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The reducible solution to a system of matrix equations over the
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Abstract. Reducible matrices are closely associated with the connection of directed graph and can be
used in stochastic processes, biology and others. In this paper, we investigate the reducible solution to a
system of matrix equations over the Hamilton quaternion algebra. We establish the necessary and sufficient
conditions for the system to have a reducible solution and derive a formula of the general reducible solution

of the system when it is solvable. Finally, we present a numerical example to illustrate the main results of
this paper.

1. Introduction

Let R and H™" stand, respectively, for the real number field and the set of all m X n matrices over H,
where

H = {up + u1i + ugj + usk | i% = j* = K* = ijk = —1, o, uy, up, uz € R}.

H is called the Hamilton quaternion algebra. r(A), I and 0 are denoted by the rank of a given quaternion
matrix A, an identity matrix and a zero matrix of appropriate sizes, respectively. The Moore-Penrose inverse
of A € H”* is denoted by A" = K, which is defined as AKA = A, KAK = K, (AK)* = AK and (KA)* = KA.
Further, we define Ly =I — AfAand Ry =1 - AA'.

In 1843, William Rowan Hamilton discoved quaternions. It is well known that the quaternion algebra is
an associative noncommutative division ring, which is widely used in computer science, orbital mechanics,
signal and color image processing, and control theory (see, e.g. [4], [28], [29], [35]).

A square quaternion matrix X is said to be reducible, if there exists a permutation matrix K such that

o X1 Xo )
X—K( 0 X )K ,

where X; and X3 are square matrices with suitable dimensions. If the order of X3 is k (1 < k < n), we call X
to be k-reducible concerning the permutation matrix K. For an any but fixed permutation matrix K, we put

HPX" = {x = K(}él §2)K‘1|1 <k<mn,X; € H*X0=0 x. ¢ ]Hka}.
3
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We know that linear matrix equations are one of the active research topics in matrix theory and applica-
tions (see, e.g., [6], [13], [14], [11], [18], [19], [20], [25], [46], [38], [39], [40], [41]). They have many applications
in singular system control [32], system design [33], perturbation theory [21], sensitivity analysis [3] and so
on. A large number of papers have presented several approaches to solve some linear matrix equations
(see, e.g., [1], [2], [5], [7], [10], [15], [16], [31], [37], [42], [44]). For example, the system of matrix equations

AX=CXB=D, 1)
the classic linear matrix equation

AZB =C, (2)
and the system

A1Z = C1,A27ZB; = G )

have been investigated by a crowd of papers for different kinds of solutions. Li, Hu and Zhang [22] gave
a generalized reflexive solution of system (1). Qiu and Wang [30] established the least-squares solution of
system (1). Zhang [47] investigated the Hermitian and positive solutions of system (1). Nie, Wang and
Zhang [26] considered the k-reducible solution of system (1). In 2003, Liao and Bai [15] presented the least-
squares solution to (2) over symmetric positive semidefinite matrices. Huang, Yin and Guo [9] provided
the skew-symmetric solution and the optimal approximate solution of the matrix equation (2). Peng [27]
derived the centrosymmetric solution of matrix equation (2). Xie and Wang [36] studied the reducible
solution of equation (2). Wang [43] established some solvability conditions and the general solution to
system (3) over von Neumann regular rings. Wang [45] gave the k-reducible solution of the system (3) over
H. In 2013, He and Wang [8] considered some necessary and sufficient conditions for the system

AsZBs = Cs,A¢ZBg = C4,A7ZB7 = G 4)

to have a solution and derive a formula of its general solution when it is solvable. To our best knowledge, so
far, there has been little information on the reducible solution to system (4). This paper aims to investigate the
reducible solution to system (4). Itis well-known that reducible matrices are closely related to the connection
of directed graphs and can be used in compartmental analysis, continuous-time positive systems, stochastic
processes, biology, and others (see, e.g., [12], [23], [26], [34]).

Motivated by the work mentioned above and the wide applications of reducible matrices, matrix
equations and the quaternions. This paper aims to consider the reducible solution to system (4) over H.

The rest of this paper is organized as follows. In Section 2, we make some preliminaries. In Section 3,
we give some necessary and sufficient conditions for system (4) to have a solution Z € H" and present
the expression of this solution in terms of Moore-Penrose inverses and rank equalities of the quaternion
matrices involved. We also design a numerical example to illustrate the main results of this paper. Finally,
we give a brief conclusion to close this paper in Section 4.

