (Y,QY) is LM-CP, we have

∀B ∈ LY, QX
xλ (φ

←(B)) ≥ QY
φ(x)λ

(B).

Then it follows from {xλ | xλ ≺ φ←(B)′} ⊆ {xλ | φ(x)λ ≺ B′} that

C
Q

X
(φ←(B)) =

∧
xλ≺φ←(B)′

Q
X
xλ (φ

←(B))

≥

∧
φ(x)λ≺B′

Q
X
xλ (φ

←(B))

≥

∧
φ(x)λ≺B′

Q
Y
φ(x)λ

(B)

≥

∧
yµ≺B′

Q
Y
yµ (B)

=CQ
Y
(B).

Hence, φ : (X,CQX
) −→ (Y,CQY

) is LM-CP.

Conversely, we can induce an (L,M)-convex remotehood space by an (L,M)-fuzzy convex space.

Proposition 3.5. Let (X,C) be an (L,M)-fuzzy convex space. Then the set QC = {QCxλ | xλ ∈ J(LX)} is an (L,M)-
convex remotehood system on X, where QCxλ is a mapping from LX to M defined by

∀A ∈ LX, QCxλ (A) =
∨

xλ≤B≤A′
C(B

′

).

Proof. It is enough to show that QC satisfies (LMCQ1)–(LMCQ5). (LMCQ1)–(LMCQ3) are obvious, so we
only need to verify (LMCQ4) and (LMCQ5).
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For (LMCQ4), take each {A j} j∈J ⊆
dir LX and α ∈ M such that α ≺

∧
j∈J
∨

xλ≤B j≤A′j
C(B′j). Then α ≺∨

xλ≤B j≤A′j
C(B′j) for each j ∈ J, which means for each j ∈ J, there exists B j ∈ LX such that xλ ≤ B j ≤ A′

j and

α ≤ C(B′j). Let

C j =
∨
{D ∈ LX

| xλ ≤ D ≤ A
′

j, α ≤ C(D
′

)}

for each j ∈ J and let C =
∧

j∈J C j. Then xλ ≤
∧

j∈J C j = C ≤
∧

j∈J A′

j. By (LMC2), we have

C(C
′

j) = C(
∧

xλ≤D≤A′j ,α≤C(D′ )

D
′

) ≥
∧

xλ≤D≤A′j ,α≤C(D′ )

C(D
′

) ≥ α.

Since {A j} j∈J is directed, it is easy to check that {C′j} j∈J is directed. Thus, it follows from (LMC3) that

α ≤
∧
j∈J

C(C
′

j) ≤ C(
∨
j∈J

C
′

j) = C(C′) ≤
∨

xλ≤B≤
∧

j∈J A′j

C(B′) = QCxλ (
∨
j∈J

A j).

By the arbitrariness of α, we obtain
∧

j∈J Q
C
xλ (A j) ≤ QCxλ (

∨
j∈J A j).

For (LMCQ5), we first prove the following equality

(LMCQ0) QCxλ =
∧
µ∈β(λ)

Q
C

xµ .

On one hand, take each A ∈ LX and µ ∈ β(λ). Since

{B ∈ LX
| xλ ≤ B ≤ A

′

} ⊆ {C ∈ LX
| xµ ≤ C ≤ A

′

},

we have ∨
xλ≤B≤A′

C(B
′

) ≤
∨

xµ≤C≤A′
C(C

′

).

This shows
Q
C

xλ (A) =
∨

xλ≤B≤A′
C(B

′

) ≤
∧
µ∈β(λ)

∨
xµ≤C≤A′

C(C
′

) =
∧
µ∈β(λ)

Q
C

xµ (A).

On the other hand, take each α ∈M such that

α ≺
∧
µ∈β(λ)

∨
xµ≤C≤A′

C(C
′

) =
∧
µ∈β(λ)

Q
C

xµ (A).

Then α ≺
∨

xµ≤C≤A′ C(C′ ) for each µ ∈ β(λ). That is to say, for each µ ∈ β(λ), there exists Cµ ∈ LX such that
xµ ≤ Cµ ≤ A′

and α ≤ C(C′u). Let C =
∨
µ∈β(λ) Cµ. Then

xλ =
∨
µ∈β(λ)

xµ ≤
∨
µ∈β(λ)

Cµ = C ≤ A
′

.

By (LMC2), we have

α ≤
∧
µ∈β(λ)

C(C
′

µ) ≤ C(
∧
µ∈β(λ)

C
′

µ) = C(C
′

) ≤
∨

xλ≤B≤A′
C(B

′

) = QCxλ (A).

