Filomat 38:1 (2024), 67-98

Published by Faculty of Sciences and Mathematics,
https://doi.org/10.2298/FIL2401067S

University of Ni§, Serbia
Available at: http://www.pmf.ni.ac.rs/filomat

A
Wy, @“‘
i axs

2,
%,
e,

¥
5
TIprpor®

Estimation of approximation error of a function having its derivatives
belonging to Lipschitz class of order - @ by extended Legendre wavelet
(ELW) method and its applications

Vivek Kumar Sharma?®*, Sonoo Singh?, Rajesh Pandey?, Gyanvendra Pratap Singh?

?Department of Mathematics and Statistics, Deen Dayal Upadhyaya Gorakhpur University, Gorakhpur-273009, India

Abstract. In this paper, the approximation errors of a function having its derivatives belonging to the
Lipschitz class of order - a by the ELW method have been obtained. We have solved various differential
equations like the Hermite differential equation, Riccati differential equation, Blasius equation, radioactive

decay problem by using this method. Also, we have approximated the sum of some specific series that is
not convergent by traditional methods.

1. Introduction

There is the significant importance of analyzing the functions using the Fourier Series, Fourier transform,
and other allied developments. Its interpretation is very useful for studying the number of problems
emerging in different fields of science and technology. But due to certain restrictions on the Fourier
techniques, we cannot apply these techniques to discuss every such problems. One of the reasons behind
it is that the Fourier method depends on exponential functions. Wavelets[5] fit better in dealing such type
of problems, due to its well localized behaviour.

Inrecent years, wavelet analysis has played a very elegant role in the solution of differential, and integral
equations, and some other problems of mathematical analysis. Wavelets are an excellent alternative to the
present traditional methods. There are different types of wavelets available in the literature and the choice
of a particular wavelet in approximating the function depends on the numerical accuracy.

Daubechies[6] proposed the compactly supported wavelets having properties like orthogonality, or-
thonormality, localization property, and dilation property etc. J. Ma. et al. [16], Daz et al. [7], Wells et
al. [24] have discussed the wavelet method given by Daubechies to solve some special types of differential
equations. Vampa et al. [23] presented a hybrid wavelet method for the solution of the boundary value
problem. Han et al. [9], Xiang et al. [25] explained a special wavelet method to solve some problems of
physical science. Some authors like Chang et al. [2], Chen C. E. etal. [3], Hwangetal. [11], Paraskevopoulos
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et al. [17] have applied the shifted Legendre polynomials, Walsh function, shifted Chebyshev polynomials,
Bessel functions respectively for solving various problems of mathematical analysis.

Lal[13] investigated the numerical approximation based upon the ELW to get the solution of some
nonlinear differential equations. Lal and Kumar[14] developed the hybrid Legendre polynomial method
to solve some differential equations associated with real-world problems. Lal and Kumar[15] proposed a
wavelet method depending on the Legendre wavelet for solving the integral equations. Working in the
same direction, in this paper approximation of functions having derivative belonging to Lipschitz class of
order - @ have been obtained by the ELW method. These approximations are used as follows :

1. To solve radioactive decay problem [18].

2. To solve the Riccati differential equation [13].

3. To approximate the sum of some specific series[10] that is not convergent by traditional methods.
4. To solve the Blasius equation [1].

This paper is groomed as follows :

Section 1 is introductory. In section 2, the extended Legendre wavelet, Lipschitz class of order - a,
wavelet approximation have been introduced. In section 3, the approximation errors of a function having
derivative in the Lipschitz class of order - a have been estimated. In Section 4, the detailed proofs of
approximation theorems are given. In section 5, some remarks have been given in the form of theorems.
Section 6 contains the explanation of numerical approximation. Section 7 is concerned with the applications
of the approximation methods. In section 8, conclusions have been given.

2. Definitions and Preliminaries

2.1. The Extended Legendre Wavelets (ELWs)
The ELW on the interval [0, 1) are defined by

® 4 = V2m+ Wil (%t —2n+1), 25 <t<i;
i 0, otherwise

where n = 1,2,...,v* and m is order of the Legendre polynomial, k = 1,2,3,... and f is normalized time.
In the above definition, the polynomials L,(t) are the Legendre polynomials of degree m over the interval
[-1,1] which are defined in [15].

2.2. Extended Legendre Wavelet Expansion

A function g € L%(R) defined over [0, 1) is expanded in terms of ELW series as

g(t) = i f o im(®), (1)

n=1 m=0

where ), = (g,0%)yonL2[0,1] (Razzaghi [19]).
If the above infinite series is truncated then (1) is written as

v M-1

Sum(® =Y Y i) = Ty, 2)

n=1 m=0

M m w6 o)

RO ]T
1,07 71,17 7 T 1L,M=17 72,07 7 T2, M=17

VEQ7 Cvk,M—l
[0 @ a6 W) ) »
and YO(1) = [, 98, . 9, 08, Z,M_l,...,¢vk’0,...,¢vk,M71] .

where C = [C
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2.3. Wavelet Approximation
We define

1
lall, = f (B dt
0

and

2

1
I, = f (1) dt
0

The Wavelet Approximation E, 5 of function g by S 5 of its ELW expansion under the norm ||.||, is defined
by

Epm(g) = inf||lg = Sypl|, (Zygmund[24]).
If Eyi p(9) — 0 as k — 0o, M — oo then Ex y/(g) is called the best wavelet approximation of function g. In
the similarly manner we can define the wavelet approximation under norm |[.||;.

