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Abstract. The objective of this paper is to introduce the notion of skew Lie centralizers in ∗-rings, and
to investigate the structure of skew Lie centralizers and strong skew commutativity preserving maps in
prime ∗-rings without assuming the existence of a symmetric idempotent and the unital element. As an
application, we shall characterize such maps in different operator algebras.

1. Introduction

Throughout this paper, unless otherwise stated,A represents a prime ring with centreZ(A). A ringA
is called prime if for any x, y ∈ A, whenever xAy = 0 implies that either x = 0 or y = 0. A ringA is said to
be n-torsion free if for any x ∈ A, whenever nx = 0 implies x = 0. The maximal left ring of quotients ofA
is denoted by Qml(A) and the maximal symmetric ring of quotients of A is denoted by Qms(A). It is well
known thatA ⊆ Qms(A) ⊆ Qml(A). The super rings Qms(A) and Qml(A) are also prime and they both share
the same centre C, known as the extended centroid ofA. Moreover C = {λ ∈ Qml(A) | λa = aλ for all a ∈ A}
and A is prime if and only if C is field. For details one may refer to [3]. An involution ‘∗’ on A is an
anti-automorphism of order 1 or 2. For a, b ∈ A, the Lie product ab − ba is denoted by [a, b] and the skew
Lie product ab − ba∗ by [a, b]∗.

It is well known that any anti-automorphism ofA can be uniquely extended to an anti-automorphism
of Qms(A) and hence can also be viewed as an anti-automorphism of C. The anti-automorphism τ of A is
said to be of the first kind if it acts as the identity map on C and of the second kind otherwise. For x ∈ A,
we write deg(x) = n if x is algebraic of minimal degree n over C and deg(x) = ∞ otherwise. For a nonempty
subsetM ofA, deg(M) =sup{de1(y) | y ∈ M}.

An additive mapping ψ : A → A is called a Lie centralizer if ψ([a, b]) = [ψ(a), b] = [a, ψ(b)] for all
a, b ∈ A. It can be easily seen that ψ is a Lie centralizer onA if and only if ψ([a, b]) = [ψ(a), b] for all a, b ∈ A
or ψ([a, b]) = [a, ψ(b)] for any a, b ∈ A. Lie centralizers on rings as well as algebras have been extensively
investigated by many mathematicians (see [1, 8, 9, 12, 13, 18, 19] and references therein). Motivated by the
concept of Lie centralizers on rings, we here introduce the definition of skew Lie centralizers as follows.

Definition 1.1. Let A be a ring with an involution ‘∗’, and let Φ : A → A be a map. Then Φ is called a skew Lie
centralizer ofA if

Φ([a, b]∗) = [Φ(a), b]∗ = [a,Φ(b)]∗
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stands true for all a, b ∈ A.

We remark that the conditions Φ([a, b]∗) = [Φ(a), b]∗ for all a, b ∈ A and Φ([a, b]∗) = [a,Φ(b)]∗ for all a, b ∈ A
may not be equivalent. For the map Φ : A → A given by Φ(a) = ζa, where ζ∗ , ζ ∈ C satisfies
Φ([a, b]∗) = [a,Φ(b)]∗ for all a, b ∈ A but does not satisfy Φ([a, b]∗) = [Φ(a), b]∗ for all a, b ∈ A.

In the numerous recent papers, maps preserving skew Lie products or acting as derivations on skew Lie
products have been extensively studied by various authors in the context of rings and operator algebras.
We refer the readers to some recent papers [1, 2, 5, 14, 15, 22, 23, 25, 26] where further references can be
found. Motivated by the above cited works, we will completely characterize skew Lie centralizers on prime
rings (see Corollary 2.4).

If A is a ∗-ring, then a map Ψ : A → A is called ∗-linear if Ψ(a∗) = Ψ(a)∗ for all a ∈ A. Moreover, Ψ is
called a strong skew commutativity preserving map if [Ψ(a),Ψ(b)]∗ = [a, b]∗ holds for all a, b ∈ A.

