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Some estimates in L, (I') for maximal commutator and commutator of
maximal function
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Abstract. In this article, maximal commutators and commutators of maximal function through bounded
mean oscillation functions in L, (I') space examined. New point estimates for these operators have been
proven.

1. Introduction

It should be mentioned that, in recent years, there has been an increasing interest in various spaces on
Carleson curves, such as Lebesgue spaces, Morrey spaces. We only mention [5],[6],[10],[13](see also the
references therein).

With v (m) = arc length measurement, let I' = {t e C: t = t(m), 0 <m <] < oo} be a rectifiable Jordan
curve in the complex plane.

The length I' is defined as I = ¢TI
We denote

I't,r)=I'NnB(tr),tel,r>0,

where B(t,r) ={z€ C:|z—t < r}.
A rectifiable Jordan curve I' is called a Carleson curve if the condition
v (¢, 1) <cor

holds for all t € I' and r > 0, where the constant ¢y > 0 does not depend on f and r.

Let I' be a composed locally rectifiable curve and let I'y,..., I'y be a finite number of arcs such that
I' =T U...UI'y. Using the embedding

Ti(t,e)cT(te)cTi(te)U...UIN(e),
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the following inequality is obtained;
I'i(t &) < It o)l Tyt )l +...+ T (¢, e)l. (1)

Using the condition (1), I' is a Carleson curve if and only if every arc I'; is a Carleson curve.
Now, we need to give below the necessary definitions for the case of spaces on Carleson curves.

Definition 1.1. [13]Let 1 < p < oo, L, (I') space of measurable functions on T with the finite norm

”fHL,,(r) = [f )f (t)‘p dv (f)] .

Definition 1.2. [13]The space of functions with bounded mean oscillation BMO (T) is defined as the set of locally
integrable functions f with the finite norm

_ -1 _ o
||fHBMO(r>—yfg}tgr(vr(t,r» fr " | (0) = fren| do (1) < o0,
where
fren = @ (1) f f(r)do (7).
T(tr)

Lemma 1.3. [13]Let I be a Carleson curve and 1 < p < co. Then

Le () = sup r Hf ”Lp(r(t,r))

tel',r>0

and

”fHLm(I“) = tes;l,rgo o Hf”L,,(r) <q “f”Lm(F) :

Definition 1.4. Let f € Ll (I'). For every A > 0 number that does not increase in T 1 (0, c0) and the f function that
provides the following;

[EeTn©): £ > Al =|{rer:|fe|> 1)

7

it is called a non-increasing rearrangement of f.
If this function is continuous from the right, then the following statement is valid;

f*(é):inf{/\>0:‘{X€F3|f(x)|>)\}'££}'

Definition 1.5. Let f € L' (T). In this case, the maximal function of f is

iy 1 :
FO= ram S OB >0

defined as.

Definition 1.6. Let f € Lll‘” (). In this case, the sharp maximal function of f is

1
* — —
M(a‘“ﬁuwwﬁmvw frealdo (@

r>0

defined as, where fr(r) = 1 fr(u) f@)dv(7).
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The maximal operators play a significant role in reel analysis. Maximal operators are not linear. These
operators are of great importance in various problems of harmonic analysis. They also contribute to the
development of the general class of singular and potential operators (see these references for detailed
information, [6],[9],[11],[16]).

Definition 1.7. Let I be a simple Carleson curve and f € L' (T') . The maximal operator M on T is defined by

MF (t) = sup (@I (£,7)) " |f (0)] do (7).
t>0 T(tr)

The boundedness of the maximal function in L, (I') is given by Guliyev in ([10], Lemma 4.4).

Theorem 1.8. [10]Let I be a Carleson curve, 1 < p < oo and ty € I'. Then for p > 1 and any r > 0in I, the following
inequality

IMAL ey < g sup o f I o)

holds for all f € L;;’C .
Moreover, for p = 1 the following inequality

M, iy <7 sup AL e

holds for all f € L™ (T).

