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Abstract. A nonstandard proof of a generalization of Karamata uniform convergence theorem for slowly
varying functions is presented. Properties of a related operator L and its connection with slowly varying
functions are discussed.

1. Introduction

This work is inspired by the possibility of application of the theory of regularly varying functions in
study of asymptotics of cosmological parameters. Our particular aim was to consider the asymptotics of
the expansion scale factor a(t) in the ΛCDM (Lambda cold dark matter) model, see [8]. It appeared that
the mathematical behavior of the scale factor a(t) in certain epochs of evolution of the Universe is very
connected to the properties of regularly varying functions. Some works in this area are [11], [13], [14] and
[18]. For that cause, we extracted and studied certain general properties of regularly varying functions
appearing in our cosmological studies which might be of an interest by themselves. Obtained results on
these properties are presented in this paper.

We shall occasionally use here the methods of nonstandard analysis, as we did in [9] and [10]. Somewhat
extended explanation of notions from nonstandard analysis is given so that a non-specialists in this area
can read the paper, too. Only basic notions from model theory of first order logic will be assumed, see [3].
For more details of this subject one may consult [4], [12] and [19]. Some more recent papers on applications
of nonstandard analysis are [2], [5], [6], [15].

If R stands for the field of real numbers with some added functions and relations, then R∗ denotes a
nonstandard extension of R. We remind that R ≺ R∗, i.e. R is elementary embedded in R∗. In other words
all first order properties expressed in the expanded language L = {+, ·,≤} ∪ {s : s ∈ S}, where S is the set of
constants from R and added functions and relations, are preserved from R to R∗ and vice versa. We call it
the transfer principle. Here s is the name of an entity s from S. The symbol s is interpreted as s in R, i.e.
sR = s, while s∗ = sR∗ . Due to R ≺ R∗ if φ is a sentence of L, then R |= φ if and only if R∗ |= φ, where |= is the
satisfaction relation. If φ = φ(s1, s2, . . . sn), we shall often write R∗ |= φ(s1

∗, s2
∗, . . . , sn

∗) instead of R∗ |= φ. For
easier reading we shall omit in some cases the star in s∗ if this does not lead to ambiguity, for example in
+∗, ≤∗, etc.
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We use the same symbols for the structures and their domains, e.g. N denotes the set of natural numbers
(non-negative integers) and the structure of natural numbers, too. Infinitesimal is an element ε ∈ R∗ that
is infinitely close to 0, i.e. for all n ∈ N+, |ε| < 1/n. The symbol µ(0) stands for the set of all infinitesimals
and is called the monad of zero. If a − b is an infinitesimal, then we write a ≈ b. An element H ∈ N ∗ \ N is
a positive infinite integer if for all n ∈ N , H > n, while a ∈ R∗ is finite if for all infinite positive integers H,
|a| < H. Elements ofR∗ that are not finite are called infinite. LetR∗fin denote all finite elements ofR∗. Then for
b ∈ R∗fin there is a ∈ R and an infinitesimal ε such that b = a+ ε. Then st(b) = a, where st is the standard part
function st : R∗fin → R. We remind that st is a homomorphism from the field R∗fin to R and for continuous
functions as well. It is convenient to extend st to infinite elements of R∗, taking for positive infinite H ∈ R∗,
st(H) = +∞ and st(−H) = −∞. Monad of b ∈ R is µ(b) = µ(0) + b. It is convenient to use the quasi-order ≲
on R∗ defined by x ≲ y, x, y ∈ R∗ if and only if x ≤∗ y or x ≈ y. If φ(x) is a predicate formula which defines
a set X ⊆ R, then φ∗(x), obtained by starring entities over R appearing in φ, defines an internal set X∗ ⊆ R∗

associated to X. On internal subsets can be defined a finite-additive measure which can be extended by
use of Caratheodory extension theorem to σ-additive measure on R∗. This measure is called Loeb measure
which is naturally related to Lebesgue measure. For other notation and terminology see [3], [19], [12].