2.4. Lip,[0,1] Class
A function g € Lip, [0,1], forany 0 < a < 1, if

a, vV x,yel0,1].

|l9(0) = 9()| <kaJx—y

3. Theorems

In this paper following new approximation theorems have been proved :

Theorem 3.1. Let g be a differentiable function on the interval [0,1] such that g € Lip, [0,1] and its ELW series
is given by equation (1) with (V*, M)™ partial sums given by equation (2). Then the ELW approximation E,x ; of
function g by its (V*, M) partial sums S« p; of ELW series under norm ||.||, is given by

o(X(1+4%)), M=1;

Evim(g) = 1 1 1
O (v_k (1 + Dayka \/20c+1) (ZM—l)% )’ M=2.

with 0<a<1.

Theorem 3.2. Let g be a function on the interval [0,1] such that g" € Lip, [0,1] and its ELW series is given by
equation (1) with (v, M) partial sums given by equation (2). Then the ELW approximation E x v of g by its (v, M)™
partial sums under norm ||.||, is given by

O(vl—k(1+vl—k(1+v%))), M=12
Exm@ =15(1 (14 1 L), M>3
vk 2evke V2a+1 | (op1-3)3

O<acx<l.

Theorem 3.3. Let g be a function on the interval [0,1] such that g~ € Lip, [0,1] and its ELW series is given by
equation (1) with (vk, M) partial sums is given by equation (2). Then the ELW approximation E.«  of g by its
(%, M) partial sums under norm ||.||, is given by

o(F(1+++%(1+4)), M=123

Jka
Em(g) = 1 1 ) 1
© v (l 2ayka \2q+1 (2M—5)% )’ M= 4.

O<ac<l
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Theorem 3.4. Let g be a differentiable function such that g € Lip, [0, 1] and its ELW approximation Ex ; of g by
S,k under norm ||.||; is given by

i”ng - SkaM”l

Evk,M (9)

Theorem 3.5. Let g be a function on the interval [0, 1] such that g € Lip, [0, 1] and its ELW approximation E.
of g by S« \y under norm ||.||; is given by

Eepm(g) inf Hg - SVk/M“l

4. Proofs
Proof of Theorem(3.1) (For M=1)

The ELW expansion of a function g € L*(R) for M = 1 is

)

g(t) = 3 (B
Let
() = (V)llf(v) ) - g(bx [ =) n—_lst<%.
ieff)(t) = Z{ )Y@ - ZW)XTM;

= Sua() - g(b). €)

K
[Vl = f e (1) dt
1
ok

I
sJi
%;‘:

N

B

Y

= f )t — ()72 (4)
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Next,

)
n,0

e}
I
—

(6 Pt dt

= 1%g(n;(l)+j‘u_q'(nv_kl+8u)01u
0

(where, 0<6<1 and t=u+n_kl).
V

Since

s

v/

‘/17
fgz(t)dt = fgz(u+n1;l)du
0

n—

o

Y

By using Taylor’s theorem, we get

1
2 (n=1 v 3
7 (Vkvk)Jrfuz(g,(ndl
0

using equations(4)-(6), we have

eff)

1 1
3 WK
2 of (n—1 2 X (n=1
) fu (g( " +6u)) du —v fug( " +9u)du
0 0

kir 2
< L+ vl

where,

71

(6)
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Now, taking modulus on both side of I; and simlifying, we get

1 1
K &

MZ
L < fk§u2|9u|2“ du+—1+2M1fk1u2|9u|“ du,
3,3k
0 0
(n—1
o (25 s0)
K ﬁ 2Mky
(2a + 3)vk2a+3) 33k (g 4 B)ykla+d)
< M (1 142
- ﬂ{vﬂ‘“-’- +1ﬁ}'
(say M = max {k2 M? Mlkl} also 1 < 1 < 1 < 1)
’ v "5 2a+3 3 ’
.M 141 2
< mlewl
Similarly,
M’ 1
s e )

< 1 <1<1)
Ta+2 2 ’

Putting the values of || and || in equation (7), we get

2 M 1)? M"? 1?2
7 = e ) e e )

(say, M = max {k1, M1} also,

QI

IA

M +M"? 140 2

13k { VT"‘}
M 1) A
= W{l—i_%} , (Sﬂy, M =M +M )

Next, taking the norm of both side of equation (3) and using above equation, we have