The commutator operation and the properties of maximal integrals in various spaces have been studied
intensively and so there exist plenty of results about them (see, for example [1]-[4],[7],[8],[12],[14],[15],[17]).

The maximal commutator M}, plays a significant role in the study of commutators of singular integral
operators with the symbol BMO, and this topic has attracted the attention of many mathematicians (check
it out, for example, [1],[2],[8],[12]).

The commutator of maximal operator [M, b] was studied by many authors (see, for instance [1]-[3],[8]).
This operator is the product of two functions from BMO and H' Hardy space. It emerged when it was
wanted to give meaning (Let us note that the product of these two functions may not be locally integrable).
Boundedness of operator [M, b] in L, using real interpolation techniques made by Milman and Schonbek,
at [14].

Although the M, and [M, b] operators are very similar, they are fundamentally different.

For example, unlike the operator My, [M, b] is neither positive nor sublinear.

The definitions of maximal commutator and commutator of maximal function on Carleson curves are
as follows, respectively.

Definition 1.9. Given a locally integrable function b, the maximal commutator is defined by

1
Mp(f)(@) := S:f(lf TN fl:(t,r) [b(t) = bl f(T)ldv (T), forallteT.

Definition 1.10. Given a locally integrable function b, the commutator of the Hardy-Littlewood maximal operator
M and b is defined by

[M, b] £(t) := M(bF)(t) — b()MF(t), forallt € T.

The main purpose of this article is to examine the boundedness of the maximal commutator and the
commutator of maximal function in L, spaces define on Carleson curves.
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2. Auxiliary Results
To get the main results claimed in the article, we first need some auxiliary results.

Theorem 2.1. There exist constants Cy, Cy, such that for every f € BMO (T') every T (t,r) and every s > 0:
‘{T € r (t, 7’) N |f (T) - fr(t’,,)| > S}‘ S Cle_(CZ/Hf“BMO(F))S |1-v (t, 7’)| ) (2)

Proof. Observe, first of all, that we can assume =1. We fix I' (¢, r) and take @ > 1. We know that

A lsvion

1
T)— r dv(t)<1<a.
T (6] Jren |f (@) = frn|do (z)

We make the Calderén-Zygmund decomposition of I' (¢, 7) for the function f — fr(, relative to «, obtaining
I'1; (t,r) (dyadic curves of I) for each of which:

1
@< —f |f (©) = fren|do (@) < 2a.
|r1,j (t/ 7’)) It
Besides, for a.e. T ¢ Ul'yj (t,7) is |f (1) - fl"(t,r)‘ < a. It follows that for each I'y ; (£, 7) is
j

|fF1,f(t,r) - fr(t,r)| < 2a.

Also:

Lt 0] <5 f o0 lf @ = fren|do (@)

¥ fm,r) |f (@) = fron|do (@)
NG

INIA

On each I'y ; (t,r) we make the Calder6n-Zygmund decomposition for the function of f — fr, ¢ relative
to «. Thus we obtain a family I'yx (t,7) of dyadic subcurves of I'(t,7), for each of which is function

‘frz,k(t,”) - fI‘L/-(t,r)‘ <2a,andalsofora.e. T € I';j(t,7)\ (LkJFZ,k (t, r))is |f (%) — f[‘llj(t,r)| < a. Besides, Y, |1“2,k (t, r)| <

% )I”l,]- (t, r)(. Now we put together all the families {T', (t,r)} corresponding to different I'y j (,7)’s and call
the resulting family also {I'» (¢, 7)}. Then, outside the union of the T, (t,r)’s we have:

|f O = fron| <@ = froen| + |froen = fren]
<3a

and also
2
Y s t,9)] < (i) INGEP
k

Subsequently, we obtain for each natural number N, a family of nonoverlapping curves {FN, j(t, r)} in such

a way that outside of their union is | f(7) - fI’(t,r)’ < N.2a and such that ) j |1"N,j (t, r)| <a NI (t7).
IfN2a <t<(N+1).2awithN =1, 2,..., then

{reren:|f@ - fren] > s)|
<Y [tnj 0| <a N,

— e—Nloga |1" (t, 1’)|

<e &SI (t,7)
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(with C; = 27! (loga) /a) since t < (N + 1)2a < N4a. On the other hand, if t < 2a, then Cys < (loga) /2,
and we use the trivial majorization

{rern:|f@ - fren| > s)|
< [T (t7)| < e(8a)/2-Cos T ¢, 7).

