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Abstract.In this paper, we present new bounds for the zeros of polynomials with numerical and matrix
coefficients and show that these bounds are effective and more accurate for polynomials that have small
differences between their coefficients. To get our main results, we apply the similarity of matrices and
matrix inequalities including the numerical radius and matrix norms. Finally, some illustrated examples
are given and discussed.

1. Introduction

LetMn(C) denote the space of all n × n complex matrices, the eigenvalues of A ∈Mn(C) are denoted by
λ1 (A) ,λ2 (A) , . . . ,λn (A), and are arranged so that |λ1 (A)| ≥ |λ2 (A)| ≥ . . . ≥ |λn (A)|. The singular values of
A ∈ Mn(C) are the eigenvalues of (A∗A)

1
2 denoted by s1 (A) ,s2 (A) , . . . ,sn (A) , arranged in decreasing order

and repeated according to multiplicity as s1 (A) ≥ s2 (A) ≥ . . . ≥ sn (A). For A ∈ Mn(C), let r(A), w(A), and
||A||, be the spectral radius, the numerical radius and the spectral norm of A, respectively. It is well known
that∣∣∣λ j (A)

∣∣∣ ≤ r(A) ≤ w(A) ≤ ||A|| = s1 (A) for j = 1, 2, . . . ,n.

The Frobenius companion matrix plays an important role between matrix analysis and the geometry
of polynomials. It has been used for locating the zeros of polynomials by matrix methods. Some classical
bounds for the zeros of polynomials are Cauchy’s bound [15], Carmichael and Mason’s bound [5], Montel’s
bound [5] and Fujii and Kubo’s bound [6]. Others have provided bounds for the zeros of polynomials that
relied on matrix inequalities using the Frobenius companion matrix such as [1], [2], [3], [4], [11], and [13].

On the other hand, locating the zeros of polynomials with matrix coefficients is a very important topic,
which has attracted the attention of many researchers. Many bounds for the zeros of matrix polynomials
can be found in [5], [9], [10], [12], and [14].
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In this paper, we employ the similarity of matrices and matrix inequalities including the numerical radius
and matrix norms to derive new bounds for the zeros of polynomials.These new bounds are effective and
more accurate for polynomials that have small differences between their coefficients.

2. Bounds for the zeros of scalar polynomials

Throughout this section, let p(z) = zn + anzn−1 + an−1zn−2 + . . . + a2z + a1 be a monic polynomial of degree
n ≥ 2 with complex coefficients a1, a2, . . . , an, where a1 , 0.

The Frobenius companion matrix of p is the n × n matrix given by

F(p) =



−an −an−1 . . . −a2 −a1
1 0 . . . 0 0

0 1
. . . 0 0

...
...

. . .
...

...
0 0 1 0


.

It is well known that the zeros of p are exactly the eigenvalues of F(p)[15]. Consequently, if z is a zero of p,
then |z| ≤ r(F(p)).

Consider the invertible matrix

B =



1 1 1 1 . . . 1
0 1 1 1 . . . 1
0 0 1 1 . . . 1
0 0 0 1 . . . 1
...
...
...
...
. . .

...
0 0 0 0 . . . 1


, where B−1 =



1 −1 0 0 . . . 0
0 1 −1 0 . . . 0

0 0 1 −1
. . . 0

0 0 0 1
. . . 0

...
...

...
...
. . . −1

0 0 0 0 . . . 1


.

Define the matrix A as A = BF(p)B−1, which will be called the A-companion matrix of p. Thus, the matrix

A =



1 − an an − an−1 an−1 − an−2 . . . a3 − a2 a2 − a1 − 1
1 0 0 . . . 0 −1
0 1 0 . . . 0 −1
0 0 1 . . . 0 −1
...

...
...

. . .
...

...
0 0 0 . . . 1 −1


is similar to F(p) and so they have the same eigenvalues.

To obtain new bounds for zeros of polynomials, we employ the similarity of matrices and matrix
inequalities. This will be accomplished by applying the following lemmas which can be found in [7] and
[8]. Here,Mn×m(C) denotes the space of all n ×m complex matrices.