The symbol
∧

denotes the universal quantifier, while
∨

stands for the existential quantifier. For example,
for F : R × I→ R, I ⊆ R, we have

lim
x→+∞

F(x,u) = 0 for all u ∈ I if and only if

R |=
∧
u∈I

∧
ε>0

∨
x0

∧
x>x0

|F(x,u)| < ε. (1)

lim
x→+∞

F(x,u) = 0 uniformly for u ∈ I if and only if

R |=
∧
ε>0

∨
x0

∧
x>x0

∧
u∈I

|F(x,u)| < ε. (2)

A real function F is said to be regularly varying at positive infinity if it is real-valued, positive and
measurable on [a,+∞), for some a > 0, and if for each λ > 0

lim
x→+∞

F(λx)
F(x)

= λρ (3)

for some ρ, −∞ < ρ < +∞.
Number ρ is called the index of regular variation. If ρ = 0, F is called slowly varying, or SV function.

Notions of slowly varying functions and regular variations were introduced by Jovan Karamata [7]. Books
[1] and [16] give detailed exposition of the theory of regular variation and slowly varying functions. The
following theorem which refers to slowly varying functions is fundamental in this theory.

Theorem 1.1. (The Uniform Convergence Theorem, J. Karamata). If F is a slowly varying function, then for
every fixed [a, b], 0 < a < b < +∞, the relation (3) holds uniformly with respect to [a, b].

We shall prove a generalization of the linear variant of this theorem using nonstandard methods. The
linear form is obtained by transformation f (x) = ln F(ex).

2. Regular variation in nonstandard analysis

First we prove a lemma on uniform convergence relative to a set I.

Lemma 2.1. Let F : R × I → R, I ⊆ R. Then limx→+∞ F(x,u) = 0 uniformly with respect to u ∈ I if and only if for
all positive infinite x ∈ R∗, u ∈ I∗, F∗(x,u) ≈ 0.
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Proof (⇒) Suppose limx→+∞ F(x,u) = 0 uniformly for u ∈ I, i.e. (2) holds. Let ε ∈ R+ be arbitrary and
x0 ∈ R so that R |=

∧
x>x0

∧
u∈I |F(x,u)| < ε. By transfer principle, R∗ |=

∧
x>x0

∧
u∈I∗ |F∗(x,u)| < ε. Hence, for

all positive infinite x ∈ R∗, R∗ |=
∧

u∈I∗ |F∗(x,u)| < ε, and so for all u ∈ I∗, |F∗(x,u)| < ε. As ε ∈ R+ was chosen
arbitrarily, it follows F∗(x,u) ≈ 0.
(⇐) Suppose for all positive infinite x ∈ R∗, u ∈ I∗, F∗(x,u) ≈ 0. Then for arbitrary ε ∈ R+, all positive
infinite x and all u ∈ I∗, |F∗(x,u)| < ε. Choose any positive infinite x0. As x > x0 is also positive infinite
it follows R∗ |=

∧
x>x0

∧
u∈I∗ |F∗(x,u)| < ε. Hence for all ε ∈ R+, R∗ |=

∨
x0

∧
x>x0

∧
u∈I∗ |F∗(x,u)| < ε, i.e.

R |=
∨

x0

∧
x>x0

∧
u∈I |F(x,u)| < ε. It follows R |=

∧
ε>0

∨
x0

∧
x>x0

∧
u∈I |F(x,u)| < ε, so limx→+∞ F(x,u) = 0

uniformly in respect to u ∈ I. □

Corollary 2.2. limx→+∞ F(x,u) = 0 is not uniformly convergent relative to u ∈ I if and only if there is a positive
infinite x∗, u∗ ∈ I∗ and a ∈ R+ such that |F∗(x∗,u∗)| > a.

In contrast to this corollary, note that for the ordinary convergence, limx→+∞ F(x,u) = 0 if and only if for
all positive infinite x ∈ R∗, u ∈ I, F∗(x,u) ≈ 0.

Now we prove a generalization of Karamata uniform convergence theorem for slowly varying functions.
In the next proof we assume the notion and properties of Loeb measure, a natural extension of Lebesgue
measure into the nonstandard universe. If A ⊆ R is a measurable, λ(A) denotes Lebesgue measure of A,
while ℓ(A) denotes measure of a Loeb measurable set A ⊆ R∗ in the nonstandard universe. The following
well-known Fisher’s lifting theorem gives a connection between Lebesgue and Leobe measure and basically
states that st−1 : R → R∗fin preserves measure.