We will also characterize strong skew commutativity preserving maps on prime rings without assuming
the existence of a symmetric idempotent and the unity. The first characterization of such maps was obtained
by Cui et al. [6] on factor von Neumann algebras. They proved that ifϕ is a nonlinear surjective strong skew
commutativity preserving map on factor von Neumann algebra N , then ϕ(a) = χ(a) + f (a)I for all a ∈ N ,
where χ : N → N is a linear bijective map satisfying [χ(a), χ(b)]∗ = [a, b]∗ for all a, b ∈ N , f is a real functional
onN with f (0) = 0 and I is the identity ofN . Qi et al. [21, Theorem 2.1] extended this result to unital prime
ring A with involution containing a nontrivial symmetric idempotent and obtained that ϕ(a) = λa + f (a)
for all a ∈ A, where λ ∈ {1,−1} and f is a map from A to ZS(A) = {z ∈ Z(A) : z∗ = z}. In [17] and [20]
the authors generalized this result to unital ∗-ring A which contain a nontrivial symmetric idempotent e
satisfying xAe = {0} =⇒ x = 0 and xA(1 − e) = {0} =⇒ x = 0. Moreover, they obtained the same
conclusion. Recently Hou and Wang [11, Theorem 2.1] improved this result by proving that the symmetric
centre valued map f vanishes. All these characterizations of strong skew commutativity preserving maps
were obtained with the help of Pierce decomposition and hence the symmetric idempotent and unity play
an inevitable role. We shall completely characterize the surjective strong skew commutativity preserving
maps on prime ring A by removing the assumptions 1 ∈ A and the existence of nontrivial symmetric
idempotent inA, but getting the same conclusion (see Theorem 2.2).

2. Results

Before stating our results, it is worthwhile to mention the structure of involutions on matrix algebras.
LetMp(K) be the p × p matrix algebra over an algebraically closed field K with involution ‘∗′ of the first
kind. It is known that in this case ‘∗′ is either the ordinary transpose or the symplectic involution (see [3,
Theorem 4.6.12 and Corollary 4.6.13] and [10] for details). In case ‘∗’ is the symplectic involution, p = 2q for
some positive integer q and is given by: For (Mi j) ∈ Mp(K) = Mq(M2(K)), where Mi j ∈ M2(K), we have
(Mi j)∗ = (Ni j), where Ni j =Mσ

ji and where[
α1 α2
α3 α4

]σ
=

[
α4 −α2
−α3 α1

]
for

[
α1 α2
α3 α4

]
∈ M2(K).

We begin with the following result which plays a key role in the proof of our main results.

Lemma 2.1. LetA be a prime ring with a non identity anti-automorphism τ. If u ∈ Qml(A) is such that uaτ = au
for every a ∈ A, then u = 0.

Proof. IfA is commutative, then it is easy to see that u = 0. So assume thatA is non commutative. Now for
every a, b ∈ A, we have abu = u(ab)τ = ubτaτ = buaτ = bau. Therefore [a, b]u = 0 for every a, b ∈ A, forcing
u = 0.

The following result gives a complete characterization of surjective strong skew commutativity preserving
maps in prime rings without assuming the existence of a symmetric idempotent and the unital element.
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Theorem 2.2. Let A be a prime ring with a non identity involution ‘∗’. Assume that Ψ : A → A is a surjective
strong skew commutativity preserving map. ThenΨ(a) = λa for all a ∈ A, where λ ∈ {1,−1}.

Proof. First we prove some facts aboutΨ.
Fact 1. Ψ is additive. Let a, b, c ∈ A. Then we have

[Ψ(a),Ψ(b + c) −Ψ(b) −Ψ(c)]∗ = [Ψ(a),Ψ(b + c)]∗ − [Ψ(a),Ψ(b)]∗ − [Ψ(a),Ψ(c)]∗
= [a, b + c]∗ − [a, b]∗ − [a, c]∗
= 0.

