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Abstract. In this article, we introduce and investigate the q-Cesàro matrix C(q) = (cq
uv) with q ∈ (0, 1) for

which we have

cq
uv =


qv

[u + 1]q
(0 ≦ v ≦ u)

0 (v > u),

where the q-number [κ]q is given, as usual in the q-theory, by

[κ]q :=


1 − qκ

1 − q
(κ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · · + qn−1 (κ = n ∈N),

C andN being the sets of complex numbers and positive integers, respectively. The q-Cesàro matrix C(q) is
a q-analogue of the Cesàro matrix C1. We study the sequence spaces Xq(p),Xq

0(p),Xq
c (p) and Xq

∞(p), which are
obtained by the domain of the matrix C(q) in the Maddox spaces ℓ(p), c0(p), c(p) and ℓ∞(p), respectively. We
derive the Schauder basis and the alpha-, beta- and gamma-duals of these newly-defined spaces. Moreover,
we state and prove several theorems characterizing matrix transformation from the spaces Xq(p),Xq

0(p),Xq
c (p)

and Xq
∞(p) to anyone of the spaces c0, c or ℓ∞.
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1. Introduction, Definitions and Preliminaries

We begin this introductory section by giving a brief overview concerning Cesàro sequence spaces. For
this purpose, we define the Cesàro matrix C1 = (cuv) of order 1 by

cuv =


1

u + 1
(0 ≦ v ≦ u)

0 (v > u).

Recently, Ng and Lee [17] studied the sequence spaces Xp and X∞ defined by

Xp :=

 f : f = ( fk) ∈ ω and
∞∑

u=0

∣∣∣∣∣∣∣ 1
u + 1

u∑
v=0

fv

∣∣∣∣∣∣∣
p

< ∞ (1 ≦ p < ∞)


and

X∞ :=

 f : f = ( fk) ∈ ω and sup
u∈N0

∣∣∣∣∣∣∣ 1
u + 1

u∑
v=0

fv

∣∣∣∣∣∣∣ < ∞
 ,

where, and in what follows, we have

N0 :=N ∪ {0} (N := {1, 2, 3, · · · }).

We thus observe that
Xp = (ℓp)C1 and X∞ = (ℓ∞)C1 .

More recently, Şengönül and Başar [19] studied the Cesàro sequence spaces given by

Xc = cC1 and X0 = (c0)C1 ,

derived their alpha-, beta- and gamma-duals and characterize matrix transformations related to these
spaces. Several results on matrix transformations on Cesàro sequence spaces are investigated by (for
example) Ng [16], Başar [3] and Şavas [18] (see also some related recent developments [7], [11] and [23],
which are based upon Cesàro sequence spaces).

The studies on the generalization of Cesàro sequence spaces can also be found in [1] and [2], wherein
they investigated the following sequence spaces:

rn(p) =
(
ℓ(p)

)
Rn
, rt

0(p) =
(
c0(p)

)
Rn
, rt

c(p) =
(
c(p)

)
Rn

and rt
∞(p) =

(
ℓ∞(p)

)
Rn
,

where Rn = (rn
uv) is Riesz matrix defined by

rn
uv =


nv

Nu
(0 ≦ v ≦ u)

0 (v > u),

n = (nv) being a sequence of positive integers with

Nu =

u∑
v=0

nv.

We remark that, when n = p = e, the unit sequence, then

λ(p)
(
λ ∈ {rn, rn

0 , r
n
c , r

n
∞}

)
,
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reduces to the sequence spaces as defined in [17] and [19].

We turn now to the q-calculus which has emerged as an interesting field of study in many fields such as
science, architecture and engineering. In the field of mathematics, several researchers are using the q-theory
to establish fascinating results in algebra, combinatorics, special function, approximation theory, fractals,
and so on.

For q ∈ (0, 1), the q-number [κ]q is defined by (see, for example, [10]; see also the recent work [22])

[κ]q :=


1 − qκ

1 − q
(κ ∈ C)

n−1∑
k=0

qk = 1 + q + q2 + · · · + qn−1 (κ = n ∈N),

where C andN are the sets of complex numbers and positive integers, respectively.

One may notice that, in the limit when q→ 1−, the q-number [κ]q reduces to κ ∈ C, that is,

lim
q→1−

{
[κ]q

}
= κ (κ ∈ C).