Theorem 2.3. If A is a Lebesgue measurable subset of a finite closed interval of R, then

λ(A) = ℓ(st−1(A)). (4)

Now we proceed to the proof of the main theorem in Sec. 2, a generalization of Karamata uniform
convergence theorem.

Theorem 2.4. Assume H : S×R → R+ is a measurable, where S = [d,+∞]R for some d ∈ R, I = [0, 1]R and suppose
H satisfy the following inequality on its domain:

H(x,u) ≤ H(x + u, v) +H(x,u + v). (5)

Further, let m : S → R
+ be a measurable and nondecreasing function and G(x,u) = H(x,u)m(x). Then, if

limx→+∞ G(x,u) = 0 for all u ∈ R, then this convergence is uniform relative to u ∈ I.

Proof Assume limx→+∞ G(x,u) = 0 for all u ∈ R, but this convergence is not uniform relative to u ∈ I.
Then by Corollary 2.2 there are positive infinite x∗0 ∈ R

∗, u∗0 ∈ I∗ and a ∈ R+ such that G∗(x∗0,u
∗

0) > a. Let
[0, 2]∗ = [0, 2]R∗ and define

U = {u ∈ [0, 2]∗ |G∗(x∗0,u) < a/3}
V = {v ∈ [0, 2]∗ |G∗(x∗0 + u∗0, v) < a/3}.

(6)

As sets U and V are internal and G is λ-measurable, U and V are ℓ-measurable. For positive infinite x and
u ∈ [0, 2] we have G∗(x,u) ≈ 0, hence [0, 2] ⊆ U ∩ V ⊆ [0, 2]∗. Then Fisher’s theorem implies

ℓ(U) = 2, ℓ(V) = 2. (7)

Let V0 = V + u∗0. As measure ℓ is invariant under translation, we have ℓ(V0) = ℓ(V), i.e.

ℓ(V0) = 2. (8)

Further, U,V0 ⊆ [0, 3]∗, hence U ∩ V0 , ∅, as otherwise
3 = ℓ([0, 3]) ≥ ℓ(U ∪ V0) = 4, a contradiction.
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So, let b∗ ∈ U ∩ V0. Hence, b∗ ∈ U and for some v∗ ∈ V, b∗ = v∗ + u∗0 and so v∗ = b∗ − u∗0. Then
As v∗ ∈ V, we have G∗(x∗0 + u∗0, v

∗) < a/3,
As b∗ ∈ U, we have G∗(x∗0, b

∗) < a/3.
Hence,

H∗(x∗0 + u∗0, v
∗)m(x∗0 + u∗0) < a/3 (9)

and

H∗(x∗0, b
∗)m(x∗0) < a/3. (10)

By the inequality (5) we have

H∗(x∗0,u
∗

0) ≤ H∗(x∗0 + u∗0, v
∗) +H∗(x∗0,u

∗

0 + v∗)
= H∗(x∗0 + u∗0, v

∗) +H∗(x∗0, b
∗)

(11)

As m(x) is nondecreasing we have m(x∗0) ≤ m(x∗0 + u∗0), so

H∗(x∗0,u
∗

0)m(x∗0) ≤ H∗(x∗0 + u∗0, v
∗)m(x∗0 + u∗0) +H∗(x∗0, b

∗)m(x∗0), (12)

i.e.

a < G∗(x∗0,u
∗

0) ≤ G∗(x∗0 + u∗0, v
∗) + G∗(x∗0, b

∗) < 2a/3, (13)

a contradiction. □
The uniform convergence is preserved under translation and homothety, hence we have:

Corollary 2.5. The previous theorem is still true if the interval I = [0, 1]R is replaced by any finite interval I′ = [a, b]R,
0 < a < b.

If we take H(x,u) = | f (x + u) − f (x)| and m(x) = 1, where f (x) = ln(F(ex)) and F(x) is a slowly varying
function, we immediately obtain Karamata theorem 1.1.

3. OperatorL

We introduce operatorL, which have an important role in the analysis of regular variation. The operator
Lmay be defined on the set of Lebesgue integrable functions, but due to the nature of physical parameters
that are studied in this paper, our attention will be turned only towards to its restriction to at least twice
differentiable real functions, i.e to the space C2(R).

Definition 3.1. L(h)(x) =
1

ln(x)

∫ x

x0

h(t)
t

dt, x0 > 1, h ∈ C2(R).