Thus, we get (2) for every s by choosing C; as above and C; = V. Finally, a can be chosen to get an optimal
value of the constant C; (o =e). O

Lemma 2.2. For every p with 0 < p < oo, BMO (T),p = BMO (T') where
1/p

”fHBMO(F),p =S F(t (IF 0 Jren |f (1) _fr(t,r)|p dv (1)

Proof. Let 0 < p < 1. Then from Holder inequality, the following is obtained easily;

”fHBMO(r),p s ”f”BMO(r) ’

Now let’s denote;

”f HBMO(r) S ”f ”BMO(r)rP

For0 <t < | ”)‘ , the following is valid;

(f Xl"(t,r))** t = [(f - fr(t,r)))(m,) * fI’(t,r)Xr(t,)]** () .
<|(f- fm,))xr(t,)] ) + (frenxe,) ©

|T(t,7)| d
e [ 7 )OTD g,

Let f € BMO (I'). Then the following inequalies are valid;

A s

= supr 1t S [1F D = (1A )| 20 @)
= Supr; ) infeer m fr(t,r) Hf (v )lp - C) dv (y)
< suprq 171 e 1f @ = [franl |40 ()
< SUPr ) T S U ) = fren| do ().

From here, it can be seen that it is | | f |p € BMO ((T)). Thus,

(1 X)) ®
[Tt d
< of () 0L (),

is obtained.
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On the other hand

T W 3 N L g

1"(/0 0 )Ql'(l,r), xEl'(iO 0)

P
B Sup g}ﬁ { Lo, o)l fr(to ) Hf (]/)| - C| dv (]/)} Xt (%)

r(to 0 )gl'(t,r), xEl'(tO 0)

S sup {ll"(t(},ro)l fl"(to,ro) Hf (y)|P - |f1"(to,ro)|p| dv (}/)} XT(t7) (x)

T(t9.70)<T(t,7), x€T (t,70)

= Sup |F(t(},ro)| f )f (y) - fr(to,ro)’p dv (y)} Xt (%)
T(to, ")

I(tg.rg)<I(tm), xeL(tg,rg)

( T(t,r) (x))

when

(y)} Xrtr) (%)

is true for 0 < t < 'r(t l

{T(t,7)l dv 3
(|f|p Xres >) (t) < Cf [(fr(tr ) ] ( ) (lf‘p)r(t,r) ’

From here

(((F = fren) ) @)
(Tt do (s) 1
= Cft [( F(tr))] © = [T (t, ) fl"(t,r) (f(y)_fr<t,r))pdv(y),

and so the inequality
(((f = fren) ) )
= C||f||BMO,,(Ft ) log - (irr)l

P
+m ff(t,r) (f(y)_fr(t,r)) dv(y),

is true. In that case,

(((f - fl"(t,r )Xl'(t y))* (t))P

< ey, ™ m)(m(,gw)

is true. Then we get the following inequality
((f - fF(t,r)) Xr(t,r))* (t)
T\
< || Ao, T ) (1 L] r)l)p |

On the other hand, for %’r)l <t <|['(t, 1), if

tg* (t) < tg™ (®) < ||g]],
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is applied to the function g = ( f = fra, r))

XT(t,r)

(((F = fron) xen) (t))p

= (((f ~ fren) Xren) (t))
(((f fr(tr)) Xr(tr) ('r(”)l))