We refer to [10] and the recently-published survey-cum-expository review article [20] for detailed studies in
q-number and q-theory. It is regretful to see that a large number of seemingly amateurish-type researchers
on these and other related topics continue to produce and publish obvious and inconsequential varia-
tions and straightforward translations of the known q-results in terms of the so-called (p, q)-calculus by
unnecessarily forcing-in an obviously superfluous (or redundant) parameter p into the classical q-calculus
and thereby falsely claiming “generalization” (see [20, p. 340] and [21, Section 5, pp. 1511–1512]). Such
tendencies to produce and flood the literature with trivialities should be discouraged by all means (see also
a recently-published survey-cum-expository review article by Srivastava [22]).

In recent years, we can find several studies which are based upon q-analogues of well-known sequence
spaces. For example, in terms of the q-Cesàro matrix C(q) = (cq

uv), where

cq
uv =


qv

[u + 1]q
(0 ≦ v ≦ u)

0 (v > u),

Demiriz and Şahin [8] introduced the following sequence spaces:

Xq
c = cC(q) and Xq

0 = (c0)C(q)

and studied their duals and matrix transformations. Yaying et al. [28] introduced the sequence spaces
given by

Xq
p = (ℓp)C(q) and Xq

∞ = (ℓ∞)C(q)

and studied their associated operator ideals. Yaying et al. (see [27], [29] and [30]) further studied the
q-analogues of the Catalan, Euler and Pascal sequence spaces. In particular, in the paper [27], some known
q-results based upon the q-Euler matrix were trivially translated by involving an obviously redundant (or
superfluous) parameter p.

The present study is a natural continuation of the studies which were reported in [8] and [28]. In Section
2, we introduce the paranormed sequence spaces Xq(p), Xq

0(p), Xq
c (p) and Xq

∞(p), which are obtained in the
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domain of the q-Casàro matrix C(q) in the familiar Maddox spaces ℓ(p), c0(p), c(p) and ℓ∞(p), respectively,
and obtain the Schauder basis of these newly-defined spaces. In Section 3, we determine the alpha-, beta-
and gamma-duals of the spaces Xq(p), Xq

0(p), Xq
c (p) and Xq

∞(p). In Section 4, we state and prove several
theorems characterizing matrix transformations from the spaces Xq(p), Xq

0(p), Xq
c (p) and Xq

∞(p) to anyone of
the spaces c0, c or ℓ∞.

Some further definitions and notations are being presented next. Let ω denote the set of all real- or
complex-valued sequences. Then any linear λ ⊂ ω is called a sequence space. The sets ℓp, c0, c and ℓ∞ are
standard notations for sequence spaces containing absolutely p-summable, null, convergent and bounded
sequences, respectively. The notations bs and cs stand for the spaces of all bounded and convergent series,
respectively.

Definition 1. Let λ ⊂ ω and ρ : λ → C. Then (λ, ρ) is said to be a paranormed space if the following
conditions are satisfied for all f , 1 ∈ λ and α ∈ C:

(C1) ρ( f ) ≧ 0 and f = θ implies that ρ( f ) = 0,where θ is zero of λ;

(C2) ρ(− f ) = ρ( f );

(C3) ρ( f + 1) ≦ ρ( f ) + ρ(1);

(C4) If (αv) ∈ ω and ( fv) ∈ λwith αv − α→ 0 and ρ( fv − f )→ 0 as v→∞, then ρ(αv fv − α f )→ 0 as v→∞.

In this case, ρ is said to be a paranorm for λ.

Each of the following sequence spaces is well known (see [14] and [13]):

ℓ(p) :=

 f : f = ( fk) ∈ ω and
∞∑

v=0

| fv|pv < ∞ (0 < pv ≦ P < ∞)

 ,
c(p) :=

{
f : f = ( fk) ∈ ω and lim

v→∞
| fv − l|pv = 0 (l ∈ C)

}
,

c0(p) :=
{

f : f = ( fk) ∈ ω and lim
v→∞
| fv|pv = 0

}
and

ℓ∞(p) :=
 f : f = ( fk) ∈ ω and sup

v∈N0

| fv|pv < ∞

 .
Here, as we have already stated above,

N0 := {0, 1, 2, · · · } =N0 ∪ {0}

and p = (pv) is a bounded sequence of positive real numbers with

P = sup
v∈N0

pv and Q = max{1,P}.
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The spaces ℓ(p) and λ = {c0(p), c(p), ℓ∞(p)} are complete spaces which are paranormed by

ρ1( f ) =

 ∞∑
u=0

| fu|pu


1/Q

and ρ2( f ) = sup
u∈N0

| fu|pu/Q,

respectively. We also refer to the review article by Başar and Yeşilkayagil [4] for studies concerning para-
normed spaces which are obtained by infinite matrices.

