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Abstract. Let A, be the class of functions f(z) of the form

f@@) =2+ apa 2! + a,02" + -, (pe N ={1,2,3,...})

which are analytic in the open unit disc U. In this article, we consider some generalization properties of
the functions in A, and generalize results by applying fractional derivatives.

1. Introduction

{1,2,3,...}), if the equation f(z) = w has at most p roots in D for each complex w. Let A, be the class of
functions f(z) of the form

fle)=2"+ i w2,

k=p+1

A function f(z) which is analytic or meromorphic in a region D is said to be p—valentin D (p € N =

1)
which are analytic in the open unit disc U = {z eC:lzl < 1}.

Let 5,() denote the subclass of A, which satisfy

zf'(2)
Re{ @ } >a, (zel)

Zf”(Z)
[0 } >a,(zeU)

2)
for some real a (0 < a < p). Also Cy(a) be the subclass of A, consisting of f(z) which satisfy
R {1 +

3)

for some real @ (0 < @ < p). The subclasses 5,(@) and Cp(a) will be said to the class of p—valently starlike of

order o in U and p—valently convex of order a in U. Especially, for p = 1, we have the well-known classes
of normalized starlike and convex functions of order a, respectively.
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The function
zP
is in the class S;(a) and the function f(z) given by

7P

1 ’
2@ = RS

~2)

belongs to the class Cy(a).

Although p-valent functions are examined in terms of studies such as determining the bounds of
coefficient estimates, the Fekete-Szegt problem, inclusion relationships, integral means and neighborhoods,
it continues to attract attention as a current research topic with recent studies using operators such as the
g-derivative operator, g-Bernardi integral operator; see, for example, [1-6]

For f(z) € A,, Nunokawa [7] gave the following lemma.

Lemma 1.1 ([7]). If f(z) € A, satisfies
. 2fUD(z)
]+R€{W} >0, (ZEU)

then

where1 < j <p.
We require the following lemma given by Miller and Mocanu [8] to think about our problems.

Lemma 1.2 ([8]). Let a be real and M(z), N(z) be analytic in U with the condition M(0) = N(0) = 0. If N(z) maps
U onto a (possibly many-sheeted) domain which is starlike with respect to the origin, then

RE{AI\/II’((E))} >a, (zel) ﬁRe{%} >a, (zeU).

The case of a = 0 for Lemma 1.2 is given by Sakaguchi [9] and Libera [10].

In this paper, we consider a few generalizations of Lemma 1.1 in the light of Lemma 1.2.

2. Main results

In the following theorem, we will give a proof of well-known inclusion relation for f(z) € A, using
Lemma 1.1 and Lemma 1.2.

Theorem 2.1. If f(z) € Cy(a), then f(z) € Sy(a).

Proof. The theorem means that if f(z) € A, satisfies

Zf”(Z)
Re{1+m}>a, (ZGU),

then

z2f'(2)
Re{ @ } >a, (zel).
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Considering j = 1in Lemma 1.1, we see that if f(z) € A, satisfies

Re{l + %} >0, (zeU),

then

z2f'(2)
Re{ @ } >0, (zel).

We consider M(z) = zf’'(z) and N(z) = f(z). Then
zN'(z)} {Zf’(z)}
Re = Re >0, ((zel),
{ NG EN R
by f(z) € Cy(a). This means that N(z) is starlike in U. Further, we have
M’(z)} { Zf”(z)}
Re =Res1+ >a,(zelU
{N«z) ZoN
by f(z) € Cy(a). Therefore, applying Lemma 1.2, we prove that

M@)\ _ ., [z @)
Re{N(Z)}—Re{ @ }>a,(z€1U)

that is, that f(z) € S;,(oz). O

Remark 2.2. Theorem 2.1 is generalization of Lemma 1.1 for j = 1.
Next, we have the following theorem.
Theorem 2.3. Let F(z) = %zf’(z)for f(2) € Ay. If F(z) € Cp(a) then f(z) € Cp(a).