<ﬁfr |f fr(tr)| do (x

<6 ”f ||BMO(F(t )

the above expression is obtained. From here,

((f - h T(t,r)) Xm,,))* (t) < ”f HBMO(r(t,r)) ’

It is easily seen from the obtained ones;

ir(e,)| .
f e |f = fren| o) = f . ((f —fr(t,r))mly)) () do ()

Ien) [Tt )
-|[ . a3l i |((F =) ) o)
I, e

6
SC”f“BMO,p(F(t,r))[fO (1"'10?: lr(”)l) do(t) + fm) dv(t)]
6

ICtnl

< C”f“BMo,,,(r(t,r))[ (1 +log T r)l) do(t) + T (¢, 7)|]

® ogh
=l M o, [ 540000 1)
=c|l (¢, 1)l “f”BMo,p(r(z,r)) :

Hence, we get the following;

”f HBMO(r(t,r)) < “f ”BMO,,,(I“(t,r)) :

Now let’s assume that 1 < p < co. In this situation

”f HBMO(F(t,r)) < “f ||BMO,,,(1"(t,r))

inequality is found directly from the Holder inequality. In that case,

Ir(e)| ks
Ir(tr f |f (y)fr(frl dv (y) - Wl’)' fo {((f_fr(t’r))xru ->) } O
f ZM I(tr) |r(t,r)| " p
SC% fo log (Y o (1)
* do(u)
s 6C”f“BMo(r(tr (fe log” u”_zu)

= C”f”BMO T(tr)
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Both sides 117' first. If the forces are taken and then all I (,7) curves are passed from both sides to the
supremum;
”fHBMO,p(l"(t,r)) = ”fHBMO(F(t,r))
is obtained, which completes the proof. 0O

Lemma 2.3. If f € BMO(T') then:

i) For every p with 0 < p < oo:

~ 1 , 1/p
”fHBMO(F),p = ?81;; (m . |f (1) - ff(f'r)| do (T)) <G ”f“BMo(r)

with C, dependent of f,insuchaway that, for1 <p < oo, f > ”f”

on BM.O.
ii) For every A such that 0 < A </ ||f”

isanorm equivalent to f — “f”BMO(F

BMO(T),p )

BMO(T)p” where C, is the same constant appearing in (2), we have:

/\|f(T)*fr<t,r)|d
sup e v (T) < 0.
i 1T ED Jren

Proof. i)

Fanlf@ = frenl dx = [ por? |{T €T, : |f ) = frun| > T}] do (1)
<C fo * pq;p—le—(cz/ I lsriom)7 g (1).|C(t, 7).

After a change of variables

m fr(t,r) )f (x) = fF(t,r)|p dx <G P (”f HBMO(F) / Cz)p fooo Tle do (7)

= Ci “f ”IZ;MO(F)

which gives i) with C, := (Clp fooo -1e~do (1) C;P)l/ P

If p > 1, we have ”f”BMO(F) < ”f”BMO(F),p <G ”f“BMO(r)’ so that the norms ||.llgvoq) and [I.llzuvoqr),, are
equivalent over BMO from Lemma 2.2. Also, if p > 1, Stirling’s formula can be used to conclude that
C, < Cp with an absolute constant C.

ii) From Theorem 2.1

ﬁ“(t,r) MfO=frenl go (1) = fooo Aelt {x el (tr): |f (x) - fr(t,y)| > T}‘ do (t)
< j(;“’ /\e/\TCle_(CZ/”f”BMO(r))TdU (7). T (¢, 1)
—CA [T =M o) g (2) T (2, 7)]
-1 .
= A (Co/ [fllswory =4) T ENNiE0 <2 < |fllyo,-

O

Theorem 2.4. Let b € BMO(T) and let 0 < 6 < 1. Then, there exists a positive constant C = Cs, the following
inequality