A sequence (sv) ∈ λ, which is paranormed by ρ, is said to be a Schauder basis for the space λ if there
exists a unique sequence (av) of scalars such that, for every f ∈ λ, we have

lim
u→∞
ρ

 f −
u∑

v=0

avsv

 = 0.

Definition 2. For λ, µ ⊂ ω,we define the set M(λ, µ) by

M(λ, µ) :=
{
t = (tk) ∈ ω : t f = (tk fk) ∈ µ (∀ f = ( fk) ∈ λ)

}
.

By using this notation, the alpha-, beta- and gamma-duals of the space λ is defined by

λα =M(λ, ℓ1), λβ =M(λ, cs) and λγ =M(λ, bs),

respectively.

Definition 3. Let D = (duv)∞u,v=0 be an infinite matrix over C. Suppose also that

Du =
(
duv

)∞
v=0

and D f = (D f )u,

where

(D f )u =

∞∑
v=0

duv fv

for any f ∈ ω, provided that the infinite sum exists. The sequence D f is known as D-transform of the
sequence f . If we let λ, µ ⊂ ω, then (λ, µ) denotes the family of all matrices that map λ into µ, that is,
D ∈ (λ, µ) if and only if D f ∈ µ for all f ∈ λ. The set λD given by

λD =
{

f : f ∈ ω and D f ∈ λ
}

is called the domain of D in λ.

2. Paranormed q-Cesàro Sequence Spaces

In this section, we first introduce a sequence 1 = (1v) whose vth term is given by 1v =
(
Cq f

)
v
. This means

that the sequence 1 is the Cq-transform of the sequence f . Equivalently, for all u ∈N0,we have

1u =

u∑
v=0

qv

[u + 1]q
fv. (1)

Let p = (pv) be a bounded sequence of positive real numbers. Then the sequence spaces Xq(p), Xq
0(p),

Xq
c (p) and Xq

∞(p) are given by

Xq(p) :=
{

f : f = ( fv) ∈ ω and 1 = Cq f ∈ ℓ(p)
}
,
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Xq
0(p) :=

{
f : f = ( fv) ∈ ω and 1 = Cq f ∈ c0(p)

}
,

Xq
c (p) :=

{
f : f = ( fv) ∈ ω and 1 = Cq f ∈ c(p)

}
and

Xq
∞(p) :=

{
f : f = ( fv) ∈ ω and 1 = Cq f ∈ ℓ∞(p)

}
,

respectively. It is easily seen that the sequence spaces Xq(p), Xq
0(p), Xq

c (p) and Xq
∞(p) can be expressed as

follows:

Xq(p) = (ℓp)C(q), Xq
0(p) = (c0)C(q), Xq

c (p) = cC(q) and Xq
∞(p) = (ℓ∞)C(q).

We emphasize that the sequence spaces Xq(p), Xq
0(p), Xq

c (p) and Xq
∞(p) yield the following class of sequence

spaces in the special case when p = (pk) and for q:

(i) If q→ 1−, then the sequences spaces Xq(p),Xq
0(p),Xq

c (p) and Xq
∞(p) reduce to the spaces X(p) =

(
ℓ(p)

)
C1
,

X0(p) =
(
c0(p)

)
C1
, Xc(p) =

(
c(p)

)
C1

and X∞(p) =
(
ℓ∞(p)

)
C1
, respectively;

(ii) If pv = p for all v ∈N0, then the sequence spaces Xq(p), Xq
0(p), Xq

c (p) and Xq
∞(p) yield the spaces Xq

p, X
q
0,

Xq
c and Xq

∞, respectively, as studied by Yaying et al. [28] and Demiriz and Şahin [8];

(iii) If q → 1− and pv = p for all v ∈ N0, then the sequence spaces Xq(p), Xq
0(p), Xq

c (p) and Xq
∞(p) reduce to

the spaces Xp, X0, Xc and X∞, respectively, as studied by Ng and Lee [17], and Şengönül and Başar
[19].

The equality (1) can also be rewritten in terms of the sequence 1 = (1v) as follows:

fu =
u∑

v=u−1

(−1)u−v [v + 1]q

qu 1v

(
u ∈N0; f0 = 10

)
. (2)

We now state and prove our first main result as Theorem 1 below.

