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Abstract. Molodtsov defined the concept of a soft set, which is widely used in inference in case of vague,
incomplete and imprecise information. The soft set theory became of interest to many researchers who
defined new concepts such as soft measure, soft σ-algebra, soft premeasure, soft semiring, etc. In this paper,
it is shown that starting from a soft premeasure defined on a soft semiring, we obtain a unique soft measure
defined on a soft σ-algebra generated by a soft semiring. The terms soft ⊓-stable, soft monotone class and
soft Dynkin system were introduced as a necessary tool for realization.

1. Introduction

The field of soft set theory has been actively researched and developed in recent years. It was introduced
by Molodtsov in 1999 (see [10] or [11]) as an alternative approach for dealing with uncertainty and impre-
cision in mathematical analysis. Soft sets provide a flexible framework for representing and processing
uncertain, vague and incomplete information, making them a useful tool in a variety of fields such as
computer science, decision making and pattern recognition (see [2], [12] and [14]).

Since its introduction, soft set theory has been widely adopted and expanded upon by researchers in
various fields. Significant contributions have been made to the development of soft set theory (see [6], [7],
[20] and [21]), including the introduction of new operations and algorithms (see [1], [3], [9], [16], [17], [19]
and [21]), the extension of the theory to multi-valued and interval-valued soft sets, and the application of
soft sets to real-world problems such as data mining, information retrieval and knowledge representation.

Overall, the field of soft set theory continues to evolve and grow, with new developments and applica-
tions being explored and proposed regularly. It remains an important and active area of research with the
potential for significant impact in a wide range of domains.

One direction in the development of the soft set theory is the study of soft mappings such as soft measures
and soft structures on which such mappings are defined. In the paper [9] Samanta and Majumdar introduced
the notion of soft mappings and presented some of their properties, and measurable soft mappings were
discussed in the paper [13], where some applications of soft set theory were also mentioned. The structure
of the soft σ-algebra as well as the basic properties of such structure are presented in papers [4] and [13].
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Lj. Mudrić-Staniškovski et al. / Filomat 38:1 (2024), 217–226 218

The subject of research in paper [14] is soft measure and soft outer measure, where the mentioned terms
are defined and the basic properties are examined, while in paper [18] terms like soft content and soft
premeasure are defined. In the paper [5] the question was considered, whether a soft measure on a soft
σ-algebra, with a certain extension, can be obtained by superimposing a mapping that is not a soft measure
on a structure that is not a soft σ-algebra? The answer to the question is affirmative, and in the paper [5] it
was shown that starting from the soft measure on the soft semiring, we can construct the soft measure on
the obtained soft σ-algebra from the initial soft semiring. The question that naturally arises is under what
conditions will such an expansion be unique?

With the aim of answering the imposed question, in this paper we define new collections of soft sets such
as soft ⊓-stable, soft monotone class and soft Dynkin system. The mentioned collections are helpful tool
for answering some of the questions regarding the extension of soft premeasure to soft measure. Namely,
in this paper we will prove that the extension of a soft premeasure, defined on a soft semiring, to a soft
measure on a soft σ-algebra generated by the soft semiring is unique. The stated result represents the main
result of the work, and in addition to it, the properties of the introduced collections and connections with
collections such as soft σ-algebras were investigated.

2. Preliminaries

This section provides basic definitions and basic properties in soft set theory, as well as statements that
are necessary in this paper and have been proven by many authors.

Let X be an initial universe set and EX be the set of all possible parameters under consideration with
respect to X. The power set of X is denoted by P(X) and A is a subset of E. Usually, parameters are
attributes, characteristics, or properties of objects in X. In what follows, EX (simply denoted by E) always
means the universe set of parameters with respect to X, unless otherwise specified.

Definition 2.1. [10] A pair (F,A) is called a soft set over X where A ⊆ E and F : A→ P(X) is a set valued mapping.
In other words, a soft set over X is a parameterized family of subsets of the universe X. For all e ∈ A, F(e) may be
considered as the set of e-approximate elements of the soft set (F,A). It is worth noting that F(e) may be arbitrary.
Some of them may be empty, and some may have nonempty intersection.

Definition 2.2. [8] A soft set FA on the universe X is defined by the set of ordered pairs FA = {(e, fA(e)) | e ∈
E, fA(e) ∈ P(X)}, where fA : E → P(X), such that fA(e) , ∅ if e ∈ A ⊆ E and fA(e) = ∅, if e < A. Here, fA is called
an approximate function of the soft set FA. The value of fA(e) may be arbitrary.