2. Preliminaries

In this section, we review some results on quaternion matrices and quaternion matrix equations which
are going to used in the next.
Marsaglia (1974) [24] described the following, which is available over H.

Lemma 2.1. [24] Let A € H™", B € H™*,C € H*", D € H>* and E € H™! be given. Then we have the following
rank equality:

A B 0
Y(RAC BED):r C 0 E|-#D)-rE).
E 0 D 0
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Lemma 2.2. [43] Let A1, Ay, By, C1 and C, be provided for matrices with adequate shapes, Az = AsLa,. Then the
following statements are equivalent:

(1) System (3) has a solution.

(2) RAI C1 = 0, RAS(CQ - AzAICle) = 0, CZLBZ = 0

_ A1 CiBy\ (A4 G\
(3) r(All Cl) = r(Al)/ Y(Az C2 ) - r(AZ), r(Bz) = r(BZ)'
In this case, the general solution of system (3) can be expressed as
Z = AjCy + Ly, AY(Co — A2ATC1B2)BY + L, La, Q1 + La, Q2R3 .

where Uy, Uy and Uz are any matrices over H with appropriate dimensions.
Lemma 2.3. [17] Consider the quaternion matrix equation

A1X7 + XoB1 + AyY1By + A3YoBs + AyY3By =B (5)

where A;, B; and B (i = 1,_4) are given quaternion matrices and the others are unknown quaternion matrices with
appropriate sizes. Put

Ra,Ar = A, Ra A3 = Ay, Ra, Ay = Asz, Bolp, = Bi1, BooLp, = Ny,
BsLp, = By, BsLp, = B33, Ra, Ay = My, S1 = ApLm,, Ra,BLg, =Ty,
C =Ry Ra,, C1 = CAzz, Co = Ry, Asz, C3 = Rap,Azz, Cq = Asg,
D = Lg,LN,, D1 = B33, D2 = BssLg,,, D3 = BssLp,,, D4 = B33D,
E1=CTy, E; = Ra,,T1Lp,,, Es = Ra,, T1Lp,, Es+ =T1D,

R
Cn = (Lc,, Lg,), D11 = ( Rgl
D33 = Rp,, E11 = Ry, C2, Ex2 = Re, Css, Esz = Dolp,,, Ess = D3slp,,,
M =Rg, Ep, N =EylLe,, F=F,—Fy, E=Re,FLp,,, S = EnLy.
Fi1 = GoLc,, Gi = Ey — CG,CIE1DID,, Fyy = Cyle,, Gy = E4 — C4CLE3DIDy,
Fy = CIE1D! + L, CYE,D, F, = CIEsD} + Lc,CIE4DY.

), Cx» =Lc,, D» =Rp,, Cs3 = Lg,,

3

Then following statements are equivalent:
(1) Equation (5) is consistent.

)
RcEi=0, EiLp, =0 (i =1,4), Rg,ELg,, = 0.
(©)
B Ay As Ay Ay
r B1 0 0 0 0 )—T’(Bl)+1’(A2, AS/ A4, A1),
B A, Ay Ay B
rl Bs 0 0 0 |=rA, As A1)+r( 33 )
BL 0 0 0 !
B A; Ay Ay B
rl B, 0 0 0 |=rA; As A1)+r( BZ )
BL 0 0 0 !
B A, A
B, 0 0 B>
r| 22 =r| Bs |[+r(As A)),
Bs 0 0 B
0 0 !
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B A A A B
rl B 0 0 0 |=rA, A A1)+r( B4 )

B, 0 0 0 !

B A, A

B; 0 0 Bs
r 3 =r| By |+71(Az, A1),

B, 0 0 B

B, 0 0 !

B A A

B, 0 0 B,
r| 22 =r| By |+71(As, A1),

B, 0 0 B

B, 0 0 1

B A

B, 0 gZ
r| B 0 |=r| 5 |+rAy,

4

Bs 0 B

B, 0 1

B A, A, 0 0 0 Ag

B, 0 0 0 O 0 O By 0

BL, 0 0 0 0 0 0 B, 0
rOO0—BA3A1A4=r0B2+r(%2%11212§4.