Therefore by surjectiveness ofΨ, we have [a,Ψ(b+ c)−Ψ(b)−Ψ(c)]∗ = 0 for all a, b, c ∈ A. Invoking Lemma
2.1, we conclude thatΨ(b + c) = Ψ(b) +Ψ(c) for all b, c ∈ A. ThusΨ is additive, as asserted.
Fact 2. Ψ is an additive isomorphism.
By the given hypothesis and Fact 1,Ψ is an additive epimorphism. Suppose thatΨ(x) = 0 for some x ∈ A.
Then ax− xa∗ = Ψ(a)Ψ(x)−Ψ(x)Ψ(a)∗ = 0 for all a ∈ A. Hence by Lemma 2.1, we conclude that x = 0. Thus
Ψ is an additive isomorphism, as asserted.
Fact 3. Ψ is ∗-linear.
For all a, b ∈ A, we have

[Ψ(a),Ψ(b)∗]∗ = −([Ψ(a),Ψ(b)]∗)∗

= −([a, b]∗)∗

= [a, b∗]∗
= [Ψ(a),Ψ(b∗)]∗.

Thus, we have
[Ψ(a),Ψ(b)∗ −Ψ(b∗)]∗ = 0

for all a, b ∈ A. Now by Fact 2, Ψ is bijective. Hence applying Lemma 2.1, we infer that Ψ(a)∗ = Ψ(a∗)
stands true for all a ∈ A. ThereforeΨ is ∗-linear, as asserted and henceΨ satisfies the relation

Ψ(a)Ψ(b) −Ψ(b)Ψ(a∗) = ab − ba∗, (1)

for all a, b ∈ A. Now we proceed by considering the following cases.
Case I. dimCAC > 4.
By Fact 2,Ψ is bijective, therefore from (1) the functional identity

aΨ(b) + bΨ−1(a∗) −Ψ(b)a∗ −Ψ−1(a)b = 0,

holds for all a, b ∈ A. By [4, Theorem C.2], deg(A) > 2. Therefore by [4, Corollary 5.12],A is 3-free subring
of Qml(A) and hence by [4, Theorem 3.25], A is also (∗, 2)-free subring of Qml(A). Therefore there exists
q ∈ Qml(A) such thatΨ(b) = bq for all b ∈ A. Utilizing this in (1), we have

a(qbq − b) + b(a∗ − qa∗q) = 0,

for all a, b ∈ A. Again from (∗, 2)-freeness of A, we infer that qbq = b for all b ∈ A. Now by [3, Theorem
6.4.1], A and Qml(A) satisfy the same GPIs. So setting b = 1 in the last relation, we find that q2 = 1 and
hence bq = qb for all b ∈ A. Thus q ∈ C, which yields q = 1 or q = −1. Therefore, eitherΨ(a) = a for all a ∈ A
orΨ(a) = −a for all a ∈ A.
Case II. dimCAC ≤ 4.

In this caseA is a PI-ring and hence by [24, Theorem 2],Z(A) , {0}.
Subcase (i). α∗ , α for some α ∈ Z(A).
Setting a = α in (1), we find that (α − α∗)Ψ(b) = Ψ−1(α)b − bΨ−1(α∗) for all b ∈ A. Therefore Ψ(b) = pb + bp∗

for all b ∈ A, where p = Ψ
−1(α)
α−α∗ ∈ AC. Using this in (1), we have

(pa + ap∗)(pb + bp∗) − (pb + bp∗)(pa∗ + a∗p∗) = ab − ba∗, (2)



M. A. Siddeeque et al. / Filomat 38:1 (2024), 261–269 264

for all a, b ∈ A. Replacing a by αa in the last relation, we have

α(pa + ap∗)(pb + bp∗) − α∗(pb + bp∗)(pa∗ + a∗p∗) = αab − α∗ba∗, (3)

for all a, b ∈ A. Multiplying (2) by α∗ and then subtracting from (3), we get

(pa + ap∗)(pb + bp∗) = ab, (4)

for all a, b ∈ A. Now by [3, Theorem 6.4.1], A and AC satisfy the same GPIs. Hence (4) holds for all
a, b ∈ AC. Therefore putting a = b = 1 in the last expression, we see that (p + p∗)2 = 1. Also on right
multiplication in (4) by p + p∗ and putting b = 1, we find that p ∈ C. Now C is a field so either p + p∗ = 1 or
p + p∗ = −1. ThereforeΨ(a) = λa for all a ∈ A, where λ ∈ {−1, 1}.
Subcase (ii). α∗ = α for all α ∈ Z(A).