Note that the set of all soft sets over X will be denoted by S(X,E).

Definition 2.3. [2] Let FA ∈ S(X,E). If fA(e) = ∅, for all e ∈ E, then FA is called an empty soft set, denoted by FΦ
or Φ. fA(e) = ∅ means that there is no element in X related to the parameter e ∈ E. Therefore, we do not display such
elements in the soft sets, as it is meaningless to consider such parameters.

Definition 2.4. [2] Let FA ∈ S(X,E). If fA(e) = X, for all e ∈ A, then FA is called an A-universal soft set, denoted
by FÃ = Ã. If A = E, then the A-universal soft set is called a universal soft set, denoted by FẼ = Ẽ.

Definition 2.5. [15] Let Y be a nonempty subset of X, then Ỹ denotes the soft set YE over X for which Y(e) = Y, for
all e ∈ E. In particular, XE will be denoted by X̃.

Two soft sets can be compared in the following way.

Definition 2.6. [2] Let FA,GB ∈ S(X,E). Then,

1. FA is a soft subset of GB, denoted by FA ⊑ GB, if fA(e) ⊆ 1B(e), for all e ∈ E.
2. FA and GB are soft equal, denoted by FA = GB, if and only if fA(e) = 1B(e), for all e ∈ E.
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Operations defined on soft sets, as well as their properties, have been the subject of study by many
researchers.

Definition 2.7. [2] Let FA,GB ∈ S(X,E). Then,

1. the soft union FA ⊔ GB of FA and GB is defined by the approximate function hA∪B(e) = fA(e) ∪ 1B(e), for all
e ∈ E.

2. the soft intersection FA ⊓ GB of FA and GB is defined by the approximate function hA∩B(e) = fA(e) ∩ 1B(e), for
all e ∈ E.

3. the soft difference FA\GB of FA and GB is defined by the approximate function hA\B(e) = fA(e)\1B(e), for all
e ∈ E.

4. the soft complement Fc
A is defined by the approximate function fAc (e) = f c

A(e), where f c
A(e) is the complement of

the set fA(e), i.e. f c
A(e) = X\ fA(e), for all e ∈ E.

Definition 2.8. [21] Let I be an arbitrary index set and let {(FA)i}i∈I be a subfamily of S(X,E).

• The union of these soft sets is the soft set GC, where 1C(e) = ∪i∈I(FA)i(e), for all e ∈ E. We write GC = ⊔i∈I(FA)i.

• The intersection of these soft sets is the soft set HD, where hD(e) = ∩i∈I(FA)i(e), for all e ∈ E. We write
HD = ⊓i∈I(FA)i.

As in the classical set theory, so in the soft set theory, a significant place takes the study of special
collections of sets, i.e. a collection of sets with specific properties. For studing soft measure it is necessary
to define collections of soft sets like soft semiring, soft σ-algebra, etc.

Definition 2.9. [4] A collection Ã of soft subsets of X̃ is called a soft σ-algebra on X̃ if and only if it satisfies the
following conditions

• Φ ∈ Ã,

• if FA ∈ Ã, then Fc
A = X̃\FA ∈ Ã,

• if (FA)1, (FA)2, (FA)3 . . . is a countable collection of soft sets in Ã, then
⊔
∞

i=1(FA)i ∈ Ã.

The pair (X̃, Ã) is called a soft measurable space and (FA)i ∈ Ã is called a measurable soft set.

As well as the classical set theory, the soft set theory defines the notion of measure [14], called soft
measure.

Definition 2.10. [14] Let Ã be a soft σ-algebra of soft subsets of X̃ and µ̃ be an extended soft real-valued mapping
on Ã. Then µ̃ is called a soft measure on Ã, if

• µ̃(Φ) = 0,

• µ̃(FA) ⩾ 0 for each FA ∈ Ã,

• µ̃ is countably soft additive, i.e.

µ̃

 ∞⊔
i=1

(FA)i

 = ∞∑
i=1

µ̃((FA)i),

(FA)i’s being pairwise soft disjoint.

If µ̃ is a soft measure on a soft σ-algebra Ã, then the triplet (X̃, Ã, µ̃) is called a soft measure space.

Definition 2.11. A collection S̃ of soft subsets of X̃ is called a soft semiring on X̃ if and only if it satisfies the following
conditions
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• Φ ∈ S̃,

• if FA,GB ∈ S̃, then FA ⊓ GB ∈ S̃,

• if FA,GB ∈ S̃, then there exist soft disjoint (CH)1, . . . , (CH)n ∈ S̃, n ∈ N, such that

FA\GB =

n⊔
i=1

(CH)i.