Theorem 1. The sequence spaces Xq(p) and Xq
0(p) are complete linear metric spaces paranormed by

ρ( f ) =

 ∞∑
u=0

∣∣∣∣∣∣∣ 1
[u + 1]q

u∑
v=0

qv fv

∣∣∣∣∣∣∣
pu

1/Q

and ρ∞( f ) = sup
u∈N0

∣∣∣∣∣∣∣ 1
[u + 1]q

u∑
v=0

qv fv

∣∣∣∣∣∣∣
pu/Q

,

respectively, where 0 ≦ pv ≦ P < ∞. The spaces Xq
c (p) and Xq

∞(p) are paranormed by ρ∞ only in the trivial case
inf pv > 0, when Xq

∞(p) = Xq
∞ and Xq

c (p) = Xq
c .

Proof. We give the proof for the space Xq
0(p). One can observe that the axioms (C1) and (C2) of Definition

1 suffice for ρ and for all f ∈ Xq
0(p). Let f1, f2 ∈ Xq

0(p) and z1, z2 ∈ C. Then, by using the following known
inequality [15, p. 30]):

|av + bv|
pv/Q ≦ |av|

pv/Q + |bv|
pv/Q,
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and, in view of the linearity of C(q),we get

ρ(z1 f1 + z2 f2) = sup
u∈N0

∣∣∣(C(q)(z1 f1 + z2 f2)
)

u

∣∣∣pu/Q

≦ max{1, |z1|} sup
u∈N0

∣∣∣(C(q) f1
)

u

∣∣∣pu/Q
+max{1, |z2|} sup

u∈N0

∣∣∣(C(q) f2
)

u

∣∣∣pu/Q

= max{1, |z1|}ρ∞( f1) +max{1, |z2|}ρ∞( f2).

Thus the axiom (C3) of Definition 1 holds true.

We now assume that { f (u)
} is any sequence of points in Xq

0(p) satisfying ρ∞( f (u)
− f ) → 0 as u → ∞ and

(zv) is any sequence of scalars such that zv → z as v → ∞. Then, by using the subadditivity of ρ∞, we find
that

ρ∞(zu f (u)
− z) = sup

l∈N0

∣∣∣∣(C(q)(zu f (u)
− z f )

)
l

∣∣∣∣pl/Q

= sup
l∈N0

∣∣∣∣∣∣∣
l∑

v=0

qv(zu f (u)
v − z fv)

[l + 1]q

∣∣∣∣∣∣∣
pl/Q

≦ |zn − z|pv/Qρ∞( f (u)) + |z|pv/Qρ∞( f (u)
− f )

→ 0 as u→∞.

Thus, clearly, the axiom (C4) of Definition 1 also holds true. This concludes that ρ∞ is a paranorm on the
space Xq

0(p).

Next, we establish the completeness of the space Xq
0(p). Let f i = { f (i)k } be any Cauchy sequence in Xq

0(p).
Then, for a given ε > 0, there exists a positive integer m(ε) such that

ρ∞( f i
− f j) < ε (3)

for all i, j ≧ m(ε). Therefore, by using (3), we obtain∣∣∣∣(C(q) f i
)

v
−

(
C(q) f j

)
v

∣∣∣∣ ≦ sup
v∈N0

∣∣∣∣(C(q) f i
)

v
−

(
C(q) f j

)
v

∣∣∣∣pv/Q
< ε (4)

for all i, j ≧ m(ε). This yields the fact that{(
C(q) f 0

)
v
,
(
C(q) f 1

)
v
,
(
C(q) f 2

)
v
, · · ·

}
is a Cauchy sequence in C for each v ∈ N0. Furthermore, since C is complete, the sequence

{(
C(q) f i

)
v

}
converges to, say,

(
C(q) f

)
v for each v as i→∞.Now, upon proceeding to the limits as j→∞ in (4), we find,

for each v ∈N0, that∣∣∣∣(C(q) f i
)

v
−

(
C(q) f

)
v

∣∣∣∣ < ε (5)

for all i ≧ m(ε). Again, since f i
∈ Xq

0(p),∣∣∣∣(C(q) f i
)

v

∣∣∣∣pv/Q
< ε. (6)

Thus the equations (5) and (6) together imply that∣∣∣(C(q) f
)

v

∣∣∣pv/Q
< ε.

Consequently, C(q) f ∈ Xq
0(p). Hence Xq

0(p) is a complete space.
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Theorem 2. The sequence spaces Xq(p),Xq
0(p),Xq

c (p) and Xq
∞(p) are linearly isomorphic to ℓ(p), c0(p), c(p) and ℓ∞(p),

respectively.

Proof. The proof is similar for each case. Hence to avoid unnecessary repetition of the statements, we
present the proof only for the space Xq(p).