As we are interested in asymptotics at positive infinity, the exact value of x0 is not of some importance.
We may even assume, with a proper adaptation of the argument function h, that x0 = 1. Namely, if the
function h(x) in the above definition of L is bounded in some neighborhood of 1, what is in this paper
almost of the only interest, then by the l’Hopital’s rule

lim
x→1
L(h)(x) = h(1), (14)

so we can take in the above definition x0 = 1. From now on we assume x0 = 1, if it is not otherwise specified.
Obviously, L is a linear operator over the space C2(R). This operator has many interesting properties and
some of them reflect more or less well-known theorems on regularly varying functions.

It is convenient to denote by Rα the class of regularly varying functions of index α. Hence R0 = SV is the
class of all slowly varying functions. ByZ0 we shall denote the class of zero functions at +∞, i.e. ε ∈ Z0 if
and only if lim

t→+∞
ε(t) = 0.
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Theorem 3.2. Let L′ denote the restriction of L to the appropriate domain. Then

1. L′ : Z0 →Z0.
2. L′ : R0 → R0.
3. L′ : Rα → Rα, α ∈ R.
4. L′ : B(R)→ B(R), where B(R) is the set of real bounded functions.

Proof. The statement 1. may be obtained by use of l’Hopital’s rule. Statement 2. immediately follows from
the statements 1.5.9a and 1.5.9b in [1]. Statement 3. follows from theorems 1.5.10 and 1.5.11 in [1]. Finally,
if h is bounded, then there are a and b such that a ≤ h(x) ≤ b, x > 1. Hence a ≤ L(h)(x) ≤ b, for x > 1. □

The following proposition gives us one interesting property of the linear operator L.

Proposition 3.3. Linear operator L is invertible.

Proof. Let f (x) = L(1)(x), where 1 ∈ C2(R). By definition of the operator L, it follows

f (x) ln(x) =
∫ x

1

1(t)
t

dt. (15)

Differentiating the equation (15) over variable x, we infer

f (x)
x
+ ˙f (x) ln(x) =

1(x)
x
. (16)

From the equation (16) we obtain

1(x) = f (x) + x ˙f (x) ln(x), (17)

what proves the proposition. □

Limit limx→+∞L(h)(x) acts as a proper generalization of limx→+∞ h(x). Namely, by easy application of
l’Hopital’s rule we have

Proposition 3.4. Let c be a real number and suppose limx→+∞ h(x) = c. Then limx→+∞L(h)(x) = c.

The example h(x) = sin(x) shows that limx→+∞L(h)(x) is a proper extension of ordinary limit. Namely, h(x)
diverges at positive infinity, while limx→+∞L(h)(x) converges.

If a slowly varying function L(x) is given by integral representation (see [7])

L(x) = 1(x)e
∫ x

x0

ε(t)
t dt
, where ε ∈ Z0 and 1(x)→ 10 as x→ +∞,

then

ln(L(x))
ln(x)

=
ln(1(x))

ln(x)
+L(ε)(x),

wherefrom by previous two propositions

ln(L(x))
ln(x)

→ 0 as x→ +∞. (18)

This statement can be found already in [16]. Now we give an application to asymptotics of certain integrals.

Theorem 3.5. Let h(x) be a positive and M-bounded Lebesgue integrable function, M > 0 and λ > 1. Assume

lim
x→+∞

(L(h)(λx) − L(h)(x)) ln(x) = 0 (19)

uniformly with respect to λ. Then∫ λx

x

h(t)
t

dt ≈
ln(λ)

ln(λ) + ln(x)

∫ x

1

h(t)
t

dt. (20)
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Proof Let

I =
ln(x)

ln(λ) + ln(x)

∫ λx

1

h(t)
t

dt −
∫ x

1

h(t)
t

dt. (21)

First observe that

ln(x)
ln(λ) + ln(x)

∫ λx

1

h(t)
t

dt =∫ x

1

h(t)
t

dt +
∫ λx

x

h(t)
t

dt −
ln(λ)

ln(λ) + ln(x)

∫ λx

1

h(t)
t

dt,

(22)

so

I =
∫ λx

x

h(t)
t

dt −
ln(λ)

ln(λ) + ln(x)

∫ λx

1

h(t)
t

dt. (23)

