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Abstract. In the present article, we define the Mexican hat wavelet Stieltjes transform (MHWST) by
applying the concept of Mexican hat wavelet transform [9]. The proposed transform serves as a centralized
method to analyze both discrete and continuous time-frequency localization. Besides the formulation of all
the fundamental results, a reconstruction formula is also obtained for MHWST. Further, a unified approach
is applied to obtain the necessary and sufficient conditions for the same. Moreover, simplified construction
for the jump operator is also presented for the Mexican hat wavelet Stieltjes transform.

1. Introduction

Using dilation parameter a ∈ T+ = (0,∞) and translation parameter b ∈ R, the wavelet ψb,a(t) is given by

ψb,a(t) = (
√

a)−1ψ

(
t − b

a

)
, t ∈ R. (1)

Now, for a square integrable function ϕ, its wavelet transform with respect to the wavelet ψb,a(t) ∈ L2(R), is
given by [7]

(Wϕ)(b, a) =
∫
R

ϕ(t)ψb,a(t)dt for a ∈ T+ and t, b ∈ R. (2)

The inversion formula for (2) is given as follows:

ϕ(x) =
2

Cψ

∫
∞

0

[∫
∞

−∞

1
√

a
(Wϕ)(b, a)ψ

(
x − b

a

)
db

]
da
a2 , x ∈ R, (3)

where

Cψ
2
=

∫
∞

0

|ψ̂(v)|2

|v|
dv =

∫
∞

0

|ψ̂(−v)|2

|v|
dv < ∞ [2,p. 64].

Wavelet transform has been rising as a powerful mathematical tool used in symbolic calculus, approxima-
tion theory, Fourier series, and in the solution of boundary-value problems. It acts as a time-frequency
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localization operator that helps to identify the frequency in the temporary or spatial domain. Hence,
wavelet transforms have various applications in wave propagation, computer graphics, data compression,
image processing, and also in medical image technology. Recently, the theory of wavelets has seen re-
markable advancement through the involvement of creative and efficient wavelet families. In [20, 21],
Srivastava et al. formulated the operational matrices of integration for the family of Fibonacci wavelets and
used them with the wavelet collocation method to solve the dual-phase lag bioheat transfer model and to
obtain a solution for the non-linear Hunter–Saxton equation. Subsequently, by employing the approach of
Dirac representation, a detailed theory of linear canonical wavelet transform in the framework of quantum
mechanics was discussed in [17]. In [19], the authors investigated the characteristics and properties of
some continuous and discrete fractional Bessel wavelet transforms. The relationship between the fractional
Bessel wavelet transform and the fractional Hankel transform is also discussed in the same. The relation
between the wavelet multipliers and localization operators associated with the integral representation is
investigated in [18]. Srivastava et al. introduced the application of wavelet transform to efficiently localize
any non-transient signal in the time-frequency plane with more degrees of freedom in the linear canonical
domain [22–24]. The wavelet transform has also been comprehensively studied in many functions and
distribution spaces and inversion formulae for the same are established in the sense of distributions (See,
for example, Pathak [6, 7], Pathak and Singh [8–10], and Pandey [5]).

Lately, the family of Mexican hat wavelets has attained considerable attention from researchers work-
ing across various disciplines, mainly due to their several distinct characteristics. In addition to this, the
Mexican hat wavelets are generated from the second derivative of the Gaussian function therefore, it is
symmetrical and satisfies the Gaussian decays in both space and frequency, which helps to extract data in
the space-frequency window. Therefore, ample research work has been devoted to studying the properties
of Mexican hat wavelet transform in both classical [12] and distribution sense [9]. In [11], Rawat et al.
studied the properties of the Mexican hat wavelet transform on generalized functions in G′-space. More
recently, Srivastava et al. [22] investigated a certain family of Mexican hat wavelet transforms and an
isometry was achieved in the heat equation by implementing the theory of reproducing kernel.