Upon defining the mapping T : Xq(p)→ ℓ(p) by f 7→ 1 = T f = C(q) f , it is fairly straightforward to see
that T is linear and injective. Let 1 = (1v) ∈ ℓ(p). Then, by using (2), we deduce the fact that

ρ( f ) =

 ∞∑
u=0

∣∣∣∣∣∣∣ 1
[u + 1]q

u∑
v=0

qv fv

∣∣∣∣∣∣∣
pu

1/Q

=

 ∞∑
u=0

∣∣∣∣∣∣∣ 1
[u + 1]q

u∑
v=0

qv

 v∑
l=v−1

(−1)v−l [l + 1]q

qv 1l


∣∣∣∣∣∣∣
pu

1/Q

=

 ∞∑
u=0

|1u|
pu


1/Q

= ρ1(1) < ∞.

Thus f ∈ Xq(p), that is, T is onto and paranorm-preserving. Consequently, Xq(p) � ℓ(p).

We conclude this section by constructing sequences in the spaces Xq(p), Xq
0(p) and Xq

c (p) that will act as
the Schauder basis for the respective spaces.

Theorem 3. Assume that 0 < pk ≦ P < ∞ and 1 = C(q) f . Define the sequence sv(q) =
(
s(v)

u (q)
)

u∈N0
by

s(v)
u =


(−1)u−v

[v + 1]q

qu (v ≦ u ≦ v + 1)

0 (0 ≦ u < v; u > v + 1)

for each fixed v ∈N0. Then each of the following assertions holds true:

1. The sequence sv(q) is a Schauder basis for the spaces Xq(p) and Xq
0(p) and for every f ∈ Xq(p) or Xq

0(p) is
uniquely expressed in the following form:

f =
∞∑

v=0

1ksk(q);

2. The set {e, sk(q)} is a Schauder basis for the space Xq
c (p) and every f ∈ Xq

c (p) is uniquely expressed in the
following form:

f = ke +
∑
v=0

(1v − k)sk(q),

where k = limv→∞ 1v.

3. The sequence space Xq
∞(p) has no Schauder basis.

Proof. We consider each of the following cases:
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(1) For each v ∈N0,we have

C(q)sk(q) = e(v)
∈ ℓ(p), (7)

which implies that {sk(q)} ⊂ Xq(p). Let us take any sequence f ∈ Xq(p) and set, for each m ∈N0,

f [r] =

r∑
v=0

1vsv(q). (8)

Then, by using (8) together with (7), we obtain

C(q) f [r] =

r∑
v=0

1vC(q)sv(q) =
r∑

v=0

1vev

and

(
C(q)( f − f [r])

)
v
=


0 (0 ≦ v ≦ r)(
C(q) f

)
v

(v > r).

Thus, for any given ε > 0, there exists an integer r0 such that ∞∑
l=r

∣∣∣(C(q)
)

l

∣∣∣pl


1/Q

<
ε
2

(∀ r ≧ r0).

Hence we deduce that

ρ( f − f [r]) =

 ∞∑
l=r

∣∣∣(C(q) f
)

l

∣∣∣pl


1/Q

≦

 ∞∑
l=r0

∣∣∣(C(q) f
)

l

∣∣∣pl


1/Q

<
ε
2
< ε

for all r ≧ r0. Thus we are led to the following representation:

f =
∞∑

v=0

1vsv(q).

Next, in order to prove the uniqueness of this representation, we assume that there exists another
representation, say,

f =
∞∑

v=0

1′vsv(q).

Then we have(
C(q) f

)
u
=

∞∑
v=0

1′v

(
C(q)sk(q)

)
u
=

∞∑
v=0

1′ve(v)
u = 1

′

u,

which contradicts the fact that (C(q) f )u = 1u. Thus the representation is unique.

By applying similar techniques, one can prove that sv(q) is a Schauder basis for the space Xq
0(p) by re-

placing the space Xq(p) by Xq
0(p), and the paranorm ρ by ρ∞ in the above proof. Hence we exclude the details.

(2) This is similar to the proof of Theorem 2 and hence we omit the details involved.

(3) This result is immediate from the fact that the space ℓ∞(p) has no Schauder basis.
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3. Alpha-, Beta- and Gamma-Duals

In this section, we compute the α-, β- and γ-duals of the sequence spaces Xq(p), Xq
0(p), Xq

c (p) and Xq
∞(p).

We provide proof for the space Xq(p) only. One can obtain the proofs for the other spaces by following
similar techniques.

The following lemmas are needed for our investigation. Throughout the paper, N denotes the family
of all finite subsets ofN0. We also assume that D = (duv) is an infinite matrix over the complex field.