0 0 0 B, 0 0 0 0 B 341 A

0 0 0 B, 0 0 0O B, Bs

B, 0 0 By, 0 0 0

In this case, the general solution to equation (5) can be expressed as
Xy = AN(B = A2Y1By — A3Y2Bs — AsY3By) — ATUL By + La, Uy,
Xo = Ra,(B—AyY1By — A3Y2B3 — AgY3Ba)BY + A1ATU,G + UsRg,,
Y1 = Al TB}, — Al Ay MITBY, — AT S1 AL, TNTB,BY, — AT, S1ULRN, BBl + La, Us + UgRg,,,
Y, = MITBY, + STS1AL TNT + Ly, Ls, Uy + URg,, + L, UsRy,,
Y3 =F1 +Lc,V1+ VaRp, + Le, VaRp,, or Y3 = F — Lc,W1 — WaRp, — Le,WsRp,,
where T = Ty — As3Y3B33, Ui(i = 1,_8) are arbitrary matrices with appropriate sizes over H,
Vi = (I, 0) [CL(F — C»V3Dp — C33W3Ds3) — CH U Dy + Ly, Uu] ,
W1 =(0, I,) [CL(F — C2 V3D — C3W3Ds3) — Ch Ui Dy + Ly, Ulz] ,

0
W, = [ch (F = C»V3Dp — C33W3D33)D1, + CiiCH Uy + UleDH]( I, ),
I
Vo = [RCH(F — C V3D — C33W3D33)Dl, + Cri CT, Uny + U21RDH]( S ),
Vs = EL FEL, — E} EnyM'FEY, — ET SE} FNTEEL, — ET, SU3 RNEwEL; + Le, Usp + UssRe,,
W3 = M'FE!, + S'SEL,FN™ + LyyLsUy; + LUz Ry — UnRg,,,

Uy, Un, Uz, Uz, Usy, Uss, Uy and Uy are arbitrary matrices with appropriate sizes over H.

3. The reducible solution to system (4) over H

In this section, we give the necessary and sufficient conditions for the system (4) to have a reducible
solution and derive an expression of the solution Z € H;>" to (4).
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Theorem 3.1. Let E; € H™*"0 E, ¢ H™*, F, € H*, E, € H™00, E3 € H™Xk, F, € HO-x=k)
F, € HX0=h Fy e HX0=0 ¢, € H™*k, C, e H™*(-K C5 € H™*k,C; € H™*"0 gnd A € H"0*k be known.
K e H™" is a permutation matrix, 1 < k < n. I, I, denote the identity matrices of order n — k and k, respectively.

_ L 0
&szbm»KH%=G a) ©)
_ 0
= E;), K''Bg = , 7
A6K (EZ/ 3) 6 ( 0 12) ( )
A7K = (Fy, L), K'By = (11313), 8)

Es = EoLg,, Es = E4Lg,, F1Lg Lg, = A1, FiLg, = A, Cs = (Cq, C4 — E1AFy),

Lg,Lg, = A3, Lg, = A4, Rr, = By, F3 = B3, Rp,F3 = By, Co = (Ca, C3 — EzA),

B = G = FyAF; — (FiEC: + FiLg, EX(Cy — E2ENCIF)FE + EX(Cs — E2A)F) ©)
— (Le,E}(Cs — E1AFy - EsEN(Cs — ExA)Fy)FLF3),

Ra, Az = A1, R, Az = Axy, Ra Ay = Az, Ray Ao = My, S1 = AL, RaB =T,
C = Rwm;Ra,,, H1 = CAz3, Hy = Ra, Ass, Hz = Ray,Ass, Hy = Ass, BsLp, = Ny,

D = Lg,LN,, D1 = By, Dy = B4Lp,, D3 = B4Lp,, Dy = B4D,

Gy =CTy, G, = Ra,ThLp,, Gz = Ra,, T1L,, G4 = T1D,

R
Ci = (L, Lu,), D =| p°' |, Co2 =Lu,, D = Rp,, Cas = Ly, (10)
Rp,

D33 = Rp,, E11 = Re,,Ca2, E22 = Rey, Cas, Es3 = DaoLp,,, Eas = D3slp,,,

M =Rg, En, N = EulLg,, F=Fs—Fs, E=Rc,FLp,, S = EnLu,

Fi1 = HoLy,, L1 = Gy — HoHIGiD!D,, Fyp = Hylp,, Ly = Gy — HyHIG3D Dy,
Fs = HIG D! + Ly, HIG,D}, F6 = HiG3D}, + Ly, HI G4DY}.