Lemma 2.1. Let T =
[
Ti j

]
be an n × n block matrix with Ti j ∈Mmi×m j (C) and

∑k
i=1 mi = n. Then

w(T) ≤
1
2

k∑
i=1

w(Tii) +

√√√√√√√
(w2(Tii) +

k∑
j=1
j,i

∥∥∥Ti j

∥∥∥2

 .
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Lemma 2.2. Let Ln be the n × n matrix given by

Ln =



0 0 . . . 0 0
1 0 . . . 0 0

0 1
. . . 0 0

...
...
. . . 0

...
0 0 . . . 1 0


.

Then w(Ln) = cos π
n+1 .

Theorem 2.3. Let z be a zero of p(z) = zn + anzn−1 + an−1zn−2 + . . . + a2z + a1. Then

|z| ≤
1
2

1 +
√

2 + |1 − an| + cos
π

n − 1
+

√√√
|a2 − a1 − 1|2 +

n+1∑
j=3

∣∣∣a j − a j−1

∣∣∣2 + √
n − 1 + cos2 π

n − 1

 ,

where an+1 = 1.

Proof. Partition the A-companion matrix of p as

A =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 ,

where

T11 = [1 − an] ,T12 =
[

an − an−1 an−1 − an−2 . . . . . . a3 − a2

]
,T13 = [a2 − a1 − 1] ,

T21 =


1
0
0
...
0


,T22 =



0 0 . . . 0 0
1 0 . . . 0 0

0 1
. . . 0 0

...
...
. . . 0

...
0 0 . . . 1 0


,T23 =


−1
−1
−1
...
−1


,

and

T31 = [0] ,T32 =
[

0 0 . . . 0 1
]
,T33 = [−1] .

Now, the definitions of the numerical radius and spectral norm with Lemma 2.2 imply

w(T11) = |1 − an| ,w(T22) = cos
π

n − 1
,w(T33) = 1,

∥T12∥
2 =

n∑
j=3

∣∣∣a j − a j−1

∣∣∣2 , ∥T13∥
2 = |a2 − a1 − 1|2 , ∥T21∥

2 = 1,

∥T23∥
2 = n − 2, ∥T31∥

2 = 0, ∥T32∥
2 = 1.

Using Lemma 2.1, then we have

w(A) ≤
1
2

 w(T11) + w(T22) + w(T33) +
√

w2(T11) + ∥T12∥
2 + ∥T13∥

2

+

√
w2(T22) + ∥T21∥

2 + ∥T23∥
2 +

√
w2(T33) + ∥T31∥

2 + ∥T32∥
2


=

1
2


|1 − an| + cos

π
n − 1

+ 1 +
√
|1 − an|

2 +
∑n

j=3

∣∣∣a j − a j−1

∣∣∣2 + |a2 − a1 − 1|2

+

√
cos2 π

n − 1
+ n − 1 +

√
2

 ,
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Using the fact that |z| ≤ r(F(p)) = r(A) ≤ w(A), we get

|z| ≤
1
2

 1 +
√

2 + |1 − an| + cos π
n−1 +

√
|a2 − a1 − 1|2 +

∑n+1
j=3

∣∣∣a j − a j−1

∣∣∣2
+

√
n − 1 + cos2 π

n−1

 ,

where an+1 = 1.

Using the spectral norm of the A-companion matrix of p, the following theorem produces another bound
for the zeros of polynomials.

Theorem 2.4. Let z be a zero of p(z) = zn + anzn−1 + an−1zn−2 + . . . + a2z + a1. Then

|z| ≤
√

1 +
√

n − 1 + |a2 − a1 − 1|2 +
∑n+1

j=3

∣∣∣a j − a j−1

∣∣∣2,where an+1 = 1.