Lemma 1. (see [9, Theorem 5.1.0]) Each of the following statements holds true:

(i) Assume that 1 < pv ≦ P < ∞ for each v ∈N0. Then

D = (duv) ∈
(
ℓ(p), ℓ1

)
if and only if there exists an integer I > 1 such that

sup
U∈N

∞∑
v=0

∣∣∣∣∣∣∣∑u∈U

duvI−1

∣∣∣∣∣∣∣
p′v

< ∞;

(ii) Assume that 0 < pv ≦ 1 for each v ∈N0. Then

D = (duv) ∈
(
ℓ(p), ℓ1

)
if and only if

sup
U∈N

sup
v∈N0

∣∣∣∣∣∣∣∑u∈U

duv

∣∣∣∣∣∣∣
pv

< ∞.

Lemma 2. (see [12, Theorem 1]) Each of the following statements holds true:

(i) Assume that 1 < pv ≦ P < ∞ for each v ∈N0. Then

D = (duv) ∈
(
ℓ(p), ℓ∞

)
if and only if there exists an integer I > 1 such that

sup
u∈N0

∞∑
v=0

∣∣∣duvI−1
∣∣∣p′v < ∞; (9)

(10)

(ii) Assume that 0 < pv ≦ 1 for each v ∈N0. Then

D = (duv) ∈
(
ℓ(p), ℓ∞

)
if and only if

sup
u,v∈N0

|duv|
pv < ∞. (11)
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Lemma 3. (see [12, Theorem 1]) Assume that 0 < pv ≦ P < ∞ for each v ∈N0. Then

D = (duv) ∈
(
ℓ(p), c

)
if and only if the conditions (9) and (11), together with the following limit condition:

lim
u→∞

duv = αv (∀ v ∈N0),

hold true.

Theorem 4. Let the sets δi (1 ≦ i ≦ 5) be defined by

δ1 :=
⋃
I>1

t : t = (tk) ∈ ω and sup
U∈N

∞∑
v=0

∣∣∣∣∣∣∣∑u∈U

(−1)u−v [v + 1]q

qu tuI−1

∣∣∣∣∣∣∣
p′v

< ∞

 ,

δ2 :=

t : t = (tk) ∈ ω and sup
U∈N

sup
v∈N0

∣∣∣∣∣∣∣∑u∈U

(−1)u−v [v + 1]q

qu tuI−1

∣∣∣∣∣∣∣
pv

< ∞

 ,

δ3 :=
⋃
I>1

t : t = (tk) ∈ ω and sup
V∈N

∞∑
u=0

∣∣∣∣∣∣∣∑v∈V

(−1)u−v [v + 1]q

qu tuI−1/pv

∣∣∣∣∣∣∣ < ∞
 ,

δ4 :=
⋃
I>1

t : t = (tk) ∈ ω and
∞∑

u=0

∣∣∣∣∣∣∣
∞∑

v=0

(−1)u−v [v + 1]q

qu tu

∣∣∣∣∣∣∣ < ∞


and

δ5 :=
⋃
I>1

t : t = (tk) ∈ ω and sup
V∈N

∞∑
u=0

∣∣∣∣∣∣∣∑v∈V

(−1)u−v [v + 1]q

qu tuI1/pv

∣∣∣∣∣∣∣ < ∞
 .

Then each of the following assertions holds true:

(i)
[
Xq(p)

]α =

δ1 (1 < pv ≦ P < ∞)

δ2 (0 < pv ≦ 1);

(ii)
[
Xq

0(p)
]α
= δ3,

[
Xq

c (p)
]α
= δ3 ∩ δ4 and

[
Xq
∞(p)

]α
= δ5.

Proof. In the light of (2), we observe that the following equality:

tu fu =
u∑

v=u−1

(−1)u−v [v + 1]q

qu 1vtu = (A(q)1)u

holds true for t = (tu) ∈ ω,where A(q) = (aq
uv) is a triangle defined by

aq
uv =


(−1)u−v

[v + 1]q

qu tu (u − 1 ≦ v ≦ u)

0 (otherwise).

(12)
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Thus we have t f = (tu fu) ∈ ℓ1 whenever f ∈ Xq(p) if and only if A(q)1 ∈ ℓ1 whenever 1 ∈ ℓ(p). This implies
that t = (tn) ∈

[
Xq(p)

]α if and only if A(q) ∈ (ℓ(p), ℓ1). So, by using Lemma 1, we find that

∃I > 1 ∋ sup
U∈N

∞∑
v=0

∣∣∣∣∣∣∑
u∈U

(−1)u−v [v + 1]q

qu tuI−1

∣∣∣∣∣∣
p′v

< ∞ (1 < pv ≦ P < ∞)

and

sup
U∈N

sup
v∈N0

∣∣∣∣∣∣∑
u∈U

(−1)u−v [v + 1]q

qu tuI−1

∣∣∣∣∣∣
pv

< ∞ (0 < pv ≦ 1).