This means
∧
µ∈β(λ)Q

C
xµ (A) ≤ QCxλ (A). Thus (LMCQ0) holds.
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Now let us verify (LMCQ5). Take each B ∈ LX such that xλ ≤ B ≤ A′

. It follows that xγ ≺ xλ ≤ B ≤ A′

for
each γ ∈ β(λ). This implies

∧
yµ≺BQ

C
yµ (B

′

) ≤ QCxγ (B
′

) for each γ ∈ β(λ). Then by (LMCQ0), we have∧
yµ≺B

Q
C

yµ (B
′

) ≤
∧
γ∈β(λ)

Q
C

xγ (B
′

) = QCxλ (B
′

) ≤ QCxλ (A).

By the arbitrariness of B, we obtain ∨
xλ≤B≤A′

∧
yµ≺B

Q
C

yµ (B
′

) ≤ QCxλ (A).

In order to show that inverse inequality, take each B ∈ LX such that xλ ≤ B ≤ A′

. Then it is easy to see
C(B′ ) ≤

∨
yµ≤C≤B C(C′ ) for each yµ ≺ B, which means

C(B
′

) ≤
∧
yµ≺B

∨
yµ≤C≤B

C(C
′

).

This implies ∨
xλ≤B≤A′

C(B
′

) ≤
∨

xλ≤B≤A′

∧
yµ≺B

∨
yµ≤C≤B

C(C
′

).

That is to say,

Q
C

xλ (A) ≤
∨

xλ≤B≤A′

∧
yµ≺B

Q
C

yµ (B
′),

as desired.

Proposition 3.6. If φ : (X,CX) −→ (Y,CY) is LM-CP, then so is φ : (X,QCX ) −→ (Y,QCY ).

Proof. Since φ : (X,CX) −→ (Y,CY) is LM-CP, it follows that CX(φ←(D)) ≥ CY(D) for each D ∈ LY. Then for
each xλ ∈ J(LX) and B ∈ LY, we have

Q
CY
φ(x)λ

(B) =
∨

φ(x)λ≤D≤B′
CY(D

′

)

≤

∨
xλ≤φ←(D)≤φ←(B)′

CY(D
′

)

≤

∨
xλ≤φ←(D)≤φ←(B)′

CX(φ←(D)
′

)

≤

∨
xλ≤C≤φ←(B)′

CX(C
′

)

=QCX
xλ (φ←(B)).

This shows φ : (X,QCX ) −→ (Y,QCY ) is LM-CP.

Next let us establish further relationships between (L,M)-fuzzy convex spaces and (L,M)-convex re-
motehood spaces.

Theorem 3.7. LM-CS is isomorphic to LM-CQ.
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Proof. It is enough to show (1) QC
Q

= Q and (2) CQ
C

= C for each (L,M)-convex remotehood space (X,Q)
and each (L,M)-fuzzy convex space (X,C).

For (1), take each A ∈ LX and xλ ∈ J(LX). By (LMCQ5), we have

Q
C
Q

xλ (A) =
∨

xλ≤B≤A′
C
Q(B

′

) =
∨

xλ≤B≤A′

∧
yµ≺B

Qyµ (B
′

) = Qxλ (A).

For (2), take each A ∈ LX. On one hand,

C
Q
C

(A) =
∧

xλ≺A′
Q
C

xλ (A) =
∧

xλ≺A′

∨
xλ≤C≤A′

C(C
′

) ≥
∧

xλ≺A′
C(A) = C(A).

On the other hand,

C
Q
C

(A) =
∧

xλ≺A′

∨
xλ≤C≤A′

C(C
′

)

=
∨

f∈
∏

xλ≺A′ Bxλ

∧
xλ≺A′

C( f (xλ)
′

) (by the completely distributive law)

≤

∨
f∈
∏

xλ≺A′ Bxλ

C(
∧

xλ≺A′
f (xλ)

′

) (by (LMC2))

=C(A),

where Bxλ = {C ∈ LX
| xλ ≤ C ≤ A′

}, as desired.

4. (L,M)-convergence spaces

In this section, we will introduce the concept of (L,M)-convex ideals and use it to propose the concept
of (L,M)-convergence structures in the framework of (L,M)-fuzzy convex spaces. Then we will study the
categorical relationships between (L,M)-convergence spaces and (L,M)-fuzzy convex spaces.

Definition 4.1. A mapping I : LX
−→M is called an (L,M)-convex ideal on X provided that

(LMCI1) I(⊥X
L ) = ⊤M, I(⊤X

L ) = ⊥M;
(LMCI2) A ≤ B implies I(B) ≤ I(A);
(LMCI3) ∀{A j} j∈J ⊆

dir LX,
∧

j∈J I(A j) ≤ I(
∨

j∈J A j).

The family of all (L,M)-convex ideals on X is denoted by IC
LM(X).