The Mexican hat wavelet is defined by:

ψ(t) = exp
(
−t2

2

)
(1 − t2) = −

d2

dt2 exp
(
−t2

2

)
. (4)

Therefore,

ψb,a(t) = −a3/2D2
t exp

(
−

(b − t)2

2a2

)
,

(
Dt =

d
dt

)
. (5)

Hence, the wavelet transform with respect to (5) is given by

(Wϕ)(b, a) = −a3/2
∫
R

ϕ(t) D2
t exp

(
−

(b − t)2

2a2

)
dt, a ∈ T+. (6)

Now, under certain conditions on ϕ, we have

(Wϕ)(b, a) = −a3/2
∫
R

ϕ(2)(t) exp
(
−

(b − t)2

2a2

)
dt, b ∈ R and a ∈ T+. (7)

Let for a ∈ (0,∞) and b ∈ R, we define

k(b, a) =
1
√

2πa
exp

(
−b2

2a

)
. (8)

Clearly,

k(2)(b − t, a2) = D2
t k(b − t, a2) =

1
√

2πa
D2

t

(
exp

(
−(b − t)2

2a2

))
. (9)
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Therefore by (5), we have

ψb,a(t) = −(2π)1/2a5/2k(2)(b − t, a2), (10)

and hence the Mexican hat wavelet transform of ϕ(t) is defined by [9]

(Wϕ)(b, a) = a3/2
∫
R

ϕ(2)(t)exp
(
−(b − t)2

2a2

)
dt, b ∈ R, a > 0. (11)

In particular, the Mexican hat wavelet transform can be extended for complex values of the translation
parameter, whenever required.

In this paper we concentrate on the family of Mexican hat wavelets associated with the Stieltjes transform.
There are numerous results in the literature on Stieltjes transforms. To mention a few, Srivastava et al. [14]
proved a Parseval Goldstein-type theorem involving a Stieltjes-type integral transform. The theorem is then
shown to yield a number of new identities involving several well-known integral transforms (see also [13],
[15] and [16]). Bielecki et al. [1] introduced Wavelet-Stieltjes transforms and compared them with properties
of the classical continuous wavelet transform. Motivated essentially by the aforementioned concepts and
theories given by Srivastava [14–16], Bielecki [1], Pathak [9], and other authors, our main objective in this
article is to introduce and develop the theory of the Mexican hat wavelet Stieltjes transform.

In the next section, we present the definition of the Mexican hat wavelet Stieltjes transform, including
the construction of some of its basic properties by using (11). In Section 3, a reconstructional formula is
formulated for the proposed transform. The representation theory for functions as MHWST is developed
in Section 4. Further, in the last section, we formulate the jump operator as an application of the introduced
transform.

2. Mexican hat wavelet Stieltjes transform and its basic properties

In this section, we define MHWST of a real-valued function in the form of continuous and discrete time
scales, which may serve as a centralized method to analyze both discrete and continuous time-frequency
localization. Some basic ideas are known from the theory of wavelet Stieltjes transform [1].

Definition 2.1. Let [1]

BV(1, 2) =

F|F : R→ R, F(·) =

·∫
−∞

f (t)dt +
∑
s≤·

ρ(s),

f ∈ L1(R) ∩ L2(R), ρ ∈ l̃1 ∩ l̃2
}
,

where

l̃1 =

ρ|ρ : R→ R, ρ(s) , 0 at countable points and
∑
s∈R

|ρ(s)| < ∞


and

l̃2 =

ρ|ρ : R→ R, ρ(s) , 0 at countable points and
∑
s∈R

|ρ(s)|2 < ∞

 .
Here, F is a function of bounded first variation. Its integral part is absolutely continuous and the sum part
is the jump component. Also, without loss of generality, we assume

interior
(
supp f

)
∩ supp ρ = ∅,
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such that

f (t)ρ(t) = 0, −∞ < t < ∞.

Definition 2.2. For F ∈ BV(1, 2), we have [1]

||F||1 :=
∫
∞

−∞

| f (t)|dt +
∑
s∈R

|ρ(s)| (12)

and

||F||2 :=

∫ ∞

−∞

| f (t)|2dt +
∑
s∈R

|ρ(s)|2


1/2

(13)

where || · ||1 and || · ||2 are norms on BV(1, 2).

Here, the bounded variation function F(t) is considered in every finite interval. Let BV(2) denote the comple-
tion of BV(1, 2) with respect to the ||·||2 norm given in (13) such that its inner prodduct is defined as follows [1]:

Let F,G ∈ BV(2) and F ∼ ( f , ρ), G ∼ (1, γ) then

⟨F,G⟩ :=
∫
∞

−∞

f (t)1(t)dt +
∑

s∈(supp ρ)∩(supp γ)

ρ(s)γ(s). (14)

Now to define the Mexican hat wavelet Stieltjes transform let’s consider the following class of functions [3]:

Ψ :=
{
ψ|ψ : R→ C,

〈
ψ,F

〉
< ∞, F, ψ ∈ BV(2)

}
, (15)

where

⟨F, ψ⟩ =
∫
∞

−∞

ψ(t)dF(t). (16)

The last integral being Lebesgue-Stieltjes integral hence it is finite.