Proof. The A-companion matrix of p can be written as A = R + S + T, where

R =



1 − an an − an−1 an−1 − an−2 . . . a3 − a2 a2 − a1 − 1
0 0 0 . . . 0 0
0 0 0 . . . 0 0
0 0 0 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . 0 0


,

S =



0 0 0 . . . 0 0
1 0 0 . . . 0 0
0 1 0 . . . 0 0

0 0 1
. . . 0 0

...
...

. . .
. . .

...
0 0 0 . . . 1 0


and T =



0 0 0 . . . 0 0
0 0 0 . . . 0 −1
0 0 0 . . . 0 −1
0 0 0 . . . 0 −1
...
...
...
. . .

...
...

0 0 0 . . . 0 −1


.

Since R∗S = R∗T = S∗R = S∗T = T∗R = T∗S = 0, the triangle inequality, together with the fact that ∥A∥2 =
∥A∗A∥ , yield

∥A∥2 = ∥R∗R + S∗S + T∗T∥ ≤ ∥R∗R∥ + ∥S∗S∥ + ∥T∗T∥ .

However, with a few basic calculations, we have

∥R∗R∥ = |1 − an|
2 +

n∑
j=3

∣∣∣a j − a j−1

∣∣∣2 + |a2 − a1 − 1|2 , ∥S∗S∥ = 1and ∥T∗T∥ =
√

n − 1,

So,

∥A∥2 ≤ |1 − an|
2 +

n∑
j=3

∣∣∣a j − a j−1

∣∣∣2 + |a2 − a1 − 1|2 + 1 +
√

n − 1.

Since |z| ≤ r(F(p)) = r(A) ≤ ∥A∥ ,we have

|z| ≤
√

1 +
√

n − 1 + |a2 − a1 − 1|2 +
∑n+1

j=3

∣∣∣a j − a j−1

∣∣∣2,where an+1 = 1.
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Remark 2.5. Despite the fact that the numerical radius of a matrix A is smaller than or equal to its spectral norm
and the bound in Theorem 2.3 was derived based on the numerical radius while the bound in Theorem 2.4 was derived
based on the spectral norm, the last bound is sometimes better than the first one for specific polynomials. For example,
if z is a zero of the polynomial p(z) = z5 + 6z4 + 5z3 + z + 2, Theorem 2.3 gives |z| ≤ 8.8 and Theorem 2.4 gives
|z| ≤ 7.6 while if z is a zero of the polynomial p(z) = z10 + z9 + 3z8 + 6z7 + 2z6 + 4z5 + 4z3 + 2z2 + 6z + 1,Theorem
2.3 gives |z| ≤ 8.3 and Theorem 2.4 gives |z| ≤ 10.2.

In the following two theorems new bounds for the zeros of polynomials are obtained directly by
calculating the maximum column sum matrix norm∥.∥1 and the maximum row sum matrix norm∥.∥∞ for
the A-companion matrix and using the fact

∣∣∣λ j (A)
∣∣∣ ≤ N(A) for any matrix norm N(.).

Theorem 2.6. Let z be a zero of p(z) = zn + anzn−1 + an−1zn−2 + . . . + a2z + a1. Then

|z| ≤ max {1 + |1 − an| , 1 + |an − an−1| , . . . , 1 + |a3 − a2| , (n − 1) + |a2 − a1 − 1|} .

Theorem 2.7. Let z be a zero of p(z) = zn + anzn−1 + an−1zn−2 + . . . + a2z + a1. Then
|z| ≤ max

{
2, |a2 − a1 − 1| +

∑n+1
j=3

∣∣∣a j − a j−1

∣∣∣} , where an+1 = 1.

It should be mentioned here that these new bounds are effective and more accurate for polynomials that
have small differences between their coefficients.

Example 2.8. Consider the polynomial p(z) = z5 + 6z4 + 7z3 + 8z2 + 9z+ 10. Then the upper bounds for the zeros of
this polynomial estimated by different mathematicians such as Cauchy [15], Carmichael and Mason [5], Montel [5],
Fujii and Kubo [6], Kittaneh and et al. ([11], Theorem 2.9), Bhunia and Paul [4] are as shown in the following table

Bound Value
Cauchy 10

Carmichael and Mason 18.1934
Montel 20

Fujii and Kubo 12.9489
Kittaneh 10.2647

Bhunia and Paul 13.09

but if z is a zero of the polynomial p(z), then Theorem 2.3 gives |z| ≤ 7.9497, Theorem 2.4 gives |z| ≤ 5.9161,Theorem
2.6 and Theorem 2.7 give |z| ≤ 6 which are better than all estimates mentioned above.