IA

Vk
|2
En 5
n=1
Vk 1"

M1 2
> 1

l7 = ..l

IA

1 1
lo=5aall, = 0% (1+%))

Hence,

Evr(9) = infllg—Spal,

- o(2(+ L)), o<act
% Ve

72
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Proof of Theorem (3.1)(For M > 2)

Now,

), = f g0 9, dt

= f g(t) V2m + 12 L, (2%t — 2n + 1)dt,  (take, 20/t —2n+1 = u)

1 ’ ’
V2m +1 u+2n-1 N L,,)-L, (u)
= 2 o[ [ L =
-1
1 1
1 fu+2n-—1 fu+2n-—1
= m fg (T)Lml(u)du—fg (T)Lerl(u)du . 8)
b -1
Thus,
SN [ p——'] N AT ©)
T i e |
Where,
1
u+2n-1
ho= [ (M et
-1
1
Au+2n-1
J2 = f!] (T)Lmﬂ(u)d%

-1

Taking modulus on both side of |; and using Cauchy - Schwarz inequality, we get

ks 2 \if 2 \? 4 \2
<
Il = zavka(2a+1) (2m—1) +N1(2m—l)

2 2
- k LA (10)
Qavke ARy +1V2m -1  V2m -1

(2n-1
(v o (555 <)

Similarly,
2k 2N
.| - —— (11)
20vke\Da +1V2m +3  V2m+3
By using equations (9) - (11), we have
N. 1
(v) 2
ol < +13, (12)
| ’ v: 2m-1) {2“1/"“ V2a +1 }

(N2 = max {ky, N1}).
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g () = Syem ()

74
= Y ) nin®.

n=1 m=M

(13)
lo — Sl

1 1
N? {
2 Z; V3R (2M - 1) (2ayka

¢5¢7+%
-

1

IA

So, taking norm on both sides of equation (13) and using the equation (12), we have

< , M>1
= om-17 " 2M-1) ]
2 2
= NZ { 1 + 1} k.
vk @2M = 1) 2apka 20 + 1
Hence,

Eym(9)

inf”g - Svk/an

= O[lk (1 + L ) !
v Dayka (

L Mz>2.
V2a + 1 zM—l)%J

Proof of Theorem (3.2)(For M=1)

Now, following the proof of theorem (3.1, For M=1), we get

w:
) jémw%mm

By eq".(4), we get

(14)

571

= ffww4ﬁy

M
123k

1 ¥ I M
+om+ S ey N
4| 1l 4| 2l +M1|T3|+2 - [Tl

(15)
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Where,

T, =

x
‘of
1
F
_ o n(n—1
T, = fug(vk +9u)du,
0
ik
‘of

T; =

s (n _kl + Gu) du.
v

Now, taking the modulus of both side of T; and solving, we get

% % %
K2 f uP*** du + M3 f lul* du + 2Mak f ul**™* du,
0 0 0

ITal <
. B ok
© (2a +5kCatd) T 5Bk T (g + Sypk(ath)
M, (1 1 , s(n-1
2 _ 2 g2
< ﬁ{% +1+ W}' (where, M, = max{kl,M2,2M2k1}, g ( > ) < My).
M, 1)2
2
< ﬁ {1 + VE} .
Similarly,
M, 1 .
ITo| < W{H VW} (say, M, = max {ki, Ma}).
and,
M, 1
2
|T5] < W{l-’_W}

Putting the values of |T1], |T2|, |T3| in equation (15), we get

2 ' 2 kM2 2 " ”
I < o (0 ) e () e () e )

103k 1k P 4 6k Vk 1Ak P 2k Jka

M} M, + M, 12 3MiM, 1

- 1 I

T 1218k 445k { vk“} 214k { vk“}
N; 1 1\ 2 1

s ﬁ{“ﬁ(“%)*ﬁ(“%)}
N; 1 12

< wlenlem)

Hence,
Exi(g) = inflg—Swul,

ofL i+ 1)

This completes the proof of the theorem.
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Proof of Theorem (3.2)(For M=2)

Since

n
v

0 = [ Pod- -

ko

Now,

11,7;{
& = [aouion

=

E

v

On simplifying the above integrals and using the theorem (3.2), we obtain
1 1 1
et = 05 ((155)))
£2(9) o + o + ka

Proof of Theorem (3.2)(For M > 3)

Following the equation (8), we get

1 1

1 fu+2n-1 fu+2n-1
) _
Chom = —m —_— fg (—k)Lm_l(u) du — f{] (—k)Lm+1(u) duy. (16)
3k 2 2