Further,∫ λx

1

h(t)
t

dt =
∫ x

1

h(t)
t

dt +
∫ λx

x

h(t)
t

dt (24)

and ∫ λx

x

h(t)
t

dt ≤M
∫ λx

x

dt
t
=M ln(λ). (25)

Hence,

ln(λ)
ln(λ) + ln(x)

∫ λx

x

h(t)
t

dt ≤
M ln(λ)2

ln(λ) + ln(x)
→ 0 as x→ +∞. (26)

Hence, by (23) and (26)

I =
∫ λx

x

h(t)
t

dt −
ln(λ)

ln(λ) + ln(x)

∫ x

1

h(t)
t

dt + ε(x), (27)

where ε(x)→ 0 as x→ +∞. By (19) and the assumption that this convergence is uniform with respect to λ,
there is ξ(x) which does not depend on λ so that I = ξ(x) and ξ(x)→ 0 as x→ +∞. Hence∫ λx

x

h(t)
t

dt −
ln(λ)

ln(λ) + ln(x)

∫ x

1

h(t)
t

dt + ε(x) = ξ(x), (28)

so ∫ λx

x

h(t)
t

dt ≈
ln(λ)

ln(λ) + ln(x)

∫ x

1

h(t)
t

dt. (29)

□
The following theorem gives us a better insight in the convergence of the limit appearing in the previous

theorem.

Theorem 3.6. Let f (x) be a measurable function defined on [a,+∞) for some real number a and S ⊆ R+ a measurable
set of positive measure. If for all λ ∈ S

lim
x→+∞

( f (λx) − f (x)) ln(x) = 0, (30)

then (30) holds for all λ ∈ R+.
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In the proof of the theorem we follow ideas presented in [16] and it is achieved by proving next lemmas.

Lemma 3.7. Let f (x) and S be as in the theorem 3.6 and suppose (30) for all λ ∈ S. Then there are a, b ∈ R+ such
that a < b and [a, b] ⊆ S.

Proof of Lemma We show

λ, µ ∈ S impliesλµ ∈ S. (31)

Suppose λ, µ ∈ S. In the following expression

( f (λµx) − f (x)) ln(x) = ( f (λµx) − f (λx)) ln(x) + ( f (λx) − f (x)) ln(x) (32)

we have limx→+∞( f (λx) − f (x)) ln(x) = 0. Further,

lim
x→+∞

( f (λµx) − f (λx)) ln(λx) = lim
t→+∞

( f (µt) − f (t)) ln(t) = 0, (33)

and for λ > 1, ln(x) < ln(λx), so

|( f (λµx) − f (λx)) ln(x)| ≤ |( f (λµx) − f (λx)) ln(λx)|, (34)

so limx→+∞ |( f (λµx) − f (λx)) ln(x)| = 0. By (32) it follows

lim
x→+∞

( f (λµx) − f (x)) ln(x) = 0 (35)

so, λµ ∈ S. Hence, S is closed under multiplication, therefore, by Steinhaus lemma [17], there are a, b ∈ R+,
a < b, so that [a, b] ⊆ S. □

In the next lemma we show that the convergence interval [a, b] can be expanded to (0,+∞).

Lemma 3.8. Let f (x) be as in the theorem and suppose (30) for all λ ∈ [a, b] for some 0 < a < b. Then (30) holds for
all λ ∈ R+.

Proof of Lemma Let λ ∈ [a, b] and µ ∈ R+ such that a ≤ λ/µ ≤ b. Further,

( f (λx) − f (x)) ln(x) =( f
(
µ
λx
µ

)
− f

(
λx
µ

)
) ln(x)+

( f
(
λx
µ

)
− f (x)) ln(x).