These conclude that [
Xq(p)

]α =

δ1 (1 < pv ≦ P < ∞)

δ2 (0 < pv ≦ 1).

Theorem 5. Suppose that the sets δi (6 ≦ i ≦ 9) are defined by

δ6 :=
⋃
I>1

{
t : t = (tu) ∈ ω,

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
tv

qv −
tv+1

qv+1

)
I−1

∣∣∣∣∣∣p
′
v

< ∞

and
(

[v + 1]qtv

qv I−1

)p′v

∈ ℓ∞

}
,

δ7 :=
{

t : t = (tu) ∈ ω,
(
[v + 1]q

( tv

qv −
tv+1

qv+1

))pv

∈ ℓ∞

and
(

[v + 1]qtv

qv

)pv

∈ ℓ∞

}
,

δ8 :=
⋃
I>1

{
t : t = (tu) ∈ ω,

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
tv

qv −
tv+1

qv+1

)∣∣∣∣∣∣ I−1/pv < ∞

and
(

[v + 1]qtv

qv I−1/pv

)
∈ ℓ∞

}
,

δ9 :=
⋂
I>1

{
t : t = (tu) ∈ ω :

∑
v=0

∣∣∣∣∣∣[v + 1]q

(
tv

qv −
tv+1

qv+1

)∣∣∣∣∣∣1/pv

< ∞

and
(

[v + 1]qtv

qv

)1/pv

∈ c0

}
and
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δ10 :=
⋂
I>1

{
t : t = (tu) ∈ ω,

∑
v=0

∣∣∣∣∣∣[v + 1]q

(
tv

qv −
tv+1

qv+1

)∣∣∣∣∣∣ I1/pv < ∞

and
(

tv

qv −
tv+1

qv+1

)
I1/pv ∈ ℓ∞

}
.

Then each of the following assertions holds true:

(i)
[
Xq(p)

]β = [
Xq(p)

]γ =

δ6 (1 < pv ≦ P < ∞)

δ7 (0 < pv ≦ 1);

(ii)
[
Xq

0(p)
]β
=

[
Xq

0(p)
]γ
= δ8;

(iii)
[
Xq

c (p)
]β
= δ8 ∩ cs and

[
Xq

c (p)
]γ
= δ8 ∩ bs;

(iv)
[
Xq
∞(p)

]β
= δ9 and

[
Xq
∞(p)

]γ
= δ10.

Proof. For t = (tv) ∈ ω, the following equality holds true:

u∑
v=0

tv fv =
u∑

v=0

tv

 v∑
l=v−1

(−1)v−l [l + 1]q

qv 1l


=

u−1∑
v=0

[v + 1]q

(
tv

qv −
tv+1

qv+1

)
1v +

[u + 1]q

qu 1utu

= (B(q)1)u, u ∈N0, (13)

where B(q) = (bq
uv) is a triangle defined by

bq
uv =



[v + 1]q

(
tv

qv −
tv+1

qv+1

)
(0 ≦ v < u)

[u + 1]q

qu tu (v = u)

0 (otherwise).

(14)

In view of (13), we observe that t f = (tu fu) ∈ cs whenever f = ( fv) ∈ Xq(p) if and only if B(q)1 ∈ c
whenever 1 = (1v) ∈ ℓ(p). This implies that t = (tn) ∈

[
Xq(p)

]β if and only if A(q) ∈ (ℓ(p), c). Thus, by using
Lemma 3, we deduce, for 1 < pv ≦ P < ∞, that

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
tv

qv −
tv+1

qv+1

)
I−1

∣∣∣∣∣∣p
′
v

< ∞

and


(

[v + 1]qtv

qv I−1

)p′v
 ∈ ℓ∞.
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Moreover, for 0 < pv ≦ 1,we have

{(
[v + 1]q

(
tv

qv −
tv+1

qv+1

))pv
}
∈ ℓ∞

and

{(
[v + 1]qtv

qv

)pv
}
∈ ℓ∞.

These conclude that [
Xq(p)

]β =

δ6 (1 < pv ≦ P < ∞)

δ7 (0 < pv ≦ 1).