Proof. We consider functions M(z) = zF’(z) and N(z) = F(z). Then

Re{zg;‘g)} = Re{zll::;g)} >a, (zelU)

by F(z) € Cy(a) and Theorem 2.1. Thus N(z) is starlike in U. It follows that

M ((z)| zF"(z)
Re{N’(z)} = 1+Re{ F @) }>0(, (ze )

with F(z) € Cy(@). Thus using Lemma 1.2, we have

M(z)\ zF'(z) | _ zf"(2)
Re{m}‘Re{ F(z) }‘1+R6{W}>a'(Z€U)

and that f(z) € Cy(a). O

Using the same method, we have the following theorem.
Theorem 2.4. Let F(z) = =21 f0(z) for f(z) € Ay and j=0,1,2,-- ,p. If Fz) € Cyla), then

) z f(f”)(z)
I R"{ )

}>a,(z€1U). 4)
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Proof. Considering M(z) = zF'(z) and N(z) = F(z), we see

Re{ZNI(z)} = Re{zF’(z)} >a, (zel)

N(z) F(z)

with F(z) € Cy(a) C S;(a). Also, we see that

M (2) zF" (z)
Re {N’( )}—1+Re{ @) }>0z,(z€U)

by F(z) € Cy(a). Thus, Lemma 1.2 implies that

M) _ zF'(z)) _ . zf*D(z)
Re{N(z)} —Re{ Q) }—]+R { ) }>a, (ze ).

O

3. Applications for fractional derivatives

For f(z) € A,, we define

f)
D} f(z) = lewﬂ{j‘@—wﬂ% O0<A<1)

_ T+ - Z AT e
_F(p+1—)\) F(k+1 /\) ’

where I'(z) is the Gamma function. Further, we see that

DI @) = L0 (o)
A o, 3 TEHD o

T(p— A7) k=p+1 T(— )™
and
j+A dj
D" @) = (D)
Ty M+l i
RS Z The1—j-n"

192

where j =0,1,2,---,p. The function Di” f(2) is the fractional derivative of order j + A of f(z) € Ay, and is

defined by Owa [11] and by Srivastava and Owa [12] (see also [13-16]).

Applying the fractional derivatives, we obtain the following theorem.

Theorem 3.1. Let
Fp+1-j-2)
I'p+1)

for f(z) € Ay, j=0,1,2,--- ,pand 0 < A < 1. If F(z) € Cp(a) then

2D ;’+)\+1 f(Z)
DI f(2)

F(z) = 2D f(2)

j+/\+Re{ }>a,(zeU).
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Proof. We define M(z) = zF’(z) and N(z) = F(z). It follows that

Re{ZN,(z)} = Re{w} >a, (zel)

N(z2) F(z)
by F(z) € Cy(a) C S; (o). This implies that N(z) is starlike in U. Note that

M(z)| _ zF" (z)
RE{N’(Z)} = 1+Re{ ) }>0c, (ze W)

by F(z) € Cy(a). Thus, applying Lemma 1.2, we get

M)\ _ zF'(z)) _ . 2D f(z)
Re{m} - Re{ e) } ‘”“RE{W} Z @ EeD)

O
Remark 3.2. If we take A = 0 in Theorem 3.1, then we have Theorem 2.4.

In order to consider our next problem, we must first remember the following lemma by Nunokawa,
Sokol and Tuneski [18].

Lemma 3.3 ([18]). Let f(z) € A, for p > 2. If f(z) satisfies

(p-1)
Re{Ll(z)} >0, (zel)

z

then, we have

z f(p) (2)
1@{FFW5}>O, (2l < V2 -1).

Further, we need the following lemma by MacGregor [17].
Lemma 3.4 ([17]). If f(z) € A, satisfies Ref’(z) > 0 (z € U), f(z) maps |z| < V2 — 1 onto a convex domain.
Theorem 3.5. Let f(z) € A, for p > 2. If f(z) satisfies

p—1+A
M{Ziﬁ#ﬁ}>a (ze ), (5)

then

2DV f(2) T+(1-A)2-1
1(8~{25§:T:X}?;; >0, OZ|‘< 1-A ).

Proof. Let us consider a function g(z) by

i) = T2-A) p-14a

I+ C f@),

then g(z) is analytic in U and g(0) = 1. This implies that g(z) satisfies the condition (5). Thus, by using the
manner in the proof of Lemma 3.4, we see that

DI f)
DI ()

zg'(2)
9(z)

2|z|
1- [z

(6)

a-m%
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Since
2z|
<1l-A
1-— |z
for
V1I+(1-A)2-1
lz| <

1-A ’
we see that the inequality (6) shows

DI f(2)
DI (2)

1+O—AF—1)

>0, Qa< T

O

Remark 3.6. If we consider A = 0 in Theorem 3.5, then Theorem 3.5 becomes Lemma 3.3 by Nunokawa, Sokol and
Tuneski [18].
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