Then the following statements are equivalent:
(i) System (4) has a solution Z € H".
(i)

R, C1 =0, Re,(Co — E2EIC1Fy) = 0, CoLp, = 0, Re,(Cs — E2A) =0,

Rgy(Cy — E1AFy — E4E}(C3 — E2A)F4) = 0, (C4 — E1AFy)Ly, =0, (a

RyGi =0, GiLp, = 0(i = 1,4), Rg,ELg,, = 0. (12)
(i)

r@@b@aﬁgﬁiﬂam@%mg (13)

s Cam By =rte, (1SR =B, o) = e, 14

r( CaFs - Ea(G —(ljfllAFg,) B, B ) - r(—ila)' (15)
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5 0 £
rl & E =r(F3)+r( El’; ) (16)
EsG E;F 3
E3Fy  E3GF, — (C3 — E2A)F3F, EsFy
r Eq C1F2 + E1AF3F2 =r Eq , (17)
E; G E,
0 Fb
EsFq
| Bsbr EsGRa i E1 |+1(F5E), (18)
E1 C1F2 E
E, C, 2
I 0 4 e
C1 + ElAFg El 0 _ - !
"| C3Fs - EaFs —EsG -EsF 0 =r(Es 4)”[ R (19)
E.G EsFy  Cy— E1AF, 41
G F F
r| F5 0 :r( E )+r(F3), (20)
C; E 1
0 0 F, E.F
EsF1  E3GF, — CsF3F, — (EsFy — E;)AESE, 0 ESFl
r E4F1 E4GP3 - FlAFg,Fz ElAF4 — C4 =r E. 1 + T(P3F2, F4), (21)
1
E CiF, 0 £
E, C, 0 2
F, GF,
0 FiF Fy
lg, cop|=r(FF)+r B (22)
E, & 2
5 0 0 0 0
0 0 0 E3F, Fy
C E 0 0 0
» E3G E3F1 E3F1 E3GF2 + EzAFg,Fz - C3F3F2 E3F1AF4
E4G E4F1 E4F1 E4GF2 C4 - E1AF4 + E4F1AF4
0 0 E; CiF 0
0 0 E, C, 0
EsG EsF; 0 0 0
E 0
EsF; EsF;
L P (23)
0 FF, Fu
0 E
0 E,

In this case, a reducible solution Z of system (4) with respect to K can be expressed as

Z=K (X A) K, (24)
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where X € HO-0x0=h 'y e Hkxk

X = EICy + L, EX(Cy — E2EYC1Fo)F} + L, L, Q1 + Le, Q2R
Y = E}(Cs — E»A) + Lg,EL(Cy — E1AFs — E4E3(C3 — ExA)F4)F} + Lg,Lg, Qs + Le,QaRp,,
Qi1 = Al(B — AyQoB> — A3Q3B5 — AsQuBs) — ATUL By + Ly, Up,

(25)
Q, = AT TB — AT Ap;MITBY — AT, S1 AL, TNTB3BY — AT, S1UsRN, B3BY + La,, Us + UgR5,,
Qs = MITB} + STS1AS, TNT + Lyt Ls, U7 + UgRp, + Lat, UsRy,,
Q4 = F1 + LCZ V1 + VzRD1 + LC1 V3RDZ, or V2 = Fz - LC4 W1 - VVzRD3 — LC3 W3RD4,
where T = T1 — A33Q4Bs3, Ui(i = 1, ..., 8) are any matrices with the fit dimensions,
Vi = (lm, 0) [CL(P — C»V3Dp — C33W3Ds3) — CF U Dy + Ly, Uu] p
Wi =(0, L) [CL(F — C»V3Dp — C33W3D33) — CH Ui Dy + Ly, Ulz] p
0
W, = [ch (F = CnV3Dx — C3W3D33)DY, + C1iCh Uny + U21RDH]( I ),
n
I
Vo = [RCH (F = C»u V3D — C33W3D33)D}, + C11CH Uy + u21RD11]( 5 ),
Vs = E},FEL, — E} Eny M'FE}, — ET, SE} FNTEWEL, — ET, SU3 RNEwEL; + Le, Usy + UssRe,,
W3 = M'FE}, + S'SEL,FN™ + LyyLsUs; + LUz Ry — UnRg,,,
where Uy1, Ura, Uz, Usy, Usy, Uss, Uy and Uy, are any matrices with the suitable dimensions.
Proof. (i) & (ii) :
Substituting (24) into the system (4) yields
X A\ _ X A\ _ X A\, _
A5K(O Y)K 1Bs = Cs, AéK(O Y)K B¢ = Cs, A7K(0 Y)K B, =G, (26)