The gamma-dual of the space Xq(p) can be obtained by applying a similar technique as detailed above
and by using Lemma 2 instead of Lemma 3. the details involved are being omitted here.

4. A Set of Matrix Transformations

In this section, we characterize some classes of matrix transformations from the sequence spaces Xq(p),
Xq

0(p), Xq
c (p) and Xq

∞(p) to any one of the spaces ℓ∞, c or c0. The following inequality will be necessary in our
investigation:

|xy| ≦ I
(
|xI−1
|
p′ + |y|p

) (
x, y ∈ C; I > 0

)
, (15)

where p > 1 such that p−1 + p′−1 = 1.We also introduce T(I) defined by

T(I) := sup
u∈N0

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
tv

qv −
tv+1

qv+1

)
I−1

∣∣∣∣∣∣p
′
v

. (16)

Theorem 6. Each of the following assertions holds true:

(i) Let 1 < pv ≦ P < ∞ for k ∈N0. Then D = (duv) ∈
(
Xq(p), ℓ∞

)
if and only if there is an integer I > 1 such that

T(I) < ∞ (17)

and


(

[v + 1]qduv

qv I−1

)p′v
 ∈ ℓ∞ (u ∈N0). (18)

(ii) Let 0 < pv ≦ 1 for k ∈N0. Then D = (duv) ∈
(
Xq(p), ℓ∞

)
if and only if

sup
u,v∈N0

∣∣∣∣∣∣[v + 1]q

(
tv

qv −
tv+1

qv+1

)∣∣∣∣∣∣pv

< ∞ (19)

and

{(
[v + 1]qduv

qv

)pv}
v∈N0

∈ ℓ∞ (u ∈N0). (20)
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Proof. Suppose D ∈
(
Xq(p), ℓ∞

)
and 1 < pv ≦ P < ∞. Then, for each f ∈ Xq(p), D f exists and belongs to the

space ℓ∞ which implies that Du ∈
[
Xq(p)

]β. This ensures the necessity of the conditions (17) and (18).

Conversely, we assume that the conditions (17) and (18) hold true and let f ∈ Xq(p). Then Du ∈
[
Xq(p)

]β
for each u ∈N0,which, in turn, implies that D f exists.

We now consider the following equality which is obtained by taking the rth partial sum of the series
∞∑

v=0
duv fv given by

r∑
v=0

duv fv =
r−1∑
v=0

[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
1v +

[r + 1]q

qr hur1r (u ∈N0). (21)

Thus, upon proceeding to the limits as r → ∞ in (21) and keeping the condition (18) in mind, we deduce
that

∞∑
v=0

duv fv =
∞∑

v=0

[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
1v. (22)

Therefore, by using (22) together with (15) and (16), we find that

sup
u∈N0

∣∣∣∣∣∣∣
∞∑

v=0

fv

∣∣∣∣∣∣∣ ≦ sup
u∈N0

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)∣∣∣∣∣∣ |1v| ≦ I
(
T(I) + ρ1(1)

)
< ∞,

which implies that D f ∈ ℓ∞. Thus we have D ∈
(
Xq(p), ℓ∞

)
.

In a similar manner, one can complete the proof of Case (ii).

Theorem 7. Each of the following assertions holds true:

(i) Let 1 < pv ≦ P < ∞ for k ∈N0. Then D = (duv) ∈
(
Xq(p), c

)
if and only if (17) and (18) hold true and there exists

a sequence (αv) of scalars such that

lim
u→∞

[v + 1]q

(
duv − αv

qv −
du,v+1 − αv+1

qv+1

)
= 0, v ∈N0. (23)

(ii) Let 0 < pv ≦ 1 for k ∈N0. Then D = (duv) ∈
(
Xq(p), c

)
if and only if (19), (20) and (23) hold true.

Proof. We present the proof of Case (i). One can give the proof of Case (ii) by following similar arguments.

Let us assume that 1 < pv ≦ P < ∞ and D ∈
(
Xq(p), c

)
. Since c ⊂ ℓ∞, the necessity part of the conditions

(17) and (18) is straightforward from Case (i) of Theorem 6. Let us now consider the sequence sv(q) defined
in Theorem 3. Since D ∈

(
Xq(p), c

)
, D f exists for each f ∈ Xq(p) and belongs to the space c. So it is evident

that

Dsk(q) =
{

[v + 1]q

(
duv

qv −
du,v+1

qv+1

)}
v∈N0

∈ c

for each u ∈N0. This proves the necessity of (23).



H. M. Srivastava et al. / Filomat 38:1 (2024