M; My (f)) (©) < Clibllsyiory M2 f(©), c €T

s\ U
holds for all f € L' (T). Where Msf (c) := [M (|f| )(C)]
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Proof. Let ¢ € I'(t,r) and I' (ty, 7o) be a fixed Carleson curve ¢ € I (ty,1). Let f = fi + fo, where f; = fXSl'(tO,r )
Since for any T € I' (t, 1)
M, () (7)

=M((b-b(7)) f)(7)

=M (b = bar(o,r) + bar(o,n) — b (T))f ) ()
<M ((b - b3F(t0,r0)) f1) (1)

+M ((b - b3F(to,ro)R f2) (1)

+[b(7) = barg )| MS (1),
we have

[(to,70)

1/6
(m [ () (@) do m]

1/6

< [mlan( J ) ‘M (b = bsrorn) £1) (T)‘(S dv (T)]
to,ro

1/6
[tz [ P il o)

3)
1/6
_1 5
+| F(tf ) |(0) = bargo | (M ()" do (’L’)\]
—A+B+C
Since
5
/ ‘M«b - b3r(to,ro)) f1)(T)| do (1)
T'(to,r0)
[T(to, 7o)l
<

[M ((b - b3f(fo,ro)) fi )* (S)]b dv (s)

. T? Intoro)l
s[ sup  sM((b = bargy ) f1) (s)] [ s70do(s),
0<s<|T(to,ro)l
from Theorem 1.8

0
J ‘M (b= barum) £1) (T)|6 do (1)
I(to,r0)
S | (b - b3r(forro))f1"6 T (tO/ 7’0)|_6+1

L (3T'(t,r))

S

T (to, 7o) °H .
Lo T G070l

Thus

1
A< OS] f )b(T) - b31‘(t0,ro)| |f (T)‘d?f (7).

3I'(to,r0)
From Holder inequality, we get

A < ”b (1) - b3r(f0,r0)||exp L3I (to,r0) ”f“L(log L)AL (to,ro)
= ”b (1) - bsr(tO,ro)”exp L3I (to,r0)

. .1 /@
X inf /\>0.m f 1

3(to,r0)

Xlog(e+ V(A—T)l)dv(’c) < 1}.



M.E. Tiirkay, M. Mursaleen / Filomat 38:1 (2024), 1-15 10

For any constant I' (f, #9) curve, there is such a fixed C > 0 that it is easily seen from Lemma 2.3 that the
following inequality will be obtained;

[[b(z) - b3l“(t0,rg)||exp Laror < ClPlvo) -
Thus, we get the following inequality

A < |Ibllppory

|f@)
A 4)

X sup inf /\>O:m f

7€l (to,r0) T(to,%0)

xlog(e+| )d0(7)<1}

for A is obtained.

Now let’s make predictions for B. Since B is comparable to %(rtlf )M ((b barg,, ro)) f) (1), we have
T€l (to,10

B < M((b - bBF(to,ro))f) (c).
Again by Lemma 2.3, we get

B < ”b(T) - b3r(to,ro)||exp L,3T(to,ro)

|f(@)]
Xinfd{A>0: |3T(t0 o] f =
3L (to,r0)
xlog (e + |ff\—T)|)alv (1) < 1} )
< Ibllpmo

X sup inf{A>0: tr)l f il

A
€l (to,10) T(to,r0)

xlog(e+ IJ[E\—T)|)dv(’t) < 1}.

Let 6 < ¢ < 1. To obtain an estimate for C, let’s use the Holder inequality with exponentspand p’,p = § > 1

1/op’
— op’
C = [Ir(tol,ro)l f |b (1) - bST(to,ro)' do (1)

T(to, 1)
1/6p
x[—l [ f ()" do m]
[T(to,ro)l :
I(to,70)

Thus we get

1/¢
C SHbHBMO(F)(m J (Mf(T))EdU(T)]

I(to,70)

< |Ibllspomy Me (Mf) (c) -
Finally, since

2
M _ML(logL),l"(tU,rU)

[f(@)]
1

= sup infqA>0: IF(tr)I f

7€l (t,r0)

xlog(e+ e |)dU(T) < 1}.