On the set IC
LM(X) of all (L,M)-convex ideals on X, we define an order by I1 ≤ I2 if I1(A) ≤ I2(A) for each

A ∈ LX.

Example 4.2. (1) For each xλ ∈ J(LX), the mapping q(xλ) : LX
−→M defined by q(xλ)(A) = ⊤M if λ ≤ A′

(x),
otherwise q(xλ)(A) = ⊥M is an (L,M)-convex ideal on X.

(2) It is easy to check that QCxλ defined in Proposition 3.5 is an (L,M)-convex ideal on X and QCxλ ≤ q(xλ).
(3) For each I ∈ IC

LM(X), φ⇒(I) : LY
−→M defined by φ⇒(I)(B) = I(φ←(B)) is an (L,M)-convex ideal on Y.

In what follows, we will propose the concept of (L,M)-convergence structures by means of (L,M)-convex
ideals.

Definition 4.3. An (L,M)-convergence structure on X is a mapping lim : IC
LM(X) −→MJ(LX) which satisfies

(LMCN1) lim(q(xλ))(xλ) = ⊤M;
(LMCN2) I1 ≤ I2 implies lim(I1) ≤ lim(I2);
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(LMCN3) Qlim
xλ =

∧
µ∈β(λ)Q

lim
xµ , where Qlim

xλ (A) =
∧

I∈IC
LM(X)(lim(I)(xλ)→ I(A)).

For an (L,M)-convergence structure lim on X, the pair (X, lim) is called an (L,M)-convergence space.

Remark 4.4. It is easy to check that the mapping Qlim
xλ defined above is an (L,M)-convex ideal on X. This

provides an example of (L,M)-convex ideals from the aspect of (L,M)-convergence structures.

Definition 4.5. A mapping φ : (X, limX) −→ (Y, limY) is called LM-convexity-preserving provided that
limX(I)(xλ) ≤ limY(φ⇒(I))(φ(x)λ) for each I ∈ IC

LM(X) and xλ ∈ J(LX).

It is easy to verify that all (L,M)-convergence spaces as objects and all continuous mappings as mor-
phisms form a category, which is denoted by LM-Conv.

Let lim(X) denote the fibre of X, i.e.,

lim(X) := {limX | limX is an (L,M)-convergence structure on X}.

We can define an order on lim(X) by for each lim1
X, lim

2
X ∈ lim(X), lim1

X ≤ lim2
X if and only if idX : (X, lim1

X) −→
(X, lim2

X) is LM-convexity-preserving. In this case, we call lim1
X is finer than lim2

X or lim2
X is coarser than

lim1
X.

Example 4.6. (1) The mapping limind : IC
LM(X) −→MJ(LX) defined by for any I ∈ IC

LM(X), xλ ∈ J(LX)

limind(I)(xλ) = ⊤M,

is the coarsest (L,M)-convergence structure on X, which is called the indiscrete (L,M)-convergence structure
on X.

(2) The mapping limdis : IC
LM(X) −→ MJ(LX) defined by for any I ∈ IC

LM(X), xλ ∈ J(LX), limdis(I)(xλ) = ⊤M
whenever q(xλ) ≤ I, and limdis(I)(xλ) = ⊥M, otherwise, is the finest (L,M)-convergence structure on X, which
is called the discrete (L,M)-convergence structure on X.

(3) When M = {0, 1}, an (L,M)-convergence structures is exactly an L-convergence structure in [29].
(4) Here, we call the concept of Definition 4.1 in [16] M-fuzzifying order convergence structure. The

category of M-fuzzifying order convergence spaces and continuous mappings is denoted by M-COS.
The mapping lim : FM(X) −→ MX is called M-fuzzifying convergence structure when we change (MC2)
SF(F ,G) ≤ S(limF , limG) in [16] to

(MC2)′ F ≤ G =⇒ limF ≤ limG.

The category of M-fuzzifying convergence spaces and continuous mappings is denoted by M-CS. It is
easy to check that the category M-COS is a reflective subcategory of the category M-CS. When L = {0, 1},
the condition (LMCN3) holds naturally. Further, we can easily see that an (L,M)-convergence structure
is exactly an M-fuzzifying convergence structure when we replace (L,M)-convex ideals with M-fuzzifying
convex filters in [16].

Example 4.7. Let X = {x, y} and L = M = {0, 1
2 , 1} be a chain. We define a mapping lim : IC

LM(X) −→ MJ(LX),
∀I ∈ IC

LM(X),∀z ∈ X,

lim(I)(z 1
2
) =
{

1, q(z1) ≤ I,
0, otherwise,

lim(I)(z1) =


1, q(z1) ≤ I,
1
2
, otherwise.

Then it is easy to see lim is an (L,M)-convergence structure on X.
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Next we present another example from the aspect of (L,M)-fuzzy interval operators. Let us first recall
the definition of (L,M)-fuzzy interval operators [16], where L and M are completely distributive De Morgan
algebra.