Since ‘∗′ is a non identity involution, we must have dimCAC = 4. Let F be the algebraic closure of C.
Then ‘∗’ can be extended uniquely to an involution onAC ⊗C F, denoted by ‘∗’ also and is given by(∑

i

ai ⊗ βi

)∗
=

∑
i

a∗i ⊗ βi

for ai ∈ AC and βi ∈ F. Now let α ∈ Z(A). Then for a, b ∈ A, we have

[Ψ(a),Ψ(αa) − αΨ(a)]∗ = [Ψ(a),Ψ(αa)]∗ − [Ψ(a), αΨ(a)]∗ = 0.

Invoking Lemma 2.1, we infer that Ψ(αa) = αΨ(a) for all a ∈ A and α ∈ Z(A), that is, Ψ is Z(A)-linear.
Now it is well known that if A is a prime PI-ring, then AC = Qml(A), Z(A) , {0} and any element in AC

is of the form
a
α

, for some a ∈ A and some nonzero α ∈ Z(A) (see 24, Corollary 1). Hence, Ψ can also be

uniquely extended to a map Ψ1 : AC → AC, by defining Ψ1( a
α ) = Ψ(a)

α . A simple computation shows that
Ψ1 is a surjective strong skew commutativity preserving map onAC. Now extendΨ1 toAC⊗C F, denoted
byΨ2, by the rule

Ψ2

(∑
i

ai ⊗ αi

)
=

∑
i

Ψ1(ai) ⊗ αi.

for ai ∈ AC and α ∈ F. Then, it can be easily verified that Ψ2 is a F-linear strong skew commutativity
preserving map. Moreover,Ψ2 is surjective. By using the same arguments as in the begining it can be seen
thatΨ2 is also a ∗-linear additive isomorphism and hence

Ψ2(X)Ψ2(Y) −Ψ2(Y)Ψ2(X∗) = XY − YX∗, (5)

for all X,Y ∈ AC ⊗C F. Now it is well known thatAC⊗C F �Mk(F), where k =
√

dimCAC > 1. Therefore,
we can visualize Ψ as a map onM2(F) to itself satisfying (5). Moreover, it can also be easily seen from (5)
thatΨ2(F) ⊆ F.

Now if ‘∗’ is the transpose involution, then obviously M2(F) contains a non trivial rank 1 symmetric
idempotent and hence by [11, Theorem 2.1], either Ψ2(X) = X for all X ∈ M2(F) or Ψ2(X) = −X for all
X ∈ M2(F). Next assume that ‘∗’ is the symplectic involution. First we deal with the case when char(F) = 2.
Setting Y = I in (5), we have

Ψ2(I)Ψ2(X + X∗) = X + X∗

for all X ∈ R. Let ei j denote the matrix unit with 1 as (i, j)th entry and 0′s elsewise. Then putting X = e11 in
the previous relation, we get (Ψ2(I))2 = I. Consequently,Ψ2(I) = I.

Now,Ψ2(e11)∗ = Ψ2(e22). Hence we can write

Ψ2(e11) =
(

u v
w k

)
and Ψ2(e22) =

(
k v

w u

)
.



M. A. Siddeeque et al. / Filomat 38:1 (2024), 261–269 265

Thus I = Ψ2(I) = Ψ2(e11 + e22) yields u + k = 1 and hence

Ψ(e11) =
(

u v
w 1 − u

)
and Ψ(e22) =

(
1 − u v

w u

)
.

Now taking X = e22 and Y = e11 in (5), we see that u = 1 and v = w = 0. Therefore, Ψ2(e11) = e11 and
Ψ2(e22) = e22.

We also have,Ψ2(e12)∗ = Ψ2(e12). Therefore, we can write

Ψ(e12) =
(

x y
z x

)
.

Setting X = e22 and Y = e12 in (5), we find that x = 0. Also putting X = e12 and Y = e11 in (5), provide us
y = 1 and z = 0. ThusΨ2(e12) = e12. Similarly, we can obtainΨ2(e21) = e21. Consequently,Ψ2(X) = X for all
X ∈ M2(F).