Let h : R→ R, then for some a, b ∈ R, we define

hb,a(t) =

h
(

t − b
a

)
, a , 0,

0, a = 0.

Definition 2.3. The Mexican hat wavelet Stieltjes transform of bounded variation function F in every finite interval
with kernel ψb,a(t) is defined by

(WSψF)(b, a) =
〈
ψb,a,F

〉
=
√

2πa5/2
∫
R

k(2)(b − t, a2)dF(t), (17)

such that the integral converges for all b = σ+ iω. In fact, (WSψF)(b, a) ∈ L2(R2, µ), where µ(da, db) = |a|−3dadb, for
ψ ∈ Ψ.

Theorem 2.4. If f (2)(t) is continuous and bounded in −∞ < t < ∞, then

(WSψF)(b, a) =
∫
∞

−∞

k(2)(b − t, a2)dF(t) =
∫
∞

−∞

k(b − t, a2)dF(2)(t).
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Proof. From (9), we have

k(2)(b − t, a2) =
d2

dt2 k(b − t, a2) =
−1
√

2πa

1 −
(

b − t
a

)2
 exp

−1
2

(
b − t

a

)2 .
Now, from (17), we get

(WSψF)(b, a) =
1
√

a

∫
∞

−∞

1 −
(

b − t
a

)2
 exp

−1
2

(
b − t

a

)2 dF(t)

= −

√

2a
∫
∞

−∞

exp(−v2)
{
1 − 2v2

} {
dF(b −

√

2av)
} (

putting v =
(b − t)
√

2a

)
=
√

2a
∫
∞

−∞

exp(−v2)
(

1
√

2

d
dv

)2 {
dF(b −

√

2av)
} (

by (4)
)

= a3/2
∫
∞

−∞

exp
(
−(b − w)2

2a2

) (
d

dw

)2

{dF(w)}
(
putting b −

√

2av = w
)

=
√

2πa5/2
∫
∞

−∞

k(b − w, a2)dF(2)(w). (18)

Theorem 2.5. If k(b, a2) is the function defined by (8) for b ∈ R and a ∈ R+, then

(i) kbb(b, a2) =
1
a

ka(b, a2) =
b2
− a2

a4 k(b, a2)

(ii) |k(s, a2)| ≤
A
a

exp
(
ω2
− σ2

2a2

)
, (s = σ + iω)

(iii) |kss(s, a2)| ≤
A
a5 exp

(
ω2
− σ2

2a2

)
(|s|2 + a2),

here A is suitable constant and s ∈ C.

Proof. From (8), we have

k(b, a2) =
1
√

2πa
exp

(
−b2

2a2

)
. (19)

By differentiating equation (19) with respect to a and twice with respect to b, we get

ka(b, a2) =
b2
− a2

a4
√

2π
exp

(
−b2

2a2

)
=

b2
− a2

a3 k(b, a2). (20)

kbb(b, a2) =
b2
− a2

a5
√

2π
exp

(
−b2

2a2

)
=

b2
− a2

a4 k(b, a2). (21)

Then, condition (i) follows from (20) and (21).

Condition (ii), follows directly from the definition of k(b, a2). For s being complex number, s = σ + iω

|k(s, a2)| =

∣∣∣∣∣∣ 1
√

2πa
exp

(
−(σ + iω)2

2a2

)∣∣∣∣∣∣
≤

A
a

exp
(
ω2
− σ2

2a2

)
.
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Next, we consider

|kss(s, a2)| ≤

∣∣∣∣∣∣ (s2
− a2)
a4

∣∣∣∣∣∣ |k(s, a2)| [by (i)]

≤
A
√

2πa5
exp

(
(ω2
− σ2)

2a2

)
(|s|2 + a2) [by (ii)].

Thus, condition (iii) follows from (i) and (ii).