Definition 4.8. ([16]) A mapping I : J(LX) × J(LX) −→ MJ(LX) is called an (L,M)-fuzzy interval operator on
X if it satisfies:

(LMI1) I(xλ, yµ)(xλ) = I(xλ, yµ)(yµ) = ⊤M;
(LMI2) I(xλ, yµ) = I(yµ, xλ);
(LMI3) I(xλ, yµ)(zν) =

∧
γ≺ν

∨
λ1≺λ

∨
µ1≺µ I(xλ1 , yµ1 )(zγ).

For an (L,M)-fuzzy interval operator I on X, the pair (X,I) is called an (L,M)-fuzzy interval space.

Example 4.9. Let (X,I) be an (L,M)-fuzzy interval space and define limI : IC
LM(X) −→ MJ(LX) by for any

I ∈ IC
LM(X), xλ ∈ J(LX),

limI(I)(xλ) =
∧

A∈LX

∧
xλ≤A′

(( ∨
zν≰A

∨
sα∨tβ≤A

I(sα, tβ)(zν)
)′
→ I(A)

)
.

Then limI is an (L,M)-convergence structure on X, which is called the underlying convergence structure of
(X,I). In particular, when M is a complete Boolean algebra,

limI(I)(xλ) =
∧

A∈LX

∧
xλ≤A′

( ∨
zν≰A

∨
sα∨tβ≤A

I(sα, tβ)(zν) ∨ I(A)
)
.

In the sequel, we will establish the relationship between (L,M)-fuzzy convex spaces and (L,M)-
convergence spaces. To this end, we first introduce the mapping S(−,−) : IC

LM(X) × IC
LM(X) −→ M as

follows:
∀I,H ∈ IC

LM(X), S(I,H) =
∧

A∈LX

I(A)→ H(A).

Actually, the order ≤ on IC
LM(X) defined before is exactly the classical inclusion order between (L,M)-convex

ideals. Here S(−,−) represents the fuzzy inclusion order between (L,M)-convex ideals. Concretely, S(I,H)
can be interpreted as the degree to which I is a subset of H. Next, we will provide the induced formula
from an (L,M)-fuzzy convex space to an (L,M)-convergence structure by using S(−,−).

Proposition 4.10. Let (X,C) be an (L,M)-fuzzy convex space and define a mapping limC : IC
LM(X) −→MJ(LX) by

∀I ∈ IC
LM(X),∀xλ ∈ J(LX), limC(I)(xλ) = S(QCxλ , I).

Then limC is an (L,M)-convergence structure on X.

Proof. It is enough to show that limC satisfies (LMCN1)–(LMCN3).
(LMCN1) It follows immediately from QCxλ ≤ q(xλ).
(LMCN2) It is obvious.
(LMCN3) We first show QlimC

xλ = QCxλ . Take each A ∈ LX. Then

Q
limC
xλ (A) =

∧
I∈IC

LM(X)

limC(I)(xλ)→ I(A)

=
∧

I∈IC
LM(X)

S(QCxλ , I)→ I(A)

=
∧

I∈IC
LM(X)

(
∧
B∈LX

Q
C

xλ (B)→ I(B))→ I(A)
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≥

∧
I∈IC

LM(X)

(QCxλ (A)→ I(A))→ I(A)

≥Q
C

xλ (A),

and
Q

limC
xλ (A) ≤ (

∧
B∈LX

Q
C

xλ (B)→ QCxλ (B))→ QCxλ (A) = QCxλ (A).

By (LMCQ0) in Proposition 3.5, we can conclude

Q
limC
xλ = QCxλ =

∧
µ∈β(λ)

Q
C

xµ =
∧
µ∈β(λ)

Q
limC
xµ ,

as desired.

Proposition 4.11. If φ : (X,CX) −→ (Y,CY) is LM-CP, then so is φ : (X, limCX ) −→ (Y, limCY ).

Proof. Since φ : (X,CX) −→ (Y,CY) is LM-CP, it follows from Proposition 3.6 that φ : (X,QCX ) −→ (Y,QCY ) is
LM-CP, which means QCX

xλ (φ←(B)) ≥ QCY
φ(x)λ

(B) for each B ∈ LY and xλ ∈ J(LX). Then for each I ∈ IC
LM(X), we

have

limCY (φ⇒(I))(φ(x)λ) =S(QCY
φ(x)λ
, φ⇒(I))

=
∧
B∈LY

Q
CY
φ(x)λ

(B)→ φ⇒(I)(B)

≥

∧
B∈LY

Q
CX
xλ (φ←(B))→ I(φ←(B))

≥

∧
A∈LX

Q
CX
xλ (A)→ I(A)

=S(QCX
xλ , I)

=limCX (I)(xλ).