In the paper [18], besides considering the terms of soft measure and soft outer measure, the terms of
soft content and soft premeasure are defined. Also, some claims that are necessary for us to realize our idea
have been proven.

3. A Soft Dynkin System

Observing the following simple example, we see that we cannot expect the extension of the soft pre-
measure µ̃ over the soft semiring S̃, to the soft measure defined on σ(S̃), to be unique.

Example 3.1. Let X̃ , Φ be a soft set and let S̃ = {Φ}. It is clear that S̃ is a soft semiring, moreover S̃ is a soft ring
on X̃. Let µ̃ : S̃ → [0,∞], µ̃(Φ) = 0, so µ̃ is a soft premeasure. Then Ã = σ(S̃) = {Φ, X̃} and for all α ∈ [0,∞] the
mapping µ̃α : Ã → [0,∞], given by

µ̃α(FA) =
{

0, FA = Φ,

α, FA = X̃,

represents the extension of the soft premeasure µ̃ into the soft measure defined on Ã.

The problem in the previous example is that the soft measure µ̃ on the soft semiring S̃ is not a soft
σ-finite. As a preparation for the proof of the uniqueness of the extension (proof of Theorem 3.13), we
define some additional technical (auxiliary) tools. The introduced tools can be of great use in soft measure
theory, not only as tools for proving the uniqueness of extensions.

Before the actual introduction of new terms, i.e. before the definition of certain classes of soft sets, let’s
introduce the following labels. Let FA and (FA)n, n ∈ N be a soft sets. Let

(FA)n↑FA ⇔

FA =

∞⊔
n=1

(FA)n ∧ (FA)1 ⊑ (FA)2 ⊑ (FA)3 ⊑ . . .

 ,
(FA)n↓FA ⇔

FA =

∞�
n=1

(FA)n ∧ (FA)1 ⊒ (FA)2 ⊒ (FA)3 ⊒ . . .

 .
Definition 3.2. A collection Ẽ of soft subsets of X̃ is called

(i) a soft ⊓-stable if and only if (∀FA,FB ∈ Ẽ) FA ⊓ FB ∈ Ẽ.

(ii) a soft monotone class on X̃ if and only if it satisfies the following conditions

1. if FA ⊑ X̃ and (FA)n, n ∈N is a sequence in Ẽ such that (FA)n↑FA, then FA ∈ Ẽ,
2. if FA ⊑ X̃ and (FA)n, n ∈N is a sequence in Ẽ such that (FA)n↓FA, then FA ∈ Ẽ.

(iii) a soft Dynkin system on X̃ if and only if it satisfies the following conditions

1. X̃ ∈ Ẽ,
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2. if FA ∈ Ẽ, then (FA)c
∈ Ẽ,

3. if ((FA)n)n∈N is a sequence of disjoint soft set in Ẽ, then
⊔
∞

n=1(FA)n ∈ Ẽ.

Example 3.3. Let X = {h1, h2, h3} and E = {e1, e2}.
(i) Let Ẽ1 = {(FA)i | i = 1, 2, 3} be a collection, where
(FA)1 = Φ,
(FA)2 = {(e1, {h1}), (e2, ∅)},
(FA)3 = {(e1, {h1, h2, h3}), (e2, {h1, h2})}.
It is not difficult to see that the collection Ẽ1 is a soft ⊓-stable on X̃.
(ii) Let Ẽ2 = {(FA)n | n ∈ N} be a collection, where
(FA)1 = Φ,
(FA)2 = {(e1, {h1}), (e2, ∅)},
(FA)3 = {(e1, {h1, h2, h3}), (e2, {h1, h2})}, and for n = 4, 5, ... let (FA)n = (FA)3.
Then, (FA)n↑FA, where FA = {(e1, {h1, h2, h3}), (e2, {h1, h2})}, and since FA = (FA)3 we also have that FA ∈ Ẽ2, so

Ẽ2 is a soft monotone class.
Similarly, let Ẽ3 = {(GB)n | n ∈ N} be a collection, where
(GB)1 = {(e1, {h1, h2, h3}), (e2, {h1, h2})},
(GB)2 = {(e1, {h1})},
(GB)3 = Φ, and for n = 4, 5, ... let (GB)n = (GB)3.
Then, (GB)n↓GB, where GB = {(e1, {h1, h2, h3}), (e2, {h1, h2})}, and since GB = (GB)3 we also have that GB ∈ Ẽ3, so