4v7 \J2m +1) 9 Vv 2 v

Next, integrating by part the above integral and after simplifying, we get

)

|C < f‘ u+2n— )_ ,,(Zn—1)+ ,,(Zn—l)‘
R M AR

(2m 1)Lm+2(u) (4m + 2)Ly, (1) + (2m + 3)Lyy—o(u) du
(2m+3)2m—1) !
652 1 2 1
|C(V) +1 ’
T 165k 2m + 1) | pavka \Dg + 1 (2m —1)2(2m - 3)
s? 1 2
< +1% . 17)
vk@2m = 3)* ( 2ayke \20 + 1
(where, ! (Zn — 1)’ <S8y, Sy =maxiky, Sl}).
2vk

Since

Z Z |C(V)

n=1 m=M

g &) = Spa O]

IA

ZZ L)
v5"(2m 3)* | 20pka v + 1
k

IA

SZ V 1 2 1
2 Z +1p —
(@M = 3)® & | 2avka v + 1 vk

@M =3 | 2apke \2a + 1 vk’
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Hence,

inf”g - SWDM”z

Ev",M(g)

1 1 1
Ol— 1|1+ , M>3.
(vz"( Dayk x/2a+1)(2M—3)3)

Proof of Theorem (3.3)(For M = 1)

Since

(V)

fg o4

Now,
*
&y = [a0uod
n=1
k
On solving the above integrals and using the theorem (3.2) for M = 1, we get

1 1 1 1
Bl = O(5 (14 5+ (1 55)))

Proof of Theorem (3.3)(For M = 2)

Since
el = f PO 7 - ).
-1
T

Now,

) f g(t) YY) (¢ dt.

Simplifying the above integrals and using the theorem (3.2) for M = 1, we have
1 1 1 1
Faste) = O (10 (e 5w)

Proof of Theorem (3.3)For M = 3)
Since

[ f Pyt = () = ())? = ()2

1—1

k

l
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Now,

1

) = j‘m¢wamt

S

On simplifying the above integrals and using the theorem (3.2) for M = 1, we get
1 1 1 1
Fase) = oG (e (e 5w)

Proof of Theorem(3.3)(For M > 4)

Following the equation (16), we have

W 1 " u+2n
N e ) [T 1)f ") 0= L

1

+ (2m1+ 3) fg” (u +22:;_ 1)(Lm+2(u) - Lm(ll)) du

-1

‘ ‘ Lin+1 — Lin
20k 2m+1)(2m-1)

(V) 21’1—1) ///(21’1_1

|C < f‘ " u+2n_1)_g///(
YT 1% w/(2m+1 2vk

_ Lm—l - Lm—3 _ Lm+3 - Lm+l + Lm+1 - Lm—l
@2m-1)(2m-3) @2m+50C2m+3) (2m+1)2m+3)
1
< —(P1 +P2), (18)
16v2 \J2m + 1)
Where,
1
P _ ‘ " (u + 211 - 1) _ " (271 - 1 )‘ ‘ Lm+1 - Lm_1 _ Lm_l - Lm_3
CEE I A Y I\ Mem+nem=-1) ~ @n-1emn-23)
-1
_ Lm+3 — Lm+1 + Lm+1 - Lm—l du
@2m+5)2m+3) (2m+1)2m+ 3)
1
P — ‘ w(2n—1 ' ' Lm+1 - Lm—l _ Lm—l B Lm—3 _ Lm+3 - Lm+1 + Lm+1 B Lm—l ' du
2 2vk 2m+1)2m-1) @Em-1)2m-3) @m+502m+3) @2m+1)2m+3) '

By using Cauchy - Schwarz inequality and simlifying the integral P;, we have

V2k, 1 ( 2 . 2 )+ 1 ( 2 . 2 )
@y V2a +1 (@m+1)22m -1 \2m+3 ~ 2m-1) (2m—-1)*2m—-3)*\2m -1 2m-5

1

N 1 ( 2 N 2 )+ 1 ( 2 . 2 )7
@m+3)2Q2m+52\2m+7 2m+3) (2m+322m+12\2m+3 2m-1)| °
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and

< 53 1 (2+2)+ 1 (2+2)
-t @m+122m-12\2m+3 2m-1) @m-122m-32\2m-1 2m-5

’

P,

N 1 ( 2 N 2 )+ 1 ( 2 N 2 )Z
2m+32Q2m+52\2m+7 2m+3) (@m+32Qm+12\2m+3  2m-1/] °
m(2n—1 ,

g ( 20k )Ssl)'

Next, putting the values of P; and P, in equation (18), we get

PR 2(5,)” 1 Ll 16
il = 25607k 2m + 1) | 2apka V2o 4 1 (2m —5)

(say, S'2 = mux(kl,S;))
32(S,)? 2
(5) 1 +1y , m>3
256v7k(2m - 5)6 Davka Ay + 1
(S, { 1 }2
+1 , m>3. (19)
V7E(2m = 5) | 2avke \Ra + 1

(say,

Since

vk

lo =Sl Y Il
m

n=1
n=1 m=

b

14

IA

=M
=M

(S, { 1 . 1}2
V7k(2m = 5)0 | payka 24 + 1

IN

LIS Y
(2M - 5)5 20vke A2 + 1 v7k

n=1

6y 1 1 ‘1
@M =5)° | 2apka 2 4 1 ok’
Hence,

inf |lg = Sl

Evk,M(g)

of i)
v\ 2apke \2a ¥ 1) oM = 5)% )

This completes the proof.