This shows φ : (X, limCX ) −→ (Y, limCY ) is LM-CP.

By Propositions 4.10 and 4.11, we can get a functor G : LM-CS −→ LM-Conv by

G :


LM-CS −→ LM-Conv,

(X,C) 7−→ (X, limC),
φ 7−→ φ.

Conversely, we can induce an (L,M)-fuzzy convex structureClim by an (L,M)-convergence space (X, lim).

Proposition 4.12. Let (X, lim) be an (L,M)-convergence space and define Clim : LX
−→M as follows

∀A ∈ LX, Clim(A) =
∧

xλ≺A′
Q

lim
xλ (A).

Then Clim is an (L,M)-fuzzy convex structure on X.

Proof. It suffices to show that Clim satisfies (LMC1)–(LMC3). (LMC1) is obvious. So we only need to verify
(LMC2) and (LMC3).
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For (LMC2), since
{xλ | xλ ≺

∨
j∈J

A
′

j} = {xλ | ∃ j ∈ J, xλ ≺ A
′

j},

we have

C
lim(
∧
j∈J

A j) =
∧

xλ≺(
∧

j∈J A j)
′

Q
lim
xλ (
∧
j∈J

A j)

=
∧

xλ≺
∨

j∈J A′j

Q
lim
xλ (
∧
j∈J

A j)

=
∧
j∈J

∧
xλ≺A′j

Q
lim
xλ (
∧
j∈J

A j)

≥

∧
j∈J

∧
xλ≺A′j

Q
lim
xλ (A j)

=
∧
j∈J

C
lim(A j).

For (LMC3), take each {A j} j∈J ⊆
dir LX. Then it follows from {xλ | xλ ≺

∧
j∈J A′

j} ⊆ {xλ | ∀ j ∈ J, xλ ≺ A′

j} that∧
j∈J

C
lim(A j) =

∧
j∈J

∧
xλ≺A′j

Q
lim
xλ (A j)

≤

∧
∀ j∈J,xλ≺A′j

∧
j∈J

Q
lim
xλ (A j)

≤

∧
xλ≺
∧

j∈J A′j

Q
lim
xλ (
∨
j∈J

A j)

=Clim(
∨
j∈J

A j).

Proposition 4.13. If φ : (X, limX) −→ (Y, limY) is LM-CP, then so is φ : (X,ClimX ) −→ (Y,ClimY ).

Proof. Since φ : (X, limX) −→ (Y, limY) is LM-CP, it follows that limY(φ⇒(I))(φ(x)λ) ≥ limX(I)(xλ) for each
I ∈ IC

LM(X) and xλ ∈ J(LX). Then for each B ∈ LX, we have

C
limX (φ←(B)) =

∧
xλ≺φ←(B)′

Q
limX
xλ (φ←(B))

=
∧

xλ≺φ←(B)′

( ∧
I∈IC

LM(X)

limX(I)(xλ)→ I(φ←(B))
)

≥

∧
xλ≺φ←(B)′

( ∧
I∈IC

LM(X)

limY(φ⇒(I))(φ(x)λ)→ φ⇒(I)(B)
)

≥

∧
xλ≺φ←(B)′

( ∧
H∈IC

LM(Y)

limY(H)(φ(x)λ)→ H(B)
)

≥

∧
φ(x)λ≺B′

( ∧
H∈IC

LM(Y)

limY(H)(φ(x)λ)→ H(B)
)
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≥

∧
yµ≺B′

( ∧
H∈IC

LM(Y)

limY(H)(yµ)→ H(B)
)

=
∧

yµ≺B′
Q

limY
yµ (B)

=ClimY (B).

This shows φ : (X,ClimX ) −→ (Y,ClimY ) is LM-CP.

By Propositions 4.12 and 4.13, we can get a functor F : LM-Conv −→ LM-CS by

F :


LM-Conv −→ LM-CS,

(X, lim) 7−→ (X,Clim),
φ 7−→ φ.

Theorem 4.14. (F,G) is a Galois correspondence and F is a left inverse ofG, which means that the category LM-CS
can be embedded in LM-Conv as a reflective subcategory.