Next assume that char(F) , 2. Setting Y = α ∈ F in (5), we infer that

Ψ2(X − X∗) = γ(X − X∗)

for all X ∈ M2(F), where γ = α(Ψ2(α))−1
∈ F. Now let K2(F) = {X ∈ M2(F) : X∗ = −X}. Then from the

above relation, we see thatΨ2(k) = γk for all k ∈ K2(F). Thus from (5), we have (γ2
− 1)(k1k2 + k2k1) = 0 for

all k1, k2 ∈ K2(F). Therefore, we have either γ2 = 1 or k1k2 + k2k1 = 0 for all k1, k2 ∈ K2(F). If the latter case
prevails, then taking

k1 = k2 =

[
0 1
1 0

]
,

we get the contradiction. Therefore, γ ∈ {1,−1}.
Now let X = k1 + s1 and Y = k2 + s2, where k1, k2 ∈ K2(F) and s1, s2 ∈ F. Then Ψ2(X) = γk1 +Ψ2(s1) and

Ψ2(Y) = γk2 +Ψ2(s2) and hence from (5), we have

(γk1 +Ψ2(s1))(γk2 +Ψ2(s2)) −(γk2 +Ψ2(s2))(−γk1 +Ψ2(s1))
= (s1 + k1)(s2 + k2) − (s2 + k2)(s1 − k1).

Thus (γΨ2(s2) − s2)k1 = 0. Hence we conclude thatΨ2(s) = γs for all s ∈ F. Now for any X ∈ M2(F), we
have X = k + s, where k ∈ K2(F) and s ∈ F. HenceΨ2(X) = Ψ2(s + k) = γs + γk = γX for all X ∈ M2(F).

Therefore, we haveΨ2(X) = γX for all X ∈ AC⊗F, where γ ∈ {1,−1}. Now it can be easily deduced that
Ψ1(a) = βa for all a ∈ AC and for some β ∈ {−1, 1}. Consequently,Ψ(a) = λa for all a ∈ A, where λ ∈ {−1, 1}.
This completes the proof of the theorem.

Theorem 2.3. LetA be a prime ring with a non identity involution ‘∗’ and let Φ : A→A be a map satisfying

[Φ(a), b]∗ = [a,Φ(b)]∗ (6)

for all a, b ∈ A. Then there exists λ∗ = λ ∈ C such that Φ(a) = λa for all a ∈ A.

Proof. First we prove Φ is additive. For every a, b, c ∈ A, we have

[Φ(a + c) −Φ(a) −Φ(c), b]∗ = [Φ(a + c), b]∗ − [Φ(a), b]∗ − [Φ(c), b]∗
= [a + c,Φ(b)]∗ − [a,Φ(b)]∗ − [c,Φ(b)]∗
= 0.

Applying Lemma 2.1, we infer that Φ(a+ b) = Φ(a)+Φ(b) for all a, b ∈ A, that is, Φ is additive. Now (6), can
be rewritten as

aΦ(b) + bΦ(a)∗ −Φ(a)b −Φ(b)a∗ = 0 (7)
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for all a, b ∈ A. Now we proceed by considering the following two cases:-
Case 1. deg(A) > 2.
In this case by [4, Corollary 5.12 and Theorem 3.25], A is (∗, 2)-free subring of Qml(A). Thus, there

exists q ∈ Qml(A) such that Φ(b) = qb for all b ∈ A. On the other hand there exists q1 ∈ Qml(A) such that
Φ(b) = bq1 for all b ∈ A. Thus qb = bq1 for all b ∈ A. By [3, Theorem 6.4.1],A and Qml(A) satisfy the same
GPIs. So putting b = 1 in the last relation, we see that q1 = q ∈ C. Hence from (7), we get (q∗ − q)ba∗ = 0 for
all a, b ∈ A. This provides q∗ = q.