(36)

By assumptions on λ and µ, we have

lim
x→+∞

( f (λx) − f (x)) ln(x) = 0, lim
x→+∞

( f
(
λx
µ

)
− f (x)) ln(x) = 0, (37)

hence, by (36)

lim
x→+∞

( f
(
µ
λx
µ

)
− f

(
λx
µ

)
) ln(x) = 0 (38)

For x > λ/µwe have

|( f
(
µ
λx
µ

)
− f

(
λx
µ

)
) ln(x)| ≥ |( f

(
µ
λx
µ

)
− f

(
λx
µ

)
) ln(λ/µ)|, (39)
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so limx→+∞( f
(
µλx
µ

)
− f

(
λx
µ

)
) ln(λ/µ) = 0. But

lim
t→+∞

( f (µt) − f (t)) ln(t) = lim
x→+∞

( f
(
µ
λx
µ

)
− f

(
λx
µ

)
) ln

(
λx
µ

)
=

lim
x→+∞

( f
(
µ
λx
µ

)
− f

(
λx
µ

)
) ln(x)+

lim
x→+∞

( f
(
µ
λx
µ

)
− f

(
λx
µ

)
) ln

(
λ
µ

)
= 0

(40)

i.e. limt→+∞( f (µt) − f (t)) ln(t) = 0 for a/b ≤ µ ≤ b/a. Hence we proved∧
a≤λ≤b

lim
x→+∞

( f (λx) − f (x)) ln(x) = 0 implies∧
a/b≤λ≤b/a

lim
x→+∞

( f (λx) − f (x)) ln(x) = 0
(41)

Iterating (41) n times, we obtain for arbitrary positive integer n∧
( a

b )n
≤λ≤( b

a )n

lim
x→+∞

( f (λx) − f (x)) ln(x) = 0. (42)

As a/b < 1 and b/a > 1 and so limn→+∞(a/b)n = 0 and limn→+∞(b/a)n = +∞, we infer∧
λ∈R+

lim
x→+∞

( f (λx) − f (x)) ln(x) = 0. (43)

□
Combining lemmas 3.7 and 3.8, we obtain a proof of Theorem 3.6.
The following theorem gives us one interesting property of slowly varying functions.

Theorem 3.9. Assume L(x) is a slowly varying function. Then there are measurable functions ξ(x) ∈ Z0 and 1(x),
so that L(x) = 1(x)xξ(x), where 1(x)→ 10 as x→ +∞, 10 is a real positive constant.

Proof. Suppose that L(x) is a slowly varying function. By integral representation theorem for SV functions,
it follows that there are measurable functions 1(x), ε ∈ Z0 and b ∈ R so that

L(x) = 1(x)e
∫ x

b
ε(t)

t dt, x ≥ b, (44)

and 1(x)→ 10 as x→ +∞, 10 is a real positive constant, wherefrom for b = 1 we directly infer

L(x) = 1(x)xL(ε)(x). (45)

Since ε(x) ∈ Z0, by Proposition 3.4 follows that L(ε)(x) ∈ Z0, what proves the theorem. □

The converse does not hold. If we suppose that f (x) = 1(x)xξ(x) is a SV function, where 1(x) → 10 as
x→ +∞, 10 is a real positive constant, then for all λ > 0 we have

1 = lim
x→+∞

f (λx)
f (x)

= lim
x→+∞

1(λx)(λx)ξ(λx)

1(x)xξ(x)
= lim

x→+∞

1(λx)λξ(λx)xξ(λx)

1(x)xξ(x)
. (46)

Since λ > 0, then limx→+∞ 1(λx) = limx→+∞ 1(x) = 10, and limx→+∞ ξ(λx) = limx→+∞ ξ(x) = 0. Therefore, the

limit value in (46) depends only on the limit limx→+∞
xξ(λx)

xξ(x)
. Furthermore we have

1 = lim
x→+∞

xξ(λx)

xξ(x)
= lim

x→+∞
xξ(λx)−ξ(x) = lim

x→+∞
exp((ξ(λx) − ξ(x)) ln(x)), (47)
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wherefrom for every λ > 0

lim
x→+∞

(ξ(λx) − ξ(x)) ln(x) = 0. (48)

However, that does not need to be the case, as the following example shows. Let ξ(x) = sin(x)/ln(x) and
λ = π. Taking the limit (48) over positive integers n, we obtain

lim
n→+∞

(sin(πn)/ln(πn) − sin(n)/ln(n)) ln(n) = lim
n→+∞

(− sin(n)) , (49)

which does not exist, contradicting (48). Therefore, not all functions
f (x) = 1(x)xξ(x), where 1(x) → 10 as x → +∞, 10 is a real positive constant, have to be slowly varying.
Next proposition gives a sufficient and necessary condition for representation of normalized SV functions
in Theorem 3.9.