Ẽ3 is a soft monotone class.
(iii) Let’s consider the collection Ẽ = {(FA)i | i = 1, 2, . . . , 8}, where
(FA)1 = Φ,
(FA)2 = {(e1, {h1}), (e2, {h2})},
(FA)3 = {(e1, {h2}), (e2, {h1})},
(FA)4 = {(e1, {h3}), (e2, {h3})},
(FA)5 = {(e1, {h2, h3}), (e2, {h1, h3})},
(FA)6 = {(e1, {h1, h3}), (e2, {h2, h3})},
(FA)7 = {(e1, {h1, h2}), (e2, {h1, h2})},
(FA)8 = X̃.
Then, Ẽ is a soft Dynkin system over X̃.

Theorem 3.4. The soft intersection of any collection of soft monotone classes on X̃ forms again a soft monotone class
on X̃.

Proof. Let {Ẽi}i∈I be any collection of soft monotone classes over X̃. Let Ẽ = ⊓i∈IẼi, and let FA ⊑ X̃ be an
arbitrary soft set. We’ll prove that FA ∈ Ẽ.

Let (FA)n, n ∈N be a sequence in Ẽ such that (FA)n↑FA. Since Ẽ = ⊓i∈IẼi, then (FA)n, n ∈N is a sequence
in Ẽi such that (FA)n↑FA, for all i ∈ I. We have that Ẽi are soft monotone classes for all i ∈ I, so we conclude
that FA ∈ Ẽi, for all i ∈ I, i.e. FA ∈ ⊓i∈IẼi. Therefore, the collection Ẽ is a soft monotone class.

Theorem 3.5. The soft intersection of any collection of soft Dynkin systems on X̃ forms again a soft Dynkin system
on X̃.

Proof. Let {Ẽi}i∈I be any collection of soft Dynkin systems on X̃ and let Ẽ =
�

i∈I Ẽi.
We know that X̃ ∈ Ẽi, for all i ∈ I, because Ẽi are all soft Dynkin systems. Hence, X̃ ∈ Ẽ, which needed

to be proven.
If FA ∈ Ẽ, then FA ∈ Ẽi, for all i ∈ I, and so Fc

A ∈ Ẽi, also because Ẽi are all soft Dynkin systems. Thus,
Fc

A ∈ Ẽ.
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Finally, if (FA)n ∈ Ẽ, for all n ∈ N, then (FA)n ∈ Ẽi for all n, i, and
⊔
∞

n=1(FA)n ∈ Ẽi, for all i. This implies
that
⊔
∞

n=1(FA)n ∈ Ẽ.
Therefore, the collection Ẽ is a soft Dynkin system.

Let X̃ be a soft set and let Ẽ be the collection of soft subsets of X̃. Byµ(X̃) we denote the soft intersection of
all soft monotone classes over X̃, such that Ẽ is their subset. Similary, by δ(X̃) we denote the soft intersection
of all soft Dynkin systems over X̃, such that Ẽ is their subset. Based on the previous two theorems, we
know that µ(X̃) is a soft monotone class, and δ(X̃) is a soft Dynkin system.

Definition 3.6. We say that the soft monotone class µ(X̃) is the smallest soft monotone class over X̃ containing Ẽ
and we call it the soft monotone class generated by Ẽ.

Definition 3.7. We say that the soft Dynkin system δ(X̃) is the smallest soft Dynkin system over X̃ containing Ẽ
and we call it the soft Dynkin system generated by Ẽ.

Theorem 3.8. Let X̃ be a soft set and let Ẽ be the collection of soft subsets of X̃. Then Ẽ is a soft Dynkin system on
X̃ if and only if the following conditions (i)-(iii) hold

(i) X̃ ∈ Ẽ.

(ii) For all FA,GB ∈ Ẽ, GB ⊑ FA implies FA \ GB ∈ Ẽ.

(iii) Ẽ is a soft monotone class.

Proof. (←) Let conditions (i) − (iii) hold for the collection Ẽ. Let’s prove that the collection of soft sets Ẽ is a
soft Dynkin system. How property 1. (part (iii)) of Definition 3.2. holds, it’s necessary to prove properties
2. and 3.

Let GB ∈ Ẽ be an arbitrary soft set, and we know that X̃ ∈ Ẽ. Using the condition (ii) of the theorem,
follows that X̃ \ GB ∈ Ẽ, i.e. (GB)c

∈ Ẽ.
Let ((FA)i)i∈N be a sequence of soft disjoint sets from the collection Ẽ. Consider the soft sets (FA)1, (FA)2 ∈ Ẽ.