Proof. It is enough to show (1) limC
lim
≥ lim and (2) ClimC = C for each (L,M)-convergence space (X, lim) and

each (L,M)-fuzzy convex space (X,C).
For (1), take each I ∈ IC

LM(X) and xλ ∈ J(LX). Then

limC
lim

(I)(xλ) =S(QC
lim

xλ , I)

=
∧

A∈LX

Q
C

lim

xλ (A)→ I(A)

=
∧

A∈LX

(
(
∨

xλ≤B≤A′
C

lim(B
′

))→ I(A)
)

=
∧

A∈LX

(( ∨
xλ≤B≤A′

(
∧
yµ≺B

Q
lim
yµ (B

′

))
)
→ I(A)

)
≥

∧
A∈LX

(( ∨
xλ≤B≤A′

(
∧
µ∈β(λ)

Q
lim
xµ (B

′

))
)
→ I(A)

)
=
∧

A∈LX

(( ∨
xλ≤B≤A′

Q
lim
xλ (B

′

)
)
→ I(A)

)
(by (LMCN3))

≥

∧
A∈LX

Q
lim
xλ (A)→ I(A)

=
∧

A∈LX

(
(
∧

H∈IC
LM(X)

lim(H)(xλ)→ H(A))→ I(A)
)

≥

∧
A∈LX

(
(lim(I)(xλ)→ I(A))→ I(A)

)
≥ lim(I)(xλ).

For (2), take each A ∈ LX. On one hand, it follows from QlimC
xλ = QCxλ that

C
limC (A) =

∧
xλ≺A′

Q
limC
xλ (A) =

∧
xλ≺A′

Q
C

xλ (A) =
∧

xλ≺A′

∨
xλ≤B≤A′

C(B
′

) ≥ C(A).

On the other hand,

C
limC (A) =

∧
xλ≺A′

∨
xλ≤B≤A′

C(B
′

)
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=
∨

f∈
∏

xλ≺A′ Bxλ

∧
xλ≺A′

C( f (xλ)
′

) (by the completely distributive law)

≤

∨
f∈
∏

xλ≺A′ Bxλ

C(
∧

xλ≺A′
f (xλ)

′

) (by (LMC2))

=C(A),

as desired.

In what follows, we will find out what kind of convergence structures in the category of (L,M)-
convergence spaces corresponds to the category of (L,M)-fuzzy convex spaces. Firstly, we give the following
definition.

Definition 4.15. An (L,M)-convergence structure lim on X is called convex if it satisfies

(LMCNP) lim(I)(xλ) = S(Qlim
xλ , I);

(LMCNC) Qlim
xλ (A) =

∨
xλ≤B≤A′

∧
yµ≺BQ

lim
yµ (B′ ).

For a convex (L,M)-convergence structure lim on X, the pair (X, lim) is called a convex (L,M)-convergence
space.

The full subcategory of LM-Conv consisting of convex (L,M)-convergence spaces is denoted by LM-
CConv.

Proposition 4.16. Let (X,C) be an (L,M)-fuzzy convex space and define limC : IC
LM(X) −→MJ(LX) by

∀I ∈ IC
LM(X), xλ ∈ J(LX), limC(I)(xλ) = S(QCxλ , I).

Then limC is a convex (L,M)-convergence structure on X.

Proof. By Proposition 4.10, we only need to show limC satisfies (LMCNP) and (LMCNC).
(LMCNP) It follows from QCxλ = Q

limC
xλ that

limC(I)(xλ) = S(QCxλ , I) = S(QlimC
xλ , I).

(LMCNC) By Proposition 3.7(2), we have

Q
limC
xλ (A) = QCxλ (A) = QC

Q
C

xλ (A) =
∨

xλ≤B≤A′
C
Q
C

(B
′

) =
∨

xλ≤B≤A′

∧
yµ≺B

Q
C

yµ (B
′

) =
∨

xλ≤B≤A′

∧
yµ≺B

Q
limC
yµ (B

′

),

as desired.

Proposition 4.17. If (X, lim) is a convex (L,M)-convergence space, then limC
lim
= lim.

Proof. Take each A ∈ LX. Then by (LMCNC), we have

Q
C

lim

xλ (A) =
∨

xλ≤B≤A′
C

lim(B
′

) =
∨

xλ≤B≤A′

∧
yµ≺B

Q
lim
yµ (B

′

) = Qlim
xλ (A).

This means Qlim
xλ = Q

C
lim

xλ . Further, it follows from (LMCNP) that

limC
lim

(I)(xλ) = S(QC
lim

xλ , I) = S(Qlim
xλ , I) = lim(I)(xλ),

as desired.

By Propositions 4.14, 4.16 and 4.17, we have following result.

Theorem 4.18. The category (L,M)-CConv is isomorphic to the category (L,M)-CS.
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5. Preconvex (L,M)-convergence spaces

In this section, we will relax the axiomatic conditions of convex (L,M)-convergence spaces and propose
the concept of preconvex (L,M)-convergence spaces. Further, we introduce the concept of preconvex
(L,M)-remotehood spaces which provide a characterization of preconvex (L,M)-convergence spaces.

Definition 5.1. An (L,M)-convergence structure lim on X is called preconvex if it satisfies

(LMCNP) lim(I)(xλ) = S(Qlim
xλ , I).