Case II. deg(A) ≤ 2. In this case by [24, Theorem 2],Z(A) , {0}.
Subcase (i): α∗ , α for some α ∈ Z(A)
Setting a = α in (7), we find that Φ(b) = qb + bq∗ for all b ∈ A, where q = Φ(α)

α−α∗ ∈ AC. Utilizing this in (7), we
get

aqb + abq∗ + ba∗q∗ + bqa∗ = qab + aq∗b + qba∗ + bq∗a∗ (8)

for all a, b ∈ A. Replacing a by α∗a in (8), we get

α∗aqb + α∗abq∗ + αba∗q∗ + αbqa∗ = α∗qab + α∗aq∗b + αqba∗ + αbq∗a∗ (9)

for all a, b ∈ A. Also from (8), we have

αaqb + αabq∗ + αba∗q∗ + αbqa∗ = αqab + αaq∗b + αqba∗ + αbq∗a∗ (10)

for all a, b ∈ A. Subtracting (10) from (9), we find that

[a, q]b + a[b, q∗] = 0

for all a, b ∈ A. Now by [3, Theorem 6.4.1], A and Qml(A) satisfy the same GPIs. Therefore putting b = 1,
in the last expression, it follows that q ∈ C. Hence Φ(a) = λa for all a ∈ A, where λ = q + q∗ ∈ C.
Subcase (ii). α∗ = α for all α ∈ Z(A). Since ‘∗′ is a non identity involution, we must have deg(A) = 2. Let
α ∈ Z(A) and a, b ∈ A. Then, we have

[Φ(αa) − αΦ(a), b]∗ = [Φ(αa), b]∗ − α[Φ(a), b]∗
= [αa,Φ(b)]∗ − α[a,Φ(b)]∗
= 0.

Therefore by Lemma 2.1, it follows that Φ(αa) = αΦ(a). Thus Φ is aZ(A)-linear map. Now, any element of
AC is of the form a

α , where a ∈ A and 0 , α ∈ C. So the map a
α 7→

Φ(a)
α is an extension of Φ toAC, which we

again denote by Φ. Let F be the algebraic closure of C. Then Φ can be extended uniquely toAC ⊗ F, again
denoted by Φ, by defining

Φ(
∑

i

ai ⊗ αi) =
∑

i

Φ(ai) ⊗ αi

for ai ∈ AC and αi ∈ F. Moreover, ‘∗’ can also be extended to an involution onAC⊗C F, denoted by ‘∗′ also
and is given by (∑

i

ai ⊗ αi

)∗
=

∑
i

a∗i ⊗ αi.
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Hence for any ai, b j ∈ AC and αi, β j ∈ F, we have[
Φ(

∑
i ai ⊗ αi),

∑
j a j ⊗ β j

]
∗
=

[∑
i

Φ(ai) ⊗ αi,
∑

j

b j ⊗ β j

]
∗

=
∑

i

∑
j

[
Φ(ai), b j

]
∗
⊗ αiβ j

=
∑

i

∑
j

[
ai,Φ(b j)

]
∗
⊗ αiβ j

=
[∑

i

ai ⊗ αi,
∑

j

Φ(b j) ⊗ β j

]
∗

=
[∑

i

ai ⊗ αi,Φ(
∑

j

b j ⊗ β j)
]
∗
.

Therefore, we have [Φ(a), b]∗ = [a,Φ(b)]∗ for all a, b ∈ AC ⊗ F. Since AC ⊗ F � Mn(F), where n =deg(A).
Thus, we have

[Φ(X),Y]∗ = [X,Φ(Y)]∗ (11)

and

Φ(X)(X + X∗) = X(Φ(X) + Φ(X)∗) (12)

for all X,Y ∈ M2(F). Firstly, assume that ‘∗’ is the symplectic involution. Then, putting X = e11 in (12), we
find that Φ(e11) = ηe11 for some η ∈ F. Similarly, it can be seen that Φ(e22) = βe22 for some β ∈ F. Now,
putting X = e11 and Y = e22 in (11), we get η = β. Also taking X = e12 in (12), we find that

Φ(e12) =
(

u v
w −u

)
.

Next setting X = e11 and Y = e12 in (11), we get u = 0. Finally, putting X = e12 and Y = e22 in (11), give v = η
and w = 0. Similarly, it can also be checked that Φ(e21) = ηe21. Thus Φ(X) = ηX for all X ∈ M2(F), where
η ∈ F.