where X € HO*-0 'y e Hk A € HO-P* | Tt follows from (6), (7) and (8) that the system (26) is
equivalent to

ol s 4o
ol ) e
ol Q)=

E1X = Cl, E4YF4 = C4 - ElAF4,
E3Y = C3 — E2A, ExXFy = G, 27)
F1X + YF; = G — F1AF;.

ie.,

Thus, system (4) has a solution Z € H;*" is equivalent to (27) is consistent for X and Y.
We divided the system (27) into the following:

E1X =C1, ExXFp = Cy,

28
E3Y =Cs — ExA, E4YFy = C4 — E1AF,, @8)
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F1X+ YF3 = G — F1AF;. (29)

We want to show that system (28) and equation (29) have a common solution if and only if (ii) holds or
(iif) holds. The outline of the proof is as follows: We first prove that system (28) and equation (29) have a
common solution if and only if (if) holds and the general common solution to (28) and (29) has the form of
(25); We then show that (i) & (iii).
We now assume system (28) and (29) have a common solution (X, Y). By Lemma 2.2, it follows from
(28) that (11) holds and
X = EICy + Ly, EX(Ca — E2EYC1Fy)F} + L, Lg, Q1 + Le, QoRF,,

(30)
Y = ElC3 — ESE»A + Lg,E}(Cy — E1AFy — E4EX(Cs — E2A)F4)F} + Lg,Lg, Qs + L, QaRF,,

where Q;(i = 1,4) are any matrices with the suitable dimensions over H. Substituting (30) into (29) yields
A1Q1 + A2Q2Ba + A3Q3B3 + AsQuBs = B, (31)
where A;, B; (i = 1,4) and B are defined by (9). According to Lemma 2.3, we have from (31) that (12) holds
and
Q1 = AN(B - A2Q2By — A3Q3B5 — AsQuBy) — ATULBy + La, Uy,
Q, = A}, TB} — Al Ay, MITBY — AT, S1 AL, TNTB3BY — AT, S1UsRN, B3BY + La, Us + UgRg,,
Qs = MITB! + STS1 AL, TNT + Ly, Ls, Uy + UgRp, + Lis, UsRy,,
Q4 = Fl + LCZ Vl + VZRD1 + LC1 V3RD2, or Q4 = Fz — LC4W1 — V\/szD3 — LC3 W3RD4,

(32)

where T = T — A33Q4Bss, Ui(i = 1, ..., 8) are any matrices with the fit dimensions over H. Hence, we have
shown that if (28) and (29) have a common solution, then all equalities of (i7) are satisfied and X and Y can
be expressed as (25).

Conversely, suppose that (ii) holds, for any X, Y of the form (25), it is easy to verify from (11) that X and
Y satisfy the system (28). Let Q; (i = 1,4) be expressed as (32). According to (12), we have that Q; (i = 1,4)
satisfy (31). Note X and Y can be expressed as (25), we easily get that (29) holds. Hence, X and Y having
the form of (25) are a common solution of system (28) and (29) under the hypothesis (ii). To sum up, system
(28) and equation (29) have a common solution if and only if (ii) holds and the general solution to (28) and
(29) have the form of (25), i.e., system (4) has a solution Z € H*" if and only if (if) holds.

(if) & (iii) : We now show that (ii) & (iii). It follows from Lemma 2.2 that (11) are equivalent to (13) and
(14). We turn to prove that (12) holds if and only if (15) to (23) hold. By Lemma 2.3, we have that (12) are
equivalent to

T( B Ay Ay Ay A ) =1(Ay, Az, A4, Ay), (33)
B Ay Ay A\ _

r( B, 0 0 0 )—r(Az, A, A)+r( Bs ), (34)
B As Ay A _

7’( B, 0 0 0 ) = T’(Ag,, Ay, Al) + 7’( B, ), (35)
B A, A B

l B, 0 0 :r( BZ )+r(A4, Ay), (36)
B;, 0 0 3
B Ay A; A\ _

1’( B, 0 0 0 ) = T’(Az, As, Al) +T( By ), (37)
B A, A B

rl Bs 0 0 =r( S )+r(A2, Ay), (38)
B, 0 0 4
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B, 0 O

B Ay A B
r = r( S )+r(A3, Ay), (39)
By 0 0 !