3. A real inversion formula for the Mexican hat wavelet Stieltjes transform

In this section, the operator exp(−a2D2) is used to invert the MHWST to obtain the continuous bounded
variation function.

Theorem 3.1. - If

(I)
∫
∞

−∞
k(b0 − t, 1)ϕ(2)(t)dt converges for some b0

(II)
∫ t

x

[
ϕ(2)(v) − ϕ(2)(x)

]
dv = o (|t − x|) as t→ x,

then

lim
a2→0+

∫
∞

−∞

k(x − t, a2)ϕ(2)(t)dt = ϕ(2)(x). (22)

Proof. Let us rewrite the integral (22) as the sum of two others with respect to (−∞, x) and (x,∞), i.e.,

lim
a2→0+

∫
∞

−∞

k(x − t, a2)ϕ(2)(t)dt

= lim
a2→0+

{∫ x

−∞

k(x − t, a2)ϕ(2)(t)dt +
∫
∞

x
k(x − t, a2)ϕ(2)(t)dt

}
= lim

a2→0+

{∫
∞

−x
k(x + t, a2)ϕ(2)(−t)dt +

∫
∞

x
k(x − t, a2)ϕ(2)(t)dt

}
= I1(a) + I2(a).

Choose an arbitrary δ > 0, such that the integral I1(a) can be written as the sum of the two others, I3(a) and
I4(a), corresponding to the intervals (−x,−x + δ) and (−x + δ,∞). Set

β1(v) = exp
(
−(v + x)2

2a2

)
exp

(
(v + b0)2

2

)
α1(v) =

∫ v

−x+δ
exp

(
−(t + b0)2

2

)
ϕ(2)(−t)dt.

Then α1(−x+δ) = 0 and α(+∞) exists by hypothesis. Moreover, β1(v) is positive, continuous, non-increasing
and β1(+∞) = 0.
Then by Theorem 2.1 of [4], we have

1
√

2πa

∫
∞

−x+δ
β1(v)dα1(v) =

∫
∞

−x+δ
ϕ(2)(−t)k(x + t, a2)dt. (23)
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Hence by (23), for small value of a, we have

I4(a) = lim
a2→0+

1
√

2πa

∫
∞

−x+δ
β1(v)dα1(v)

= lim
a2→0+

−1
√

2πa

∫
∞

−x+δ
α1(v)dβ1(v).

Let M be a constant not larger than |α1(a)|, then

|I4(a)| ≤ lim
a2→0+

1
√

2πa
M

∫
∞

−x+δ
d[−β1(v)]

= lim
a2→0+

M
√

2πa

(
−β1(+∞) + β1(−x + δ)

)
= lim

a2→0+

M
√

2πa
β1(−x + δ)

≤ lim
a2→0+

M
√

2πa
exp

(
−δ2

2a2

)
exp

(
(−x + δ + b0)2

2

)
= o(1).

Next, we consider

I3(a) = lim
a2→0+

∫
−x+δ

−x
ϕ(2)(−t)k(x + t, a2)dt

= lim
a2→0+

1
√

2πa

∫
−x+δ

−x
exp

(
−(x + t)2

2a2

)
ϕ(2)(−t)dt.

Let k = a−2 and h(t) =
−(x + t)2

2
, such that h(−x) = 0, h′(−x) = 0 and h′′(−x) = −1. Then by Theorem 2b of

[25, p. 278], we have

I3(a) = lim
k→∞

√
k

√
2π
ϕ(2)(x) exp (kh(−x))

(
−π

2kh′′(−x)

)1/2

=
ϕ(2)(x)

2
. (24)

Similarly, for I2(a) we choose positive δ, such that it can be written as sum of other two integrals I5(a) and
I6(a) with the intervals (x, x + δ) and (x + δ,∞). Set

β2(v) = exp
(
−(v − x)2

2a2

)
exp

(
(v − b)2

2

)
α2(v) =

∫ v

x+δ
exp

(
−(t − b0)2

2

)
ϕ(2)(t)dt,

with α2(x + δ) = 0, β2(+∞) = 0 and α2(+∞) exists. Then by simple computations, we get

I6(a) = o(1).

For I5(a), consider k = a−2 and h(t) =
−(x − t)2

2
such that it satisfies conditions of Theorem 2b of [25, p. 278].