3. Bounds for the zeros of polynomials with matrix coefficients

In the preceding section, we have established bounds for zeros of scalar polynomials. In this section,
we shall give bounds for zeros of polynomials with matrix coefficients using numerical radius inequalities.

Consider the monic polynomial P(z) = Izm+Amzm−1+Am−1zm−2+ . . .+A2z+A1, where I,A1,A2, . . . ,Am ∈

Mn(C). The Frobenius companion matrix of P is the nm × nm matrix given by

F(P) =



−Am −Am−1 . . . −A2 −A1
I 0 . . . 0 0

0 I
. . . 0 0

...
...

. . .
...

...
0 0 I 0


.

A complex number z is called a zero of P(z) if there is a non-zero vector x ∈ Cn such that P(z)x = 0. As
in the case of numerical coefficients, the zeros of P(z) coincide with the eigenvalues of F(P)[5]. Thus, if z is
a zero of P(z), then |z| ≤ r(F(P)).
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To obtain our estimate for the zeros of P, consider the invertible matrix

B̃ =



I I I I . . . I
0 I I I . . . I
0 0 I I . . . I
0 0 0 I . . . I
...
...
...
...
. . .

...
0 0 0 0 . . . I


, where B̃−1 =



I −I 0 0 . . . 0
0 I −I 0 . . . 0

0 0 I −I
. . . 0

0 0 0 I
. . . 0

...
...

...
...
. . . −I

0 0 0 0 . . . I


.

Define the Ã-companion matrix of P as Ã = B̃F(P)B̃−1. Thus,

Ã =



I − Am Am − Am−1 Am−1 − Am−2 . . . A3 − A2 A2 − A1 − I
I 0 0 . . . 0 −I
0 I 0 . . . 0 −I
0 0 I . . . 0 −I
...

...
...

. . .
...

...
0 0 0 . . . I −I


.

It is well known that Ã and F(P) have the same eigenvalues. So,

|z| ≤ r(Ã) ≤ w(Ã).

To achieve our goal of finding new bounds for the zeros of P, we obtain an estimate of the numerical
radius of Ã by using the following lemmas that can be found in [10].

Lemma 3.1. Let T =
[
Ti j

]
be an n × n block matrix with Ti j ∈Mmi×mj(C) and

∑n
i=1 mi = n. Then

w(T) ≤ w(
[
ti j

]
),

where

ti j = w
([

0 Ti j
T ji 0

])
.

In particular, tii = w(Tii) for i = 1, 2, . . . ,n.

Lemma 3.2. Let Ln be the n × n block matrix given by

Ln =



0 1
2 I 0 . . . 0

1
2 I 0 1

2 I . . . 0

0 1
2 I 0

. . .
...

...
...
. . .

. . . 1
2 I

0 0 . . . 1
2 I 0


.

Then the eigenvalues of Ln are λ j = cos π j
n+1 for j = 1, 2, . . . ,n.

Theorem 3.3. Let z be a zero of P(z) = Izm + Amzm−1 + Am−1zm−2 + . . . + A2z + A1. Then

|z| ≤
1
2

 1 + cos π
m−1 + w(I − Am) +

√
w2(I − Am) +

∑m−1
j=1

∣∣∣a j

∣∣∣2
+

√
1 + m+1

4 + |a1|
2 +

√
m+1

4 + cos2 π
n−1

∑m−1
j=2

∣∣∣a j

∣∣∣2
 ,

where a j =
∥A j+1−A j∥

2 , j = 2, 3, . . . .,m − 2, am−1 = w
([

0 Am − Am−1
I 0

])
and a1 =

∥A2−A1−I∥
2 .
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Proof. For any two matrices X,Y ∈Mm(C), let T(X,Y) =