Proof of Theorem (3.4)

From equation (13), we have

Vk (o]
lg = Swadll, = 3 21l (20)

n=1 m=M
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Now, using equation (17) in above equation , we get

1
- S < = +1
7= Susall ; ;A Bl Pk e S
k
Vv 1 1
< S, - { + 1}
; v7 (M - 3) 200k \2a +1
S, { 1 } '
= +1rv
vE (M -3) (20vke V20 + 1
1 1 1
-5, < = |1+ .
”g krM“l V% ( 2avka m (2M - 3))
Hence,
Evn(@ = infllg=Suull,
1 1 1
= O _— 1 —+ .
(ﬂ ( 2ayka 20 + 1) M - 3))
Proof of Theorem (3.5)

From equations(19)) & (20), we have

k

’

V' % S 1
- Sv - { 1}
||!7 k,M“1 ; m2=1;/1 V%k (2m — 5)3 2ayka \2q + 1 +

IA

IA

VvV
’ 1 1
S, { + 1}
v 5 @M - 5)% | 20vka \2a + 1

’

5, 1 K
= — 5 +1pv
v2 2M —5)° (2avka\2q + 1

IN

o= S L( ! +1) .
: vEMlly V% Dayka m (ZM - 5)2

Hence,

Eem(9) inf ||g - SVk/M”l

o[ v )
v 2apka \Dy + 1 (2M—5)2.

This completes proof of the theorem.

5. Remarks

In the view of above theorems, we observe
Theorem 5.1. Let g be a differentiable function in [0,1] such that gN" € Lip, [0,1] and its ELW approximation
Ex \ of function g under norm ||.||, is given by
O(F(1+d++x(1+4£)), M=123..N;

1 1 1
O(VM (1 T S )(ZM e ) M>N+1.

Eym(g) =
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6. Numerical verification of Wavelet approximation
This section is designed to see the numerical accuracy of the calculated approximation for the function
sin(ntt), t€]0,1
I CLCORNE (81
0, otherwise.

for M = 1,2. The value of S y; forv=2,3,5and k = 0,1, 2,3 are calculated and are given as

S () = 0.6366197723, 0<t<]1,
2= 0, otherwise.

0.6366197723, 0<t<1,
Sy () =30.6366197723, 1<t<1,

0, otherwise.
0.37292322857, 0<t<1,
0.900316316157, 1<t<32,
Sy () = 10.900316316157, 2 <t<3,
0.37292322857, 3 <t<1,
0, otherwise.
0.19383917874, 0<t<3§,
0.55200727841, 1 <t<32,
0.826137273909, % <t< 3,
0.974495358174, 2 <t<3%,
Sy (t) = 10.974495358174, £ <t<32,
0.826137273909, 2 <t<?§,
0.55200727841, &<t<Z,
0.19383917874, I<t<1,
0, otherwise.

Spon(f) = 0.6366197723, 0<t<1,
S 0, otherwise.

04774648292, 0<t<1,
1095492965855, 1 <t<3?2,
5910 =0 4774648002, 2 <t <1
. , 5% ,
0, otherwise.
0.17276791512312, 0<t< 3,
0497465385022, i <t<32,
0.7621611876812, 2<t<3,
0.9349291028044, 2 <t<4%,
Sua(t) = 0.9949307700452, § <t< §
' 0.9349291028044, 32 <t<§,
0.7621611876812, S<t<Z,
0497465385022, L <t<$,
0.17276791512312, §<t<1,
0, otherwise.
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1.0}
0.8

06|

04

Ss14(t) =

Ssia(t) =

The graphs of S« ), and h(t) has been plotted forv=2,3,5 M =1,2and k=0,1,2,3in figure 1,2, 3,4, 5, 6,

7,8 and 9.
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1 2

Figure 1: Graphical representation of Sy ; and h(t)
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0.79577471545927 — 0.04720962519 x V15(10t — 7),
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Figure 2: Graphical representation of Sy ; and h(t)
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Figure 3: Graphical representation of Sy ; and h(t)
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Figure 4: Graphical representation of Sy ; and h(t)
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Figure 5: Graphical representation of Sy ; and h(t)
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Figure 6: Graphical representation of Sy ; and h(t)
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Figure 7: Graphical representation of Sy ; and h(t)

85



V. K. Sharma et al. /Filomat 38:1 (2024), 67-98

Lo}
0.8
0.6

04}

=
ba

[

Figure 8: Graphical representation of Sg1 1 and h(t)
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Figure 9: Graphical representation of Sz , and h(t)
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7. Applications
7.1. Solution of Hermite differential equation (HDE) of order-1 by using ELW method
Consider the HDE of order-1
y =2ty +2y=0, y(0)=0, y(0)=2. 21)