Therefore

I5(a) =
ϕ(2)(x)

2
. (25)

Thus by (24) and (25), we have the desired result.
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The last theorem acts as a foundation for the inversion of the MHWST in the most general case. However,
to implement it we require the next result.

Theorem 3.2. If the Mexican hat wavelet Stieltjes transform

(WSψF)(b, 1) =
∫
∞

−∞

k(b − t, 1)dF(2)(t) (26)

converges in the interval m < b < n, then for m < d < n, 0 < a2 < 1, −∞ < b < ∞,

exp(−a2D2)(WSψF)(b, 1) =

∫
∞

−∞

k(t + ib, a2)WS(it, 1)dt

=

∫
∞

−∞

k(b − u, 1 − a2)dF(2)(u). (27)

Proof. Choose two constants ξ and η such that m < ξ < d < η < n and let

F(2)(t) = o
(
exp

(
(t − η)2

2

))
, t→ +∞

= o
(
exp

(
(t − ξ)2

2

))
, t→ −∞. (28)

Now integrate (26) by parts and using (28), we get

(WSψF)(b, 1) =
∫
∞

−∞

k1(b − t, 1)F(2)(t)dt,

where

k1(b − t, a2) =
d
db

k(b − t, a2) =
−(b − t)

a2 k(b − t, a2).

Therefore,

exp(−a2D2)(WSψF)(b, 1) =

∫
∞

−∞

k(t + ib, a2)dt
∫
∞

−∞

k1(t − iu, 1)F(2)(u)du

=

∫
∞

−∞

F(2)(u)du
∫
∞

−∞

k(t + ib, a2)k1(t − iu, 1)dt. (29)

By Theorem 2.5 of [4], for −∞ < b < ∞, −∞ < u < ∞, we have∫
∞

−∞

k(t + ib, a2)k1(t − iu, 1)dt = k1(b − u, 1 − a2).

Therefore, (29) becomes

exp(−a2D2)(WSψF)(b, 1) =

∫
∞

−∞

k1(b − u, 1 − a2)F(2)(u)du. (30)

Now integrating (30) by parts and using (28), we get

exp(−a2D2)(WSψF)(b, 1) =
∫
∞

−∞

k(b − u, 1 − a2)dF(2)(u).
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Theorem 3.3. If F(u) is normalized function of bounded variation in every finite interval and if

(WSψF)(b, 1) =
∫
∞

−∞

k(b − u, 1)dF(2)(u),

the integral converging for m < b < n, then for m < d < n and any two real numbers b1, b2∫ b2

b1

exp(−D2)(WSψF)(b, 1)db = lim
a2→1−

1
2πi

∫ b2

b1

db
∫ d+i∞

d−i∞
k(s + b, a2)WS(s, 1)ds

= F(2)(b2) − F(2)(b1).

Proof. By Theorem 3.2, for 0 < a2 < 1 and −∞ < b < ∞

exp(−a2D2)(WSψF)(b, 1) =

∫
∞

−∞

k(b − u, 1 − a2)dF(2)(u)

=

∫
∞

−∞

k1(b − u, 1 − a2)F(2)(u)du. (31)

By Theorem 2.5, the integral (31) converges uniformly for b1 ≤ b ≤ b2. Hence we have∫ b2

b1

exp(−a2D2)(WSψF)(b, 1)db =
∫ b2

b1

db
∫
∞

−∞

k1(b − u, 1 − a2)F(2)(u)du

=

∫
∞

−∞

k(b2 − u, 1 − a2)F(2)(u)du −
∫
∞

−∞

k(b1 − u, 1 − a2)F(2)(u)du.

Now by Theorem 3.1 (replacing a2 by 1 − a2) to each of these integrals, we get∫ b2

b1

exp(−a2D2)(WSψF)(b, 1)db = F(2)(b2) − F(2)(b1).

4. Necessary and sufficient conditions for representing functions as Mexican hat wavelet Stieltjes trans-
form

In this section, necessary and sufficient conditions on a function (WSψF)(b, a) are derived by applying
temperature functions. Following are a few notations, defined for a class of functions to which MHWST
will belong.

Definition 4.1. A function u(b, a) is said to be a solution of heat equation in a domain D if and only if u(b, a) ∈ C2

and ubb(b, a) =
1
a

ua(b, a). Then u(b, a) ∈ H in a closed region R, if R can be enclosed in a domain in which u(b, a) ∈ H.