Theorem 3.10. Let ξ ∈ Z0, 0 < a < b and I = [a, b]. Then F(x) = xξ(x) is a SV function if and only if

lim
x→+∞

(ξ(λx) − ξ(x)) ln(x) = 0 (50)

uniformly with respect to λ ∈ I.

Proof. First we prove Claim: Suppose H(x,u) is a real function and
limx→+∞H(x,u) = 1 uniformly with respect to u ∈ I ⊆ R. Then

lim
x→+∞

ln(H(x,u)) = 0 (51)

uniformly with respect to u ∈ I.
Suppose limx→+∞H(x,u) = 1 uniformly with respect to u ∈ I. Then for positive infinite x and u ∈ I∗,
H∗(x,u) = 1 + ε, ε ∈ µ(0), and so ln(H∗(x,u)) = ε′ for some ε′ ∈ µ(0). Therefore, by Lemma 2.1 the
convergence in question of ln(H(x,u)) is uniform. □

Now we proceed to the proof of Theorem 3.10.

(⇒) Assume F(x) = xξ(x) is a SV function. Then

lim
x→+∞

F(λx)/F(x) = 1 for all λ ∈ R+, (52)

i.e. limx→+∞ λξ(λx)e(ξ(λx)−ξ(x)) ln(x) = 1. By Theorem 1.1 (Karamata Uniform Convergence Theorem) it follows
limx→+∞ e(ξ(λx)−ξ(x)) ln(x) = 1 uniformly with respect to λ ∈ I. By Claim it follows that limx→+∞(ξ(λx) −
ξ(x)) ln(x) = 0 uniformly with respect to λ ∈ I.
(⇐) Assume (50) uniformly with respect to λ ∈ I. Then for positive infinite x and λ ∈ I∗, ξ(λx) = η and due
to the uniform convergence by Lemma 2.1, (ξ(λx) − ξ(x)) ln(x) = ε are infinitesimals, so

F(λx)
F(x)

= λξ(λx)e(ξ(λx)−ξ(x)) ln(x) = ληeε ≈ 1. (53)

Hence limx→+∞ F(λx)/F(x) = 1 and in fact, by Theorem 1.1, this convergence is uniform with respect to λ ∈ I.
□

With a simple modification of above proof, one can prove a variant of the previous theorem for functions
of the form F(x) = 1(x)xξ(x), where 1(x)→ 1 as x→ +∞ and ξ ∈ Z0. We also note that the previous theorem is
still valid if the uniformity condition is omitted. Then Theorem 3.10 would follow from Karamata Uniform
Convergence Theorem.

Example. We illustrate the methods presented in the paper and a use of Theorem 3.10 for construction of a
SV function which varies unboundedly between zero and positive infinity. Erdös gave an example of such
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kind, f (x) = exp((ln x)
1
3 cos((ln x)

1
3 )), see [1]. As far as we know this is the only example of such functions

appearing in the literature.
Before we proceed to the construction let us note few facts about the function F(x) = xξ(x). If ξ(x) is

measurable on [a,+∞] for some a > 0, then obviously 1(x) = ln(x)ξ(x) is also measurable. Then we see
that the composition F(x) = eln(x)ξ(x) of the exponential function and the measurable function 1(x) is also
measurable. Further, F(x) is positive for x > 0 so the positivity and measurability assumptions for F(x) in
definition of regularly varying functions are fulfilled. The form F(x) = xξ(x) gives us more freedom in the
construction that follows, as ξ(x) may take also the negative values. We also note that if F(x) is SV function,
then limx→+∞ ξ(x) = 0. This follows from ξ(x) = ln(F(x))/ ln(x) and (18). Therefore, the next theorem, a
variant of Theorem 3.10, is meaningful and we shall use it in the construction that follows:

Theorem 3.11. Let ξ(x) be a real-valued function measurable on [a,+∞] for some a > 0. Then F(x) = xξ(x) is a SV
function if and only if

lim
x→+∞

(ln(λx)ξ(λx) − ln(x)ξ(x)) = 0, λ ∈ R+. (54)

The theorem immediately follows from the limit condition for SV functions. Also, we shall use the
following properties of trigonometric and logarithmic functions:

Proposition 3.12. There are real functions k1(t), k2(t), k3(t), t ∈ [1,+∞]R, such that |k1(t)|, |k2(t)|, |k3(t)| ≤ 2 and
the following identities hold for all infinitesimals ε:

sin(x + ε) = sin(x) + k1(ε)ε, x ∈ R∗

cos(x + ε) = cos(x) + k2(ε)ε, x ∈ R∗

ln(x + ε) = ln(x) + k3(ε)ε/x, x ∈ [1,+∞]∗ □

(55)

For nonstandard extensions ki(x)∗ we left the original notation ki(x). These identities follow from
Lagrange Reminder Theorem. For example,

sin(x + ε) = sin(x) cos(ε) + cos(x) sin(ε)
= sin(x)(1 + η1ε) + cos(x)(ε + η2ε) for some η1, η2 ∈ µ(0)
= sin(x) + (sin(x)η1 + cos(x)(1 + η2))ε.

Obviously | sin(x)η1 + cos(x)(1 + η2)| ≤ 2, so the identity for sin(x) in (55) holds. Using ln(x + ε) = ln(x) +
ln(1 + ε/x) we infer the identity for ln(x) in (55) in the similar way.

We shall use in construction an M-bounded function b(x), M > 0, which satisfies

b(x + ε) = b(x) + kb(ε)ε, x ∈ R∗, ε ∈ µ(0), (56)

where kb(x) is m-bounded for some m ∈ R+. As b(x) satisfies (56), b(x) is continuous, hence it is measurable,
too.

Proposition 3.13. Let

F(x) = eln(ln(x))b(ln(ln(x))), b(x) is an M- bounded function satisfying (56). (57)

Then F(x) is a SV function.

Proof. To simplify notation we set u = ln(x), w = ln(u) = ln ln(x), ε = ln(λ)/ ln(x) and omit ∗ in nonstandard
extensions, for example we write b(x) for b∗(x). We see that

F(x) = x
ln(ln(x))b(ln(ln(x)))

ln(x) ,
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so

ξ(x) =
ln(ln(x))b(ln(ln(x)))

ln(x)
.

By Theorem 3.11 it suffices to prove that limx→+∞ σ(x) = 0 for

σ(x) = ln(λx)ξ(λx) − ln(x)ξ(x) = ln(ln(λx))b(ln(ln(λx))) − ln(ln(x))b(ln(ln(x))),

i.e that for each λ ∈ R+ and positive infinite x ∈ R∗, σ(x) ≈ 0. So assume x is positive infinite. Then ε ≈ 0, so

ln(ln(λx)) = ln(ln(x)) + ln(1 + ln(λ)/ ln(x)) = w + ln(1) + k3(ε)ε = w + k3(ε)ε. (58)

As k3(ε)ε ≈ 0, we have

b(ln(ln(λx))) = b(w + k3(ε)ε) = b(w) + kb(k3(ε)ε)k3(ε)ε = b(w) + k0(ε)ε, (59)

where k0(t) = k3(t) · kb(k3(t)t) is a 2m-bounded function. Hence

σ(x) = (w + k3(ε)ε)(b(w) + k0(ε)ε) − wb(w)

= εb(w)k3(ε) + εwk0(ε) + ε2k0(ε)k3(ε)
(60)

As ε, ε2
≈ 0 and b(w)k3(ε), k0(ε)k3(ε) are finite we have

εb(w)k3(ε), ε2k0(ε)k3(ε) ≈ 0. (61)

We have

εw =
ln(λ) ln ln(x)

ln(x)
≈ 0,

hence σ(x) ≈ 0, and the proof of the proposition is finished. □

If we take b(x) = sin(x), then

F(x) = x
ln ln(x) sin(ln ln(x))

ln(x) = eln ln(x) sin(ln ln(x)) (62)

is a SV function for which obviously holds

lim inf
x→+∞

F(x) = 0, lim sup
x→+∞

F(x) = +∞. (63)

Hence, F(x) is a SV function varying between zero and positive infinity.
We also note that we in fact defined the whole class of such functions, as for b(x) we can take for example

any trigonometric polynomial.

Conclusion

We used methods of nonstandard analysis in order to obtain proof of a generalization of Karamata
uniform convergence theorem for slowly varying functions. We introduced operator L and proved its
several properties. Furthermore, the connection between the operator L and slowly varying functions is
derived. Moreover, some properties of slowly varying functions are obtained.
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