Then (FA)1 ⊔ (FA)2 ∈ Ẽ, because (FA)2 ⊑ (FA)c
1, and further (FA)c

1 \ (FA)2 ∈ Ẽ based on the condition (ii). Since
the collection Ẽ is closed for soft complements, we have that ((FA)c

1 \ (FA)2)c = (FA)1 ⊔ (FA)2 ∈ Ẽ.
Now, we show by mathematical induction that for all n ∈ N holds (GB)n =

⊔n
i=1(FA)i ∈ Ẽ.

Proof by induction on n. The base case holds, since (GB)1 = (FA)1 ∈ Ẽ. For the induction step, let be
valid that (GB)n =

⊔n
i=1(FA)i ∈ Ẽ, for some fixed n ∈ N .

Let’s prove that (GB)n+1 =
⊔n+1

i=1 (FA)i =
(⊔n

i=1(FA)i
)
⊔ (FA)n+1 ∈ Ẽ.

Based on the induction step, we have that
⊔n

i=1(FA)i ∈ Ẽ and also (FA)n+1 ∈ Ẽ. It is shown that the
collection Ẽ is closed for the soft union of two soft sets, so (GB)n+1 ∈ Ẽ, and that’s what should have been
shown.

Hence, for all n ∈ N, holds (GB)n =
⊔n

i=1(FA)i ∈ Ẽ.
So, we have that (GB)n↑GB =

⊔
∞

i=1(FA)i, so then GB =
⊔
∞

i=1(FA)i ∈ Ẽ based on condition (iii).
Finally, based on the proven properties, we conclude that Ẽ is a soft Dynkin system.
(→) Let the collection Ẽ be a soft Dynkin system, it suffices to show the conditions (ii) and (iii). Let

FA,GB ∈ Ẽ such that GB ⊑ FA, then the soft sets (FA)c,GB,Φ,Φ, ... are soft disjoint soft sets of the collection Ẽ.
Using the property 3. (part (iii)) of Definition 3.2. we have that (FA)c

⊔GB ⊔Φ ⊔Φ ⊔ ... ∈ Ẽ, i.e. FA \GB ∈ Ẽ,
so the property (ii) holds.

Let FA ⊑ X̃ and let ((FA)i)i∈N be a sequence of soft sets from the collection Ẽ. If (FA)i↑FA, then FA =

(FA)1⊔ (
⊔
∞

i=2((FA)i \ (FA)i−1)) ∈ Ẽ. And if (FA)i↓FA, then (FA)c =
⊔
∞

i=1(FA)c
i , i.e. (FA)c

i↑(FA)c
∈ Ẽ. Hence, FA ∈ Ẽ,

so Ẽ is a soft monotone class, and the proof of the theorem is complete.
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Theorem 3.9. Let X̃ be a soft set and let Ẽ be a soft Dynkin system over X̃. Then the following statements are
equivalent

(i) Ẽ is a soft ⊓-stable.

(ii) Ẽ is a soft σ-algebra.

Proof. As every soft σ-algebra is soft ⊓-stable, it only remains to show that (i) implies (ii).
If FA,GB ∈ Ẽ and Ẽ is soft ⊓-stable, then FA ⊔ GB = (FA ⊓ Gc

B) ⊔ (GB ⊓ Fc
A) ⊔ (FA ⊓ GB) ∈ Ẽ.

Let ((FA)n)n∈N be a sequence of soft sets in Ẽ. By induction on n ∈ Nwe prove that (GB)n =
⊔n

i=1(FA)i ∈ Ẽ

for all n ∈ N.
For n = 1, trivially, holds (GB)1 =

⊔1
i=1(FA)i = (FA)1 ∈ Ẽ.

Suppose that the statement is valid for some fixed natural number n, i.e. (GB)n =
⊔n

i=1(FA)i ∈ Ẽ.
We prove that (GB)n+1 =

⊔n+1
i=1 (FA)i ∈ Ẽ. Indeed, (GB)n+1 = (

⊔n
i=1(FA)i)⊔ (FA)n+1, and as

⊔n
i=1(FA)i ∈ Ẽ and

(FA)n+1 ∈ Ẽ, based on the property shown above, (GB)n+1 ∈ Ẽ, which should have been shown.
Since (GB)n↑GB =

⊔
∞

i=1 (FA)i and the soft Dynkin system Ẽ is a soft monotone class, GB ∈ Ẽ, showing Ẽ
to be a soft σ-algebra.