Definition 4.2. A function (WSψF)(b, a) in an interval m < b < n belongs to a class A if and only if it can be
extended analytically into the complex plane as

1. (WSψF)(b + iω, a) is analytic in the strip m < b < n

2. (WSψF)(b + iω, a) = o
(
|ω|e

ω2
2

)
, |ω| → ∞, uniformly in every closed subinterval of m < b < n.

Theorem 4.3. If

u(b, a) =
√

2πa5/2
∫
∞

−∞

k(b − t, a2)dF(2)(y), (32)

the integral converging in 0 < a2 < c, then u(b, a) ∈ H.
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Proof. Let for a fixed a the integral (32) is the product of the entire function exp
(
−b2

2a2

)
by a Laplace transform

which converges for all b. Hence u(b, a) is an entire function of b, therefore, differentiation under integral
sign is valid. Further, differentiating (32) twice with respect to b gives

ubb(b, a) =
√

2πa5/2
∫
∞

−∞

kbb(b − t, a2)dF(2)(t). (33)

Again differentiating (32) with respect to a, we get

ua(b, a) =
√

2πa5/2
∫
∞

−∞

ka(b − t, a2)dF(2)(t). (34)

Simple application of Theorem 2.5, demonstrates that (33) and (34) are equal. This completes the proof.

Theorem 4.4. The conditions

(I) u(b, a) ∈ H, −∞ < b < ∞, 0 < a < c

(II) ∥u(b, a)∥1 < M, 0 < a < c

are necessary and sufficient that

u(b, a) =
√

2πa5/2
∫
∞

−∞

k(b − t, a2)dF(2)(t), (35)

where∫
∞

−∞

|dF(2)(t)| < M. (36)

Proof. Let us first prove that (I) and (II) are necessary and sufficient conditions. Under assumption (36) the
integral (35) converges absolutely in the half plane a > 0. Indeed

|u(b, a)| =
∣∣∣∣∣√2πa5/2

∫
∞

−∞

k(b − t, a2)dF(2)(t)
∣∣∣∣∣

≤ a3/2
∫
∞

−∞

∣∣∣dF(2)(t)
∣∣∣

≤ a3/2M. (37)

Therefore by Theorem 4.3, u(b, a) ∈ H. Hence condition (I) is satisfied. Further, condition (II) is also satisfied
since

∥u(b, a)∥1 =

∫
∞

−∞

|u(b, a)|db

≤

√

2πa5/2
∫
∞

−∞

db
∫
∞

−∞

k(b − t, a2)|dF(2)(t)|

≤ a3/2
∫
∞

−∞

exp
(
−(b − t)2

2a2

)
db

∫
∞

−∞

dF(2)(t)

≤

√

2πa5/2M ≤ M, 0 < a < 1. (38)

Hence, both conditions are necessary. To show the converse part we consider

ul(b, a) =
1
2l

∫ b+l

b−l
u(y, a)dy, 0 < l (39)



A. Singh, A. Rawat / Filomat 37:9 (2023), 2717–2730 2727

and since by direct calculation of the partial derivatives of ul, we have

∂2

∂b2 ul(b, a) =
1
a
∂
∂a

ul(b, a)

=
1
2l

[ub(b + l, a) − ub(b − l, a)] . (40)

Therefore, the function ul(b, a) belongs to class H where u(b, a) does. Moreover, by Holder’s inequality

|ul(b, a)| ≤
1
2l

∫
∞

−∞

|u(y, a)|dy ≤
M
2l

for −∞ < b < ∞, 0 < a < c. Hence by Lemma 6.2 of [4],

u(b, a + δ) =
∫
∞

−∞

k(b − y, a2)ul(y, δ)dy (41)

for 0 < δ < c, 0 < a < c − δ, −∞ < b < ∞. Then by weak convergence theorem as l→ 0+, we have

lim
l→0+

ul(b, a + δ)→ u(b, a + δ).

Therefore,

u(b, a) = lim
δ→0

∫
∞

−∞

k(b − y, a2)u(y, δ)dy.

This completes the proof of the theorem.

The previous theorem leads to the following representation theorem for Mexican hat wavelet Stieltjes
transform.