B,
_ { B ]H(A1>, (o)

B 0 0 0 O 0 0 By 0

"l 0 0 0 -B Ay A A, |=¢| 0 B, +r(‘?)2 ‘?)1 12 j ﬁ‘* , (41)
0O 0 0 B, 0 0 O By By 5 a1 A
B, 0 0 B, 0 0 0

respectively. Therefore, we need to prove that (15) to (23) hold if and only if (33) to (41) hold. Let that

Xo = EXCy + Ly, EXN(Cy — E2EIC1Fy)F),
Yo = EX(C3 — E2A) + L, EL(Cy — E1AFy — E4EX(C5 — E»A)F4)FL.

Then it is easy to check that X, Y satisfy

E1Xo = Cy, ExXoF, = Gy,
E3Yy =C3 — E;A, E4YoF4 = C4 — E{AFy.

(42)

By (9), we have that B = G — F1AF; — F1Xo — YoFs. It follows from Lemma 2.1 and (42) that

33) & r(B Filg, LeLe, Le FilgLe)
=r(File, LelLe, Le, FilgLg)

B F I\ (F I
or|0 E1 01|= El 0

0 0 E; 0 Es

C1 Eq _ Eq
i 7’( C3F; — E;AF; + E3F1AF; — E3G —EsF; ) - r(—E3F1) < (15)’
B FiLgLe

Ry,
(40)@1’ 11{:1;2 8 :7’[ F3 ]+I’(F1LElLE5)
Rg,F3 0 Re.Fs

B L 0 0

I 0 F 0 I F, 0 Fy
or|lF5 0 0 0|=|F; 0 0|+r|E

0 E; 0 0 F; 0 Fu E;

0 E, 0 0

F1 GF,

0 IsF, b
rle Crn =r<F3F2)+r 1;1 & (22).

E, G 2
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Similarly, we have that (34) to (39) hold if and only if (16) to (21) hold.

B  FiLg, FiLgLg, O 0 0 Lg,
Fs 0 0 0 0 0 0
(41) =2 0 0 0 -B LE3LE6 FlLElLE5 LE3
0 0 0 Rf, 0 0 0
Rp,F3 0 0 Re,Fs 0 0 0
. Rp Fngl FiLgLg, O 0 Lg, )
Ra 3 Ralzfs 0 Lr,Le, FiLgLg, L,
Fs 0 0 0
0 0 0 F3F, F4
G Eq 0 0
o E3G E3F1 E3F1 E3GP2+E2AF3F2—C3F3F2 E3F1AF4
"|EsG E,Fy EsFy E4GF, Cy4 — E1AF, + E4F1AF,
0 0 E C1F, 0
0 0 E C 0
EsG EsF; 0 0 0
E; 0
EsF1  EsFy
(B O O ER EE & (23).
0 FsF, F, 0 F
1
0 E

Now, we give an example to verify the main results of this paper.
Example 3.2 For system (4), we consider case of n = 4 and k = 2. Let

Lo i k 0 1
A5:(1/ ]-/ ], k)/A5:(]-/ 1,1, ])1A7:((]) i 1 0)/
0100 i joo 0 1 0100
1000 1000 10 1000
Bs=10 0 i j'36‘0001'B7‘ik'K‘0001'
0 0 k 1 0010 0 j 0010

According to (6)-(8), we get, noting K™! = K, that

Ev=(i 1), EB=( 1),E=( i),E=( i),
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It is easy to compute that (13)-(23) are satisfied and the 2-reducible solution

_x(X Al
Z_K(OY)K
00 i 0
i 00 j
“lo 0o 0 o
00 0 i

whereXz(1 0), Y:(O 1).

4. Conclusion

We have established the necessary and sufficient conditions for the system (4) to have a solution
Z € H" and give an expression of this solution of the system. We also have designed a numerical example
to illustrate the main result of this paper. It is worthy to see that the results in this paper are also available
for both the real number filed and the complex number field. Moreover, the results of this paper can be
generalized to the corresponding system of quaternion tensor equations.
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