T(to,r0)
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and by (3) and (6), we get
Ms (M ()) (€) < Clibllsvo (M. (Mf) () + Mf (0)).
Since
M (M () (©) M*f(c), 0<e<],
the proof of the theorem is completed. [

Theorem 2.5. Let b € BMO (T') and let 0 < 6 < 1. Then, there exists a positive constant C = C, for all f € L’loC )
the following inequality holds;

M, (f) (c) < Clibllsmoqy M*f (c), c €T.
Proof. Since by the Lebesgue differentiation theorem

My (f) (¢) < Ms (Mf) (<), (7)
the statement follows from (7) and Theorem 2.4. [
Lemma 2.6. Let b be any non-negative locally integrable function. Then

|[M,b] f()] < My(f)(t),t €T (®)

holds for all f € L (T).
Let b is any locally integrable function on I'. Then

|[M, b] £(B)] < Ma(P)(1) + 26~ (OMF (1), tET
holds for all f € LY ().
Proof. For f,g € Lll"c ('), the following inequality

[MF (6) = Mg (O] < M(f - 9) () ©)
holds for all t € I'. From b > 0 and the inequality (9)

M (bf) (t) — b () MF (8)]

M (bf)(t) = M (b () f) (B

SM(@f-b(t)f)(®) (10)
=M((b-b(t) f)(t)

=M, (f) (1)

M, 61 £0)

is obtained.
On the other hand, from b € L () = |b| € L'°(T') and b~ € L'°(T'). Denote by b* = max{b(t),0} and
b~ = —min{b(t),0}, consequently b = b* — b~ and |b| = b* + b™. So, the following inequality

[V, 61 (f) (1) = [M, 1B () (0] < 267 () Mf (1)
holds for all t € T. For all t € T My, (f) (t) < My (f) (t) and the inequality (10)

[[M,B]£(1)] < My (f) (£) + 2b™ (1) MF (1)
<My (f) () +2b () MS (1).
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Theorem 2.7. Let b € BMO(I) such that b~ € Lo, (I') . Then, there exists a positive constant C, for all f € Lllf’c I
the following inequality holds;

1,61 £8)] < C I lpyioqr, * 107110 M2 @)

Proof. From Lemma 2.6 and Theorem 2.5

(M,61 £ < € (16" g, M2F ) + [l M ®)-
To remind again, b = b* — b~ and |b| = b* + b~ is obtained from b* = max{b(t),0} and b~ = —min {b(¢), 0}.

Ibllspomy < 1*llsmo + 16~ llsmoq) (11)
< 16" llsmocry + 167 leo -

Using f < Mf and (11), the statement of the theorem is obtained. [J

3. Main Results

In this section, the limitedness of the commutator of maximal [M, b] and the maximal commutator M,
on L, (I') will be examined. To examine the limitedness of the commutator of maximal, it is more useful to
first examine the limitation of the maximal commutator, which is easier to examine. For this reason, the
main results section will begin with the limitation of the maximal commutator.

Theorem 3.1. Let 1 < p < co. The operator My is bounded on L, (T') if and only if b € BMO (T).

Proof. (:=)1 < p < 0. Suppose thatb € BMO (T'). By Theorem 2.5 and Theorem 1.8 the following inequality
holds:

My (Ol @) < bllzvom I llL, m)-

(<:) Let f € L, (I'). In this case

IMp(HlL, ) < cll fllr, @ (12)

there is a constant ¢ > 0 that satisfies the inequality (12). The following expression obviously can be written

1
p

£l = sup|IT (¢, A f f()Pdo (D) . (13)
I(tr) o)

Let I (t,70) be a fixed Carleson curve. If xr, ,, is written instead of the f function in (13), the following
expression is easily written;

1

P

Ixreorml,m  =sup|{ICENT [ Xrgm) (0 do (7)
I'(tr) I'(t,r)