Theorem 4.5. The conditions

(I) (WSψF)(b, a) ∈ A, −∞ < b < ∞

(II) ∥ exp(−a2D2)(WSψF)(b, a)∥1 ≤M, 0 < a < 1

are necessary and sufficient that

(WSψF)(b, a) =
∫
∞

−∞

k(b − t, 1)dF(2)(t), (42)

where∫
∞

−∞

|dF(2)(t)| < M. (43)

Proof. If (43) true, then the integral (42) converges absolutely for all b at a = 1. Hence, (WSψF)(b, a) ∈ A in
−∞ < b < ∞. Moreover, by Theorem 3.2, we have

exp(−a2D2)(WSψF)(b, a) =
∫
∞

−∞

k(b − t, 1 − a2)dF(2)(t). (44)

Now, applying the conditions of Theorem 4.4 to (44), we obtain condition (II)

∥ exp(−a2D2)(WSψF)(b, a)∥ ≤
∫
∞

−∞

db
∫
∞

−∞

|k(b − t, 1 − a2)||dF(2)(t)|

≤ M. (45)
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Conversely, let

u(b, a) = exp(−(1 − a2)D2)(WSψF)(b, a) (by Theorem 3.2) (46)

such that u(b, a) ∈ H in −∞ < b < ∞, 0 < a < 1. Then by Theorem 4.4, the equation (46) becomes

u(b, a) =
∫
∞

−∞

k(b − t, a2)dF(2)(t),

where F(2)(t) satisfies (43). As stated before the integral is absolutely convergent for all a > 0, so by continuity

u(b, 1−) =
∫
∞

−∞

k(b − t, 1)dF(2)(t).

Hence u(b, a)→ (WSψF)(b, a) as a→ 1−.Therefore, (42) holds and this completes the proof of the theorem.

5. Jump operator for Mexican hat wavelet Stieltjes transform

Jump operator provides a unified approach to obtain a relation between the determining function at
a point of discontinuity or at a given point in terms of the transform. It acts as an operator which gives
F(2)(b+) − F(2)(b−) in terms of (WSψF)(b, a) where (WSψF)(b, a) and F(2)(b) are related by (17). The following
theorem gives representation of jump operator for MHWST.

Theorem 5.1. Let F(2)(t) be of bounded variation in any finite interval and let Mexican hat wavelet Stieltjes transform
defined by (17) is related to F(2)(y) and converges in m < b < n, then for d satisfying m < d < b and −∞ < b < ∞,

lim
a2→1−

−i
√

1 − a2

∫ d+i∞

d−i∞
exp

(
(s − b)2

2a2

)
WS(s, 1)ds = F(2)(b+) − F(2)(b−).

Proof. By Theorem 3.2, we have

exp(−a2D2)(WSψF)(b, 1) =

∫
∞

−∞

k(t + ib, a2)WS(it, 1)dt

=

∫
∞

−∞

k1(b − u, 1 − a2)F(2)(u)du.

Consider,∫
∞

−∞

k(t + ib, a2)WS(it, 1)dt =

∫
∞

−∞

k(i2t − ib, a2)WS(it, 1)dt

= −i2
∫
∞

−∞

k(i(it − b), a2)WS(it, 1)dt.

Let t = −i(s − d), then

−i

d+i∞∫
d−i∞

k(i(s − b), a2)WS(s, 1)ds

=
−i
√

2πa

d+i∞∫
d−i∞

exp
(

(s − b)2

2a2

)
WS(s, 1)ds.
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Therefore,

−i
√

(1 − a2)

d+i∞∫
d−i∞

exp
(

(s − b)2

2a2

)
WS(s, 1)ds

=
√

2πa
√

(1 − a2)
∫
∞

−∞

k1(b − u, 1 − a2)F(2)(u)du, (47)

where

k1(b − u, a2) =
∂
∂b

k(b − u, a2) =
−(b − u)
(2π)1/2a3

exp
(
−(b − u)2

2a2

)
.

Hence for some positive δ, we have

lim
a2→1−

a(2π)1/2(1 − a2)1/2
∫
∞

−∞

k1(b − u, 1 − a2)F(2)(u)du

= lim
a2→1−

a(2π)1/2(1 − a2)1/2

{∫ b−δ

−∞

+

∫ b

b−δ
+

∫ b+δ

b
+

∫
∞

b+δ

}
k1(b − u, 1 − a2)F(2)(u)du

= I1(a) + I2(a) + I3(a) + I4(a).