Now, we have solved the equation (21) by the ELW operational matrix of integration forv =2,k =2,M = 4
as below :
Let

Y ! @ 01
¢V(t)—[¢1,or 11777742/ 743]

Here y(t) be (v X M) X 1 column vector, the integration of above vector y*)(t) is given as :

t
j@Www=me. (22)
0
Where P is (16x16) the ELW operational matrix of integration and it is given as :
A B B B
O A B B
P= . (23)
O O A B
| O O O A ]
Here,
V3
5 0w 0 0 1000 0000
V3 Vi5
—1 0 0 0 00O 0 00O
A= , B= , O=
0 -Yi5 o 3% 0000 0 00O
120 280
0 O_E/TSEO- | 0 0 0 O | [0 0 0 O]

Similar for v = 3,k = 2, m = 4 the operational matrix of integration is

[ C D D D D D D D D]
O C D D DD D D D

O o c D DD DD D

(24)

O
-l
S O ©
O O O U
S T O O U

@

| ©c o o O O O
c o O o O O
©c o o o O O
©c o o O O
©c o o O
©c O O

@)
@
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Here,
\3
5 = 0 0 100 0
V3 Vi5
-2 0 3 0 0000
C= , D=
0 -5 0 35 0 00O
270 630
0 0 -3 0000
Let
y = Cly().

Integrating and using the equations (21) & (22), we obtain
y () —2 = CTPy(b).

Suppose,
L=d"y(),

y (H) = CTPy(t) + 2d"y(t).
Again integrating the equation (26) and using (21) & (22), we get

y(t) = CTP*Y(t) + 2d" Py (t).
Now using the equations (25), (26) and (27) in equation (21), we have
CTyp(t) — 2t (CTPy(#) + 24" (1)) + 2 (CTP2y(t) + 24" Py(t)) = 0.
Let
E=ey(t),
then
Y'C—2eTpy" (PTC +2d) + 29" (PY)'C + 4p"PTd = 0
and
elyy! = ¢'E.
By using the equation (29) in (28) and simplifying, we get
C = {1-2EPT +2(P)") " (4Ed - 4P").

Forv =2,k =2,m =4, we have

X, O O O L2 0 o0
o x o o B 5
E= , X1 = ,

O O X5 O 0 M5 1 3V

60 8 280

0 0 O Xi| 35

0 0 %F 3
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1 2 3
Xo=X1+-I, X3=X3+-1I, X4=X;+ -1
2 1+ g 1+ gl M 1+ 1
Where I is the 4 X 4 identity matrix.

Similarly for v = 3,k = 2, M = 4, we obtain

'Yy O O O O O O O 0]
oY, O O O O O o0 o
O O Ys; O O O O O o PR 0 0
18 54
O 0O O Yy O O O o o
N3 1 A5 0
. 54 18 135
E={ O O O O Ys O O O O |,Y:i= , (32)
0 N5 1 V35
O 0 OO O Y O O O s 2
0 o0 ¥ 1
O O O 0O 0o O Yy o o 210 18
O O O O O O 0 Yg O
| O O O O O O O O Yy
1 2 3 4
Yz—Y1+§I, Y3—Y1+§I, Y4—Y1+§I, Y5—Y1+§I,
5 6 7 8
Y6—Y1+§I, Y7—Y1+§I, Yg—Y1+§I, Y9—Y1+§I.
t ELW solution for v = 2, | Exact solution Absolute
k=2, M=4 error=|Exa.sol.-
ELW.sol.|
0.0 0.0000000 0.0000000 0.0000000
0.1 0.1999999 0.2000000 0.0000001
0.2 0.3999955 0.4000000 0.0000045
0.3 0.5999969 0.6000000 0.0000031
0.4 0.7999983 0.8000000 0.0000017
0.5 0.9999965 1.0000000 0.0000035
0.6 1.1999937 1.2000000 0.0000063
0.7 1.3999951 1.4000000 0.0000049
0.8 1.5999964 1.6000000 0.0000036
0.9 1.7999999 1.8000000 0.0000001

Table 1: Comparison table for approx. sol. and exact sol. forv =2,k =2, and M = 4 of example (7.1)
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Figure 10: Graphical representation of exact sol.(dark line) and approx. sol. (dashed line) of
example (7.1) forv =2

t ELW solution for v = 3, | Exact solution Absolute
k=2, M=4 error=|Exa.sol.-
ELW.sol.|
0.0 0.0000000 0.0000000 0.0000000
0.1 0.2000000 0.2000000 0.0000000
0.2 0.4000000 0.4000000 0.0000000
0.3 0.5999999 0.6000000 0.0000001
0.4 0.8000000 0.8000000 0.0000000
0.5 1.0000000 1.0000000 0.0000000
0.6 1.2000000 1.2000000 0.0000000
0.7 1.4000000 1.4000000 0.0000000
0.8 1.6000000 1.6000000 0.0000000
0.9 1.7999999 1.8000000 0.0000001