Example 3.10. Let X = {h1, h2, h3} and E = {e1, e2}. Let Ẽ = {(FA)i | i = 1, 2, . . . , 6} be a collection, where
(FA)1 = Φ,
(FA)2 = {(e1, {h1}), (e2, {h2})},
(FA)3 = {(e1, {h1}), (e2, {h1})},
(FA)4 = {(e1, {h2, h3}), (e2, {h1, h3})},
(FA)5 = {(e1, {h2, h3}), (e2, {h2, h3})},
(FA)6 = X̃.
The collection Ẽ is a soft Dynkin system, but it is neither a soft σ-algebra nor a soft ⊓-stable. However, in example

3.3. we have a soft Dynkin system in which both conditions of Theorem 3.9. hold.

Theorem 3.11. Let X̃ be soft set and let Ẽ be soft ⊓-stable over X̃. Then δ(Ẽ) = σ(Ẽ).

Proof. Since every soft σ-algebra is a soft Dynkin system, holds that D̃ = δ(Ẽ) ⊑ σ(Ẽ).
We will prove that D̃ is a soft σ-algebra. Based on the Theorem 3.9. it suffices to show that D̃ is soft

⊓-stable.
For all GB ∈ D̃ notice the collection of soft sets

D̃GB = {FA ⊑ X̃ | FA ⊓ GB ∈ D̃}.

We prove that for all GB over D̃ holds
D̃ ⊑ D̃GB .

First, let us prove that, for all GB , D̃GB is a soft Dynkin system.
Indeed, X̃ ∈ D̃GB , since X̃ ⊓ GB = GB ∈ D̃. Further, if FA ∈ D̃GB , then Fc

A ∈ D̃GB , following from the fact
that FA ⊓ GB ∈ D̃ and Fc

A ⊓ GB = GB \ (FA ⊓ GB) ∈ D̃ using property (ii) of the Theorem 3.8.
Let ((FA)n)n∈N be a sequence of disjoint soft sets over D̃GB and let FA =

⊔
∞

n=1(FA)n. Then, ((FA)n ⊓GB)n∈N

is a sequence of disjoint soft sets over D̃, and because D̃ is a soft Dynkin system, holds FA ⊓ GB =⊔
∞

n=1((FA)n ⊓ GB) ∈ D̃. Hence, we concluded that
⊔
∞

n=1(FA)n ∈ D̃GB , so the proof that the sequence D̃GB is a
soft Dynkin system is completed.

Since Ẽ is a soft ⊓-stable, then Ẽ ⊑ D̃HD , for all HD ∈ Ẽ, where

D̃HD = {FA ⊑ X̃ | FA ⊓HD ∈ D̃}.
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Hence, for all HD ∈ Ẽ

D̃ ⊑ D̃HD ,

as D̃HD is a soft Dynkin system.
Thus, if HD ∈ Ẽ and if GB ∈ D̃ is arbitrary, then GB ∈ D̃HD i.e. GB ⊓HD ∈ D̃, which means that HD ∈ D̃GB ,

and further Ẽ ⊑ D̃GB .
Thus, for all GB ∈ D̃, D̃ ⊑ D̃GB .
Finally, let’s check if the collection D̃ is closed for soft intersection. Namely, let FA,GB ∈ D̃. Then

FA ∈ D̃GB . Based of the structure of the collection D̃GB , holds FA ⊓ GB ∈ D̃.

Example 3.12. Let X = {h1, h2, h3} and E = {e1, e2}. Let Ẽ = {(FA)i | i = 1, 2, 3, 4} be a collection, where
(FA)1 = Φ,
(FA)2 = {(e1, {h1}), (e2, ∅)},
(FA)3 = {(e1, {h1, h3}), (e2, {h1, h2, h3})},
(FA)4 = X̃.
The collection Ẽ is a soft ⊓-stable.
Let’s determine the collection δ(Ẽ). As the collection Ẽ is not a soft Dynkin system, we need to extend it to the

collection δ(Ẽ) = {(FA)i | i = 1, 2, . . . , 8}, where
(FA)5 = {(e1, {h2, h3}), (e2, {h1, h2, h3})},
(FA)6 = {(e1, {h2}), (e2, ∅)},
(FA)7 = {(e1, {h1, h2}), (e2, ∅)},
(FA)8 = {(e1, {h3}), (e2, {h1, h2, h3})}.
On the other hand, if we extend the collection Ẽ to the soft σ-algebra, we get σ(Ẽ) = {(FA)i | i = 1, 2, . . . , 8}.
Hence, δ(Ẽ) = σ(Ẽ).