= I'(t,1) AT (o, o)) T (6 A1)
?}f,fi((' (£, N (to, o)) IT (¢, 1N ) (14)

1
= sup (CENICENT)
I'(t,r)c(to,r0)

A
=T (to, ro)l* .
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On the other hand, since

1
My (Xr(tg,rg)) () = m f |b(T) - bF(tD,r0)|dU (1), forall t € T (to,79)
' T'(to,n0)
then
;17
_ -1 p
”Mb (Xr(to,m)) ’L,, = ?}tlg [|r (tnl r({,) ’Mb (Xr(to,ro)) (T)’ do (T)) -
> i | p© = brgom|do @)
I'(to,n0)

Since by assumption

||Mb (X T(tg,ro))

by (14) and (15), we get that
1

IT" (to, 70) | T(to,ro)

Thus, the desired result is obtained. [

Theorem 3.2. Suppose that 1 < p < oo, [M, b] is bounded on L, () if and only if b € BMO (') and b~ € Lo, ().
The operators My, and [M, b] enjoy weak-type L(1 + log" L) estimate.

< el

1b(x) = by mldo (2) < c.

Proof. (:=) Let’s accept that [M, b] is bounded on L, (). I (fo, 0) being the constant Carleson curve, we will
denote the local maximal function Mr of f as follows;

1
Mty 1) f () = sup TEn f |f (©|dv (1),
tel'(t,r): T'(t,r)cT(to,10) ’ o
Since
M(XT(t0,r0)) XT(to,r0) = Mr(tor) (D)
and
M (Xl"(to,ro)))(l"(tg,m) = XT(to,r0)s

then the below inequality is valid;

|M1“(t0,r0)(b) - bXF(t0,70)| = M(b)(r(fo,l’o)))(r(tg,rg) - bM (Xr(to,l’o)) Xr(to,ro)

M(bxr(t,r)) — DM (Xr(folo))
[M, b] Xrto 0| -

IA

Thus

g [ (b= Mg ) @]do@) s[ﬁ f |(b—Mmo,m)(b))(r)|”dv<1>]
T(to,70)

T(to,70) 0,70

< (t0,70)|_% ||b)(r(to,r0) - Mr(to'rﬂ)(b)”Lp(r)
< I Go ™ 8 vl

<ell (to, ) [lxraomll,

= [T (o, ro)| 7 T (to, ro)l7” =,
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the above expression is obtained. Denote by
E:={teT (ty,r0) : b(t) < bryry), F 1= {t € T (to,70) : b () > breymy) -

Since

[ 100 = brmito @ = [ 160 = b o),
E F
and considering the following inequality

b(t) < br(to,}'()) < Mr(tg,ro)(b)lt € EI

we get that
w1 bree) (@1do (@)

I'(to,70)

iz Je 1 (b= broom) (@ ldo ()

< w1 Jo 1 (6= Mrg, ) (8)) (1) o (7)

<rizm | (0= Mrgy g (b)) do (@) ldo (x)
T(to,n0)

<c

Consequently, b € BMO (T).
For the first step of the proof, it remains to show that b~ € L* (I'). For this, we will use the inequality
Mr,,r,) (D) > |b|. Thus, we easily obtain the following inequality

0<b™ =1|bl—b" < Mryr,)(b) —b" + b~ = Mrg, »)(b) — b.

That is, the inequality
O )ty < €

is obtained. From this inequality (16) and the Lebesgue differentiation theorem, the following statement
b™(t)<c Vtel (16)

is obtained, which shows that we get the desired expression.
(<:) Suppose that b € BMO(I') and b~ € Lo (T'). From Theorem 2.7, it is obvious that

- 2
02,617 0] < € (1 lpyioy * 10 l) MF - 7)
From (17) and Theorem 1.8, the boundedness of [M, b] on L, (T') result is achieved forall 1 <p < co. [
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