For a preconvex (L,M)-convergence structure lim on X, the pair (X, lim) is called a preconvex (L,M)-
convergence space.

The full subcategory of LM-Conv consisting of preconvex (L,M)-convergence spaces is denoted by
LM-PConv.

It is easy to check the following lemma holds.

Lemma 5.2. If lim : IC
LM(X) −→ MJ(LX) is a preconvex (L,M)-convergence structure, then (LMCNP) implies the

following axiom:
(LMCNP)′ S(I1, I2) ≤

∧
xλ∈J(LX)

lim(I1)(xλ)→ lim(I2)(xλ).

Not every (L,M)-convergence structure lim on X is preconvex.

Example 5.3. Define lim as in Example 4.7. Then (X, lim) is not a preconvex (L,M)-convergence space since
it does not satisfy (LMCNP)′. To see this, we introduce a mapping I∗ : LX

−→M by for any A ∈ LX,

I∗(A) =



1, if A = ⊥X,

1
2
, if A(x) = 0,A(y) , 0,

1
2
, if A(x) =

1
2
,

0, if A(x) = 1.

It is routine to verify I∗ ∈ IC
LM(X).

In this case, by q(x1)(A) = 1 whenever 1 ≤ A′(x) i.e. A(x) = 0, and q(x1)(A) = 0, otherwise, we have

S(q(x1), I∗) =
∧

A∈LX

q(x1)(A)→ I∗(A)

=(1→ 1) ∧ (1→
1
2

) ∧ (0→
1
2

) ∧ (0→ 0) =
1
2

and ∧
xλ∈J(LX)

lim(q(x1))(xλ)→ lim(I∗)(xλ)

≤

(
lim(q(x1))(x 1

2
)→ lim(I∗)(x 1

2
)
)
∧

(
lim(q(x1))(x1)→ lim(I∗)(x1)

)
=(1→ 0) ∧ (1→

1
2

) = 0.

It follows that

S(q(x1), I∗) =
1
2
≰ 0 =

∧
xλ∈J(LX)

lim(q(x1))(xλ)→ lim(I∗)(xλ).
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Definition 5.4. A preconvex (L,M)-remotehood system on X is a set Q = {Qxλ | xλ ∈ J(LX)}, where Qxλ :
LX
−→M satisfies (LMCQ1)–(LMCQ4) and

(LMCQ0) Qxλ =
∧
µ∈β(λ)Qxµ .

For a preconvex (L,M)-remotehood system Q on X, the pair (X,Q) is called a preconvex (L,M)-remotehood
space.

A mappingφ : (X,QX) −→ (Y,QY) between preconvex (L,M)-remotehood spaces is called LM-convexity-
preserving (LM-CP, in short) provided that QY

φ(x)λ
(B) ≤ QX

xλ (φ
←(B)) for all xλ ∈ J(LX) and B ∈ LY.

It is easy to verify that all preconvex (L,M)-remotehood spaces as objects and all LM-convexity-
preserving mappings as morphisms form a category, which is denoted by LM-PCQ.

Next, we will give the mutual induction method between preconvex (L,M)-remotehood spaces and
preconvex (L,M)-convergence spaces. Further, we will prove that they are one-to-one corresponding.

Proposition 5.5. Let (X,Q) be a preconvex (L,M)-remotehood space and define limQ : IC
LM(X) −→MJ(LX) by

∀I ∈ IC
LM(X), xλ ∈ J(LX), limQ(I)(xλ) = S(Qxλ , I).

Then limQ is a preconvex (L,M)-convergence structure on X.

Proof. It is enough to show that limQ satisfies (LMCN1)–(LMCN3) and (LMCNP). (LMCN1) and (LMCN2)
are obvious.

(LMCN3) Take each xλ ∈ J(LX) and A ∈ LX. Then

Q
limQ
xλ (A) =

∧
I∈IC

LM(X)

limQ(I)(xλ)→ I(A) =
∧

I∈IC
LM(X)

S(Qxλ , I)→ I(A) = Qxλ (A).

By (LMCQ0), we have
Q

limQ
xλ = Qxλ =

∧
µ∈β(λ)

Qxµ =
∧
µ∈β(λ)

Q
limQ
xµ .

(LMCNP) It follows from QlimQ
xλ = Qxλ that

limQ(I)(xλ) = S(Qxλ , I) = S(QlimQ
xλ , I),

as desired.

Proposition 5.6. If φ : (X,QX) −→ (Y,QY) is LM-CP, then so is φ : (X, limQ
X
) −→ (Y, limQ

Y
).

Proof. Since φ : (X,QX) −→ (Y,QY) is LM-CP, it follows that

∀B ∈ LY,∀xλ ∈ J(LX), QX
xλ (φ

←(B)) ≥ QY
φ(x)λ

(B).