Theorem 3.13. Let (X̃, Ã) be a soft measurable space and let µ̃, ν̃ : Ã → [0,∞] be a soft measures. Let Ẽ be a
collection of soft subsets of X̃ with the following properties

(i) σ(Ẽ) = Ã,

(ii) µ̃ ↾
Ẽ
= ν̃ ↾

Ẽ
,

(iii) Ẽ is soft ⊓-stable,

(iv) there exists a sequence ((GB)i)i∈N of soft sets over Ẽ such that

(
(∀i ∈ N)µ̃((GB)i) = ν̃((GB)i) < ∞

)
∧ X̃ =

∞⊔
i=1

(GB)i.

Then µ̃ = ν̃.

Proof. For all GB ∈ Ẽ such that µ̃(GB) = ν̃(GB) < ∞, let’s show that

Ã = D̃GB = {FA ∈ Ã | µ̃(FA ⊓ GB) = ν̃(FA ⊓ GB)}.

For all GB ∈ Ẽ such that µ̃(GB) = ν̃(GB) < ∞, D̃GB is a soft Dynkin system, because of the following
properties

• X̃ ∈ D̃GB , since X̃ ⊓ GB = GB ∈ Ẽ.

• If FA ∈ D̃GB , then Fc
A ∈ D̃GB , since µ̃((FA)c

⊓ GB) = µ̃(GB\((FA) ⊓ GB)) = µ̃(GB) − µ̃(FA ⊓ GB) =
ν̃(GB) − ν̃(FA ⊓ GB) = ν̃(GB\((FA) ⊓ GB)) = ν̃((FA)c

⊓ GB).
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• Let ((FA)i)i∈N be a sequence of disjoint soft sets over D̃GB . Then FA =
⊔n

i=1(FA)i ∈ D̃GB , since µ̃(FA⊓GB) =
µ̃(
⊔n

i=1((FA)i ⊓ GB)) =
∑n

i=1 µ̃((FA)i ⊓ GB) =
∑n

i=1 ν̃((FA)i ⊓ GB) = ν̃(
⊔n

i=1((FA)i ⊓ GB)) = ν̃((FA) ⊓ GB).

Using the previous result and Teorem 3.11, we have that Ã = σ(Ẽ) = D̃ ⊑ D̃GB , and since it is obvious
that D̃GB ⊑ Ã, we have Ã = D̃GB .

Let ((GB)i)i∈N be a sequence from the condition (iv) and define a sequence of soft sets (CD)0 = Φ,
(CD)n =

⊔n
i=1(GB)i, for all n ∈ N. Then (CD)n ↑ X̃. For all n ∈ N, holds (CD)n =

⊔n
i=1((GB)i ⊓ (CD)c

i−1), hence
for all n ∈ N, holds

(∀FA ∈ Ã) µ̃(FA ⊓ (CD)n) =
n∑

i=1

µ̃(FA ⊓ (CD)c
i−1 ⊓ (GB)i) =

n∑
i=1

ν̃(FA ⊓ (CD)c
i−1 ⊓ (GB)i) = ν̃(FA ⊓ (CD)n)

and
(∀FA ∈ Ã) µ̃(FA) = lim

x→∞
µ̃(FA ⊓ (CD)n) = lim

x→∞
ν̃(FA ⊓ (CD)n) = ν̃(FA),

which should have been proved.

Theorem 3.14. Let X̃ be a soft set and let S̃ be a soft semiring over X̃. If µ̃ : S̃ → [0,∞] is a σ-finite soft premeasure,
then there exists a unique soft measure ν̃ : σ(S̃)→ [0,∞] extending µ̃.

Proof. The existence of the soft measure was shown in the paper [5], while the uniqueness is valid due to
Theorem 3.13. in which Ẽ = S̃, as the soft semiring S̃ is a soft ⊓-stable.