Table 2: Comparison table for approx. sol. and exact sol. for v =3, k = 2, and M = 4 of example (7.1)
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20k
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Figure 11: Graphical representation of exact sol.(dark line) and approx. sol.(dashed line) of
example (7.1) forv =3

7.2. Application in summability theory

In this section, we have obtained the sum of some special series by using the ELW method.
In tables (3) and (4), the sum of some special kinds of series by different summability methods and by the

Using function | Series Sum by summability | Sum by ELW method
method
o -1+1-1+.. | 5 (1) 0.49999766
L 1-2+22-[ % (ED 0.33332786
2% 4.
= 1-3+3-[1 (E2 0.24999307
3+ ...
1 1
T 1-243-4+... | T (H2) 0.24999380

Table 3: Comparison table for approx.

sum and exact sum for v =2,k = 2, and M = 4 of example (7.2)

Using function | Series Sum by summability | Sum by ELW method
method
— 1-1+41-1+... [ 3 (C1) 0.49999992
o 1-2+22-[ 3 (E) 0.33331633
23+ ...
= 1-3+32-[1 (E2 0.24999979
3+
ﬁ 1-243-4+... | 1 (H2) 0.24999980

Table 4: Comparison table for approx. sum and exact sum for v =3, k = 2, and M = 4 of example (7.2)

ELW method have been compared.
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t Exact solution ELW solution for v = 2, | Absolute error=|Exa.sol.-
k=2 M=4 ELW.sol.|
0.0 3.00000000 2.99960776 0.000393
0.1 2.22245466 2.22235488 0.000100
0.2 1.64643490 1.64659754 0.000163
0.3 1.21970897 1.21978266 0.000074
04 0.90358263 0.90354450 0.000038
0.5 0.66939048 0.66930296 0.000088
0.6 0.49589666 0.49587440 0.000022
0.7 0.36736928 0.36740557 0.000036
0.8 0.27215385 0.27217030 0.000017
0.9 0.20161653 0.20160803 0.000008

Table 5: Comparison table for approx. sol. and exact sol. for v = 2, k=2 and M = 4 of example (7.3)

7.3. Application in Radioactive decay

The real world problem associated with following differential equation have solved by ELW technique :
If m = m(t) is the mass at time ¢ of a radioactive substance, then

dm
= = —Am(t), m(©) = mo. (33)

Where, A > 0 known as decay constant and m is the initial mass.
Let us consider A=3 and m(=3, then above equation becomes

dm
= = ~3m(t), m(0)=3. (34)

Now, we have solved above differential equation by the ELW operational matrix of integration by using
above matrices.
Suppose

m(t) = CTy(t), 35)
integrating the equation (34) and using (22), we get

m(t) — 3 = =3CTPy(t). (36)
Let

1=d"y(t), (37)
now using the equations (35),(37) in (36) and simplifying, we have

C=3(I+3P")d. (38)
Also, the exact solution of equation (34) is,

m(t) = 3¢,

Comparison table for approx. sol. and exact sol. is given in tables (5) & (6).
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-1.0 =035 035 10

Figure 12: Graphical representation of Exact sol.(dark line) and approx. sol.(dashed line) of
example (7.3) forv =2

t Exact solution ELW solution for v = 3, | Absolute error=|Exa.sol.-
k=2 M=4 ELW.sol.|
0.0 3.00000000 2.99998130 0.000019
0.1 2.22245466 2.22245884 0.000004
0.2 1.64643490 1.64644042 0.000006
0.3 1.21970897 1.21971018 0.000002
0.4 0.90358263 0.90358111 0.000001
0.5 0.66939048 0.66938863 0.000002
0.6 0.49589666 0.49589580 0.000001
0.7 0.36736928 0.36736953 0.000000
0.8 0.27215385 0.27215459 0.000001
0.9 0.20161653 0.20161685 0.000000

Table 6: Comparison table for approx. sol. and exact sol. for v = 3, k = 2 and M = 4 of example (7.3)

. ) [ 1

-1.0 0.5 0.5 1.0

Figure 13: Graphical representation of exact sol.(dark line) and approx. sol. (dashed line) of
example (7.3) forv =3
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t Exact solution ELW solution for v = 2, | Absolute error=|Exa.sol.-
k=2 M=4 ELW.sol.|
0.0 0.00000000 0.00000722 0.000007
0.1 0.09966799 0.09966541 0.000002
0.2 0.19737532 0.19737382 0.000002
0.3 0.29131261 0.29131450 0.000002
04 0.37994896 0.37994539 0.000003
0.5 0.46211715 0.46211947 0.000002
0.6 0.53704956 0.53704851 0.000001
0.7 0.60436777 0.60436578 0.000002
0.8 0.66403677 0.66403783 0.000001
0.9 0.71629787 0.71629789 0.000000

Table 7: Comparison table for approx. sol. and exact sol. for v = 2, k=2 and M = 4 of example (7.4)

7.4. Application of ELW in solving Riccati differential equation

Let us consider the Riccati nonlinear differential equation,
Yy =1-y1), y0)=0.