Then for each I ∈ IC
LM(X), we have

limQ
Y
(φ⇒(I))(φ(x)λ) =S(QY

φ(x)λ
, φ⇒(I))

=
∧
B∈LY

Q
Y
φ(x)λ

(B)→ φ⇒(I)(B)

≥

∧
B∈LY

Q
X
xλ (φ

←(B))→ I(φ←(B))

≥

∧
A∈LX

Q
X
xλ (A)→ I(A)
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=S(QX
xλ , I)

=limQ
X
(I)(xλ).

This shows φ : (X, limQ
X
) −→ (Y, limQ

Y
) is LM-CP.

Proposition 5.7. Let (X, lim) be a preconvex (L,M)-convergence space. Then Qlim = {Qlim
xλ | xλ ∈ J(LX)} is a

preconvex (L,M)-remotehood system on X.

Proof. By Remark 4.4, we only need to show that Qlim
xλ satisfies (LMCQ2) and (LMCQ0).

(LMCQ2) Suppose that Qlim
xλ (A) , ⊥M. That is to say,∧

I∈IC
LM(X)

lim(I)(xλ)→ I(A) , ⊥M.

Then it follows that lim(I)(xλ)→ I(A) , ⊥M for each I ∈ IC
LM(X). This implies

q(xλ)(A) = ⊤ → q(xλ)(A) = lim(q(xλ))(xλ)→ q(xλ)(A) , ⊥M.

By the definition of q(xλ), we conclude that λ ≤ A′

(x).
(LMCQ0) It follows immediately from (LMCN3).

Proposition 5.8. If φ : (X, limX) −→ (Y, limY) is LM-CP, then so is φ : (X,QlimX ) −→ (Y,QlimY ).

Proof. Since φ : (X, limX) −→ (Y, limY) is LM-CP, it follows that

∀I ∈ IC
LM(X),∀xλ ∈ J(LX), limY(φ⇒(I))(φ(x)λ) ≥ limX(I)(xλ).

Then for each B ∈ LY, we have

Q
limX
xλ (φ←(B)) =

∧
I∈IC

LM(X)

limX(I)(xλ)→ I(φ←(B))

≥

∧
I∈IC

LM(X)

limY(φ⇒(I))(φ(x)λ)→ φ⇒(I)(B)

≥

∧
H∈IC

LM(Y)

limY(H)(φ(x)λ)→ H(B)

=QlimY
φ(x)λ

(B).

This shows φ : (X,QlimX ) −→ (Y,QlimY ) is LM-CP.

By Propositions 5.5–5.8, we know LM-PConv and LM-PCQ can be induced by each other. Finally, we
will present the main result of this section.

Theorem 5.9. The category LM-PConv is isomorphic to the category LM-PCQ.

Proof. It is enough to show (1) limQ
lim
= lim and (2) QlimQ = Q for each preconvex (L,M)-convergence space

(X, lim) and each preconvex (L,M)-remotehood space (X,Q).
For (1), take each I ∈ IC

LM(X) and xλ ∈ J(LX). By (LMCNP), we have

limQ
lim

(I)(xλ) = S(Qlim
xλ , I) = lim(I)(xλ).

For (2), take each xλ ∈ J(LX) and A ∈ LX. Then

Q
limQ
xλ (A) =

∧
I∈IC

LM(X)

limQ(I)(xλ)→ I(A)
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=
∧

I∈IC
LM(X)

S(Qxλ , I)→ I(A)

≤S(Qxλ ,Qxλ )→ Qxλ (A)
=Qxλ (A)

and

Q
limQ
xλ (A) =

∧
I∈IC

LM(X)

S(Qxλ , I)→ I(A)

=
∧

I∈IC
LM(X)

(
∧
B∈LX

Qxλ (B)→ I(B))→ I(A)

≥

∧
I∈IC

LM(X)

(Qxλ (A)→ I(A))→ I(A)

≥Qxλ (A),

as desired.

6. Conclusions

In this paper, we presented some new characterizations of (L,M)-fuzzy convex spaces. We first intro-
duced the concept of (L,M)-remotehood systems and showed the resulting category was isomorphic to
the category of (L,M)-fuzzy convex spaces. Further, we proposed the notion of (L,M)-convergence struc-
tures and studied its relationships with (L,M)-convex structures and (L,M)-remotehood systems from a
categorical aspect. Following this paper, we will consider the following problems in the future.

• Separation properties are important part of the theory of convex structures. In the future, we will con-
sider separation properties of (L,M)-fuzzy convex spaces by means of (L,M)-convergence structures.

• We will further consider the subcategories of the category of (L,M)-convergence spaces and study
their relationships from a categorical aspect.
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