Example 3.15. Let X = {h1, h2, h3} and E = {e1, e2}. Let S̃ = {(FA)i | i = 1, 2, 3} be a collection, where
(FA)1 = Φ,
(FA)2 = {(e1, {h1}), (e2, ∅)},
(FA)3 = {(e1, {h2, h3}), (e2, {h1, h2})}.
As we can notice, the collection S̃ = {(FA)i | i = 1, 2, 3} is a soft semiring. Mapping µ̃ : S̃ → [0,∞], given by

µ̃(FA) =


0, FA = (FA)1,
1, FA = (FA)2,
2, FA = (FA)3.

is a soft σ-finite soft premeasure.
Starting from the collection S̃ = {(FA)i | i = 1, 2, 3} we can easily find the collection σ(S̃) = {(FA)i | i =

1, 2, 3, 4, 5, 6, 7, 8} that is a soft σ-algebra such that
(FA)1 = Φ,
(FA)2 = {(e1, {h1}), (e2, ∅)},
(FA)3 = {(e1, {h2, h3}), (e2, {h1, h2})},
(FA)4 = {(e1, {h1, h2, h3}), (e2, {h1, h2})},
(FA)5 = {(e1, {h2, h3}), (e2, {h1, h2, h3})},
(FA)6 = {(e1, {h1}), (e2, {h3})},
(FA)7 = {(e1, ∅), (e2, {h3})},
(FA)8 = X̃.
If we try to expand µ̃ to the soft measure ν̃ defined over soft σ-algebra σ(S̃), we get that the expansion must be

unique and that the soft measure is given by

ν̃(FA) =


0, FA = (FA)1,
1, FA ∈ {(FA)2, (FA)7},
2, FA ∈ {(FA)3, (FA)6},
3, FA ∈ {(FA)4, (FA)5},
4, FA = (FA)8,

which was expected considering the Theorem 3.14.
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4. Conclusion

Molodtsov defined and presented several possible applications of soft set theory. Many researchers
have continued studying the possible applications of the soft set theory, and an important segment is the
introduction of the concept of soft measures, as an unavoidable term in the applications of soft sets in
various fields. In this work, research in the field of soft measure theory was continued, and new collections
of soft sets were defined, where the properties of soft measures and soft premeasures, as well as their
possible extensions, were studied. Defined soft ⊓-stable collections, soft monotone classes and soft Dynkin
systems are studied in this paper in the context of soft measure, and certainly such collections can serve
as a good tool in the theory of soft sets, in general. In this context, this work provides an opportunity for
further research and more detailed studies of the mentioned collections. We hope that the defined concepts
and properties given in this paper will help many researchers to improve and promote the theory of soft
sets, and especially the soft measure.
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[5] M. Laković, N. Vučićević, N. Stojanović, Soft Carathéodory extension Theorem and Soft Outer Measure, Filomat 37 (17) (2023) –.
[6] P. K. Maji, R. Biswas, A. R. Roy, An application of soft sets in decision making problem, Computer and Mathematics with

Applications 44 (2002) 1077–1083.
[7] P. K. Maji, R. Biswas, A. R. Roy, Soft set theory, Computers and Mathematics with Applications 45 (2003) 555–562.
[8] P. Majumdar, S.K. Samanta, Similarity measure of soft set. New Math. Nat. Comput. 4 (1) (2008) 1–12.
[9] P. Majumdar, S. K. Samanta, On soft mappings, Computer and Mathematics with Applications 60 (2010) 2666–2672.

[10] D. Molodtsov, Soft set theory-first results, Computers and Mathematics with Applications 37 (1999) 19–31.
[11] D. Molodtsov, The theory of soft sets, URSS Publishers, Moscow (in Russian) (2004).
[12] D. Pei, D. Miao, From soft sets to information systems, in: X. Hu, Q. Liu, A. Skowron, T.Y. Lin, R.R. Yager, B. Zhang (Eds.),

Proceedings of Granular Computing, IEEE (2) (2005) 617–621.
[13] M. Riaz, K. Naeem, Measurable Soft Mappings, Punjab University Journal of mathematics 48 (2) (2016) 19–34.
[14] M. Riaz, K. Naeem, M. Ozair. Ahmad, Novel concepts of soft sets with applications, Annals of Fuzzy Mathematics and Informatics

13 (2) (2017) 239–251.
[15] M. Shabir, M. Naz, On soft topological spaces, Computers and Mathematics with Applications 61 (2011) 1786–1799.
[16] A. Sezgin, S. Ahmad, A. Mehmood, A New Operation on Soft Sets: Extended Difference of Soft Sets, Journal of New Theory 27

(2019) 33–42.
[17] A. Sezgin, A. O. Atagun, On operations of soft sets, Comput. Math. Appl. 61 (2011) 1457–1467.
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[19] N. Stojanović, A new operation on soft sets: extended symmetric difference of soft sets, Vojnotehnički glasnik/Military Technical
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