Secondly, assume that ‘∗’ is the transpose involution. Then taking X = e11 and Y = e12 in (11), we find
that

Φ(e11) =
(
ϕ 0
0 ν

)
and Φ(e12) =

(
ζ θ
0 δ

)
with θ + ν = ϕ. Now setting X = e12 in (12), we see that ζ = δ = 0. Also putting X = e12 and Y = e11 in (11),
we get ν = 0. Hence Φ(e11) = θe11 and Φ(e12) = θe12.

Similarly, it can also be verified thatΦ(e22) = ζe22 andΦ(e21) = ζe21 for some ζ ∈ F. Finally, taking X = e12
and Y = e21 in (11), we find that θ = ζ. Consequently, Φ(X) = ζX for all X ∈ M2(F).

Therefore from the above discussions, we have Φ(X) = ηX for all X ∈ AC ⊗ F, where η ∈ F. Choose a
basis ν1, ν2, ... for F over C with ν1 = 1. Write η = λ1ν1 + λ2ν2 + · · · for some λ1, λ2, ... ∈ C. Then for every
a ∈ A, we have Φ(a) ⊗ 1 = λ1a ⊗ ν1 + λ2a ⊗ ν2 + · · · . Hence (Φ(a) − λ1a) ⊗ ν1 − λ2a ⊗ ν2 + · · · = 0. Therefore,
we have Φ(a) = λa for all a ∈ A, where λ = λ1 ∈ C and this completes the proof.

As a corollary of the above result we have the following characterization of skew Lie centralizers on prime
rings.

Corollary 2.4. LetA be a prime ring with a non identity involution ‘∗’ and letΦ : A→A be a skew Lie centralizer.
Then there exists λ∗ = λ ∈ C such that Φ(a) = λa for all a ∈ A.
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3. Applications to Some Operator Algebras

As an application of the results in the previous section, we will characterize strong skew commutativity
preserving maps and skew Lie centralizers on the standard operator algebras acting on Hilbert spaces and
factor von Neumann algebras. Throughout this section all algebras and vector spaces will be over the
complex field C.
Standard operator algebras: LetH be a real or complex Banach space and let L(H) and F (H) denote the
algebra of all bounded linear operators onH and the ideal of all finite rank operators inL(H) respectively.
Recall that a standard operator algebra is any subalgebra A(H) of L(H) such that A(H) contains the
identity operator and F (H) ⊆ A(H) . It is clear that L(H) is a standard operator algebra. Let us point out
that any standard operator algebra is prime, which is a consequence of a Hahn-Banach theorem. We denote
by A∗ the adjoint operator of A ∈ L(H). According to the results obtained in the previous section, we have
the following corollaries.

Corollary 3.1. Let S be a self-adjoint standard operator algebra in a Hilbert spaceH . Suppose that χ : S → S is a
surjective map. Then χ is strong skew commutativity preserving map if and only if χ(a) = λa for all a ∈ S, where
λ ∈ {1,−1}.

Corollary 3.2. Let S be a self-adjoint standard operator algebra in a Hilbert space X. Then a map χ : S → S is a
skew Lie centralizer if and only if χ(a) = λa for all a ∈ S, where λ ∈ R.

Factor von Neumann algebras: Let H be a Hilbert space. Recall that a von Neumann algebraM is a
subalgebra of B(H) which satisfies the double commutant property, that is, M′′ = M where M′ = {T ∈
B(H) : TA = AT for allA ∈ M} andM′′ = (M′)′. It is clear that a von Neumann algebra is unital. A von
Neumann algebraM is called a factor von Neumann algebra ifZ(M) = CI. Factor von Neumann algebras
are unital prime algebras.

Corollary 3.3. Let N be a factor von Neumann algebra and let χ : N → N be a surjective map. Then χ is strong
skew commutativity preserving map if and only if χ(a) = λa for all a ∈ N , where λ ∈ {1,−1}.

Corollary 3.4. Let N be a factor von Neumann algebra. Then a map ψ : N → N is a skew Lie centralizer if and
only if ψ(a) = λa for all a ∈ N , where λ ∈ R.
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