Here, we have solved above differential equation by the ELW operational matrix of integration.
Let

y(t) = CTy(),

then

CTy(tyy’ (1)C
= C'CTy(r),  (py"()C =CTy(b), say).

Using the equation (41) in (39) and integrating, we obtain

vi()

y(t) = d"Py(t) = CTCTPy(b),
on simplifying, we get
Cl =d"p(a+C'p)~L.
Also, the exact solution of equation (39) is,

_e2t_1
et +1’

y(t)

Comparison table for approx. sol. and exact sol. is given in tables (7) & (8).

94

(39)

(40)

(41)

(42)
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t Exact solution ELW solution for v = 3, | Absolute error=|Exa.sol.-
k=2 M=4 ELW.sol.|
0.0 0.00000000 -0.00000439 0.000004
0.1 0.09966799 0.09966723 0.000000
0.2 0.19737532 0.19737702 0.000002
0.3 0.29131261 0.29131642 0.000004
04 0.37994896 0.37994676 0.000002
0.5 0.46211715 0.46211848 0.000001
0.6 0.53704956 0.53704767 0.000002
0.7 0.60436777 0.60437094 0.000003
0.8 0.66403677 0.66403811 0.000002
0.9 0.71629787 0.71629721 0.000000

Table 8: Comparison table for approx. sol. and exact sol. for v = 3, k=2 and M = 4 of example (7.4)

7.5. Application of the ELW in solving Blasius differential equation
Let us consider nonlinear Blasius differential equation,

2" +yy ' )=0 y(0)=0, y(0)=0,y (0)=0.332057 = a(say).

Now, we have solved above differential equation by the ELW operational matrix of integration.
Let

y (1) = CTy(n),
integrating (44) and using the equations (43) & (22), we have

y'(t) = (@d" +CTP)Y() (1= d"y(t) say).
Integrating the equation (45) two times and using (43) & (22), we obtain

y(t) = ad" P2Y(t) + CTPPy(t).
Putting the values of y(t), y" () and y" (t) in equation (43), we get
2CTY(t) + (CTP3yY(t) + ad" P2y(t)) W (H)PTC + apT (£)d) = 0.
Let
Y PTC=Ey and yy'd = dy.
Using the equation (47) in (46) and simplifying, we have
CT = —~(ad"P’E + o*d"P?d)(21 + P°E + aP%d)~L.

Comparison table for approx. sol. and exact sol. is given in tables (9), (10) & (11).

95

(43)

(44)

(45)

(46)

(47)

(48)
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Exact solution by Howarth

ELW solution for v = 2,

ELW solution for v = 3, k=2,

method of y(t) k=1, M=3 M=4
0.0 0.00000 -0.00000119 0.00000001
0.2 0.00664 0.00663995 0.00664099
0.4 0.02656 0.02655189 0.02655986
0.6 0.05974 0.05973083 0.05973459
0.8 0.10611 0.10612742 0.10610806

Table 9: Comparison table for approx. sol. and exact sol. of example (7.5)

Exact solution by Howarth

ELW solution for v = 2,

ELW solution for v = 3, k=2,

method of y'(f) k=1, M=3 M=4
0.0 0.00000 -0.0000000 0.00000012
0.2 0.06641 0.0663884 0.06640767
04 0.13277 0.1327310 0.13276405
0.6 0.19894 0.1989947 0.19893707
0.8 0.26471 0.2647221 0.26470882

Table 10: Comparison between approx. sol. and exact sol. of example (7.5)

Exact solution by Howarth

ELW solution for v = 2,

ELW solution for v = 3, k=2,

method of y”’(t) k=1, M=3 M=4
0.0 0.33206 0.332057 0.3320569
0.2 0.33198 0.331828 0.3319835
0.4 0.33147 0.331598 0.3314695
0.6 0.33008 0.330688 0.3300787
0.8 0.32739 0.329097 0.3273889

Table 11: Comparison table for approx. sol. and exact sol. of example (7.5)
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8. Conclusions

(i) Since the estimated errors in the theorems (3.1) - (3.5) tends to zero as k, M — oo. Therefore the

calculated approximations are best possible in wavelet analysis.

(ii) As we increase the order of derivative of the function then from the theorems it is clear that approxi-

mation errors become smaller. This is the significant achievement of this paper.

(iii) We have used these approximations to solve differential equations namely the Riccati differential

equation, Hermite differential equation, radioactive decay problem and the Blasius equation. Also,
we have approximated the sum of some special types of series by this wavelet method. The significant
part of this paper is that we have presented the exact solutions and approximate solutions in the tables
for different values of v and we observe that if we increase the value of v then the numerical accuracy
increases.
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