[
0 X
Y 0

]
. Applying Lemma 3.1 on Ã, we get

w(Ã) ≤ w(S),

where S is the matrix given by

S =



w(I − Am) w(T(Am−Am−1,I)) w(T(Am−1−Am−2,0)) . . . . . . w(T(A2−A1−I,0))
w(T(I,Am−Am−1)) w(0) w(T(0,I)) . . . . . . w(T(−I,0))

w(T(0,Am−1−Am−2)) w(T(I,0)) w(0) . . . . . . w(T(−I,0))
...

...
...

. . .
...

w(0) w(T(−I,I))
w(T(0,A2−A1−I)) w(T(0,−I)) w(T(0,−I)) . . . w(T(I,−I)) w(−I)


.

Using the fact that w
([

0 A
0 0

])
= w

([
0 0
A 0

])
= ∥A∥2 for every A ∈Mn(C), then we have

S =



w(I − Am) am−1 am−2 am−3 . . . a1
am−1 0 1/2 0 . . . 1/2
am−2 1/2 0 1/2 . . . 1/2

am−3 0 1/2
. . .

...
...

...
...

. . . 0 1
a1 1/2 1/2 . . . 1 1


,

where a j =
∥A j+1−A j∥

2 , j = 2, 3, . . . .,m − 2, am−1 = w
([

0 Am − Am−1
I 0

])
and a1 =

∥A2−A1−I∥
2 .To find w(S) we need to

partition the matrix S as

S =

 T11 T12 T13
T21 T22 T23
T31 T32 T33

 ,

where

T11 = w(I − Am),T12 =
[

am−1 am−2 am−3 . . . a1

]
,T13 = [a1] ,

T21 =


am−1
am−2
am−3
...

a2


,T22 =



0 1/2 0 . . . 0
1/2 0 1/2 . . . 0

0 1/2 0 . . .
...

...
...

...
. . . 1/2

0 0 . . . 1/2 0


,T23 =


1/2
1/2
...

1/2
1


,

T31 = [a1] ,T32 =
[

1/2 1/2 . . . 1/2 1
]
,T33 = [1] .

Now, the definitions of the numerical radius and spectral norm with Lemma 3.2 imply

w(T11) = w(I − Am),w(T22) = cos
π

m − 1
,w(T33) = 1,

∥T12∥
2 =

m−1∑
j=2

∣∣∣a j

∣∣∣2 , ∥T13∥
2 = |a1|

2 , ∥T21∥
2 =

m−1∑
j=2

∣∣∣a j

∣∣∣2 ,



A. Burqan et al. / Filomat 37:9 (2023), 2961–2968 2968

∥T23∥
2 =

m + 1
4
, ∥T31∥

2 = |a1|
2 , ∥T32∥

2 =
m + 1

4
.

Applying Lemma 2.1 on the partition of S, we have

w(S) ≤
1
2

 w(T11) + w(T22) + w(T33) +
√

w2(T11) + ∥T12∥
2 + ∥T13∥

2+√
w2(T22) + ∥T21∥

2 + ∥T23∥
2 +

√
w2(T33) + ∥T31∥

2 + ∥T32∥
2


=

1
2


w(I − Am) + 1 + cos

π
m − 1

+

√
w2(I − Am) +

∑m−1
j=1

∣∣∣a j

∣∣∣2√
cos2 π

n − 1
+

∑m−1
j=2

∣∣∣a j

∣∣∣2 + m + 1
4
+

√
1 + |a1|

2 +
m + 1

4

 .

Since |z| ≤ r(F(P)) = r(Ã) ≤ w(Ã) ≤ w(S), the proof is completed.

4. Conclusion

We have established new effective more accurate bounds for the zeros of polynomials that have small
differences between their coefficients by employing the similarity of matrices and matrix inequalities in-
cluding the numerical radius and matrix norms. It is worth noting that our results can be used in many
applications in geometry and matrix analysis.
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