For I2(a), we can choose a δ > 0 so that |F(2)(u) − F(2)(b−)| < ϵ for b − δ < u < b and therefore,

|I2(a) + F(2)(b−)| = lim
a2→1−

∣∣∣∣∣∣(2π)1/2(1 − a2)1/2
∫ b

b−δ
k1(b − u, 1 − a2)F(2)(u)du

∣∣∣∣∣∣
≤ ϵ + o(1).

For ϵ being arbitrary, we have I2(a) ≈ −F(2)(b−).
Similarly |I3(a) − F(2)(b+)| ≤ ϵ + o(1) as a2

→ 1−. Therefore, I3(a) ≈ F(2)(b+).

For I1(a) and I4(a) by Lemma 2.1c of [4], for some ξ and η such that m < ξ < η < n, at a = 1

F(2)(u) = o
[
exp

(
(u − η)2

2

)]
, u→∞,

F(2)(u) = o
[
exp

(
(u − ξ)2

2

)]
, u→∞,

and since F(2)(u) is locally of bounded variation

|F(2)(u)| ≤


M exp

(
(u − η)2

2

)
, u > x,

M exp
(

(u − ξ)2

2

)
, u < x.

Therefore,

|I1(a)| = lim
a2→1−

∣∣∣∣∣∣(2π)1/2(1 − a2)1/2
∫ b−δ

−∞

k1(b − u, 1 − a2)F(2)(u)du

∣∣∣∣∣∣
≤ lim

a2→1−
(1 − a2)−5/2

∫ b−δ

−∞

exp
(
−(b − u)2

2(1 − a2)

)
|F(2)(u)|du

≤ lim
a2→1−

M(1 − a2)−5/2
∫ b−δ

−∞

exp
(
−(b − u)2

2(1 − a2)

)
exp

(
−(u − ξ)2

2

)
du

= o(1).

Hence, I1(a) = o(1) and similarly I4(a) = o(1) as a2
→ 1−, which concludes the proof of the theorem.
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[14] Srivastava, H. M., and Yürekli, O. (1995). A theorem on a Stieltjes-type integral transform and its applications. Complex Variables

and Elliptic Equations, 28(2), 159-168.
[15] Srivastava, H. M., and Tuan, V. K. (1995). New convolution theorem for the Stieltjes transform and its application to a class of

singular integral equations. Arch. Math., 64, 144-149.
[16] Srivastava, H. M. (1976). Some remarks on a generalization of the Stieltjes transform. Publ Math Debrecen, 23, 119-122.
[17] Srivastava, H. M., Shah, F. A., and Teali, A. A. (2022). On Quantum Representation of the Linear Canonical Wavelet Transform.

Universe, 8(9), 477.
[18] Srivastava, H. M., Shukla, P., and Upadhyay, S. K. (2022). The localization operator and wavelet multipliers involving the Watson

transform. Journal of Pseudo-Differential Operators and Applications, 13(4), 1-21.
[19] Srivastava, H. M., Mishra, K. K., and Upadhyay, S. K. (2022). Characterizations of Continuous Fractional Bessel Wavelet Trans-

forms. Mathematics, 10(17), 3084.
[20] Srivastava, H. M., Shah, F. A., and Nayied, N. A. (2022). Fibonacci Wavelet Method for the Solution of the Non-Linear

Hunter–Saxton Equation. Applied Sciences, 12(15), 7738.
[21] Srivastava, H. M., Irfan, M., and Shah, F. A. (2021). A Fibonacci wavelet method for solving dual-phase-lag heat transfer model

in multi-layer skin tissue during hyperthermia treatment. Energies, 14(8), 2254.
[22] Srivastava, H. M., Singh, A., Rawat, A., and Singh S. (2021) A family of Mexican hat wavelet transforms on greens function,

Mathematical Methods in the Applied Sciences, 44 (14), 11340-11349.
[23] Srivastava, H.M., Shah, F.A., Garg, T.K., Lone, W.Z., and Qadri, H.L. (2021) Non-separable linear canonical wavelet transform.

Symmetry, 13(11), 2182.
[24] Srivastava, H. M., Khatterwani, K., and Upadhyay, S. K. (2019). A certain family of fractional wavelet transformations. Mathe-

matical Methods in the Applied Sciences, 42(9), 3103-3122.
[25] Widder, D. V. (1966). The Laplace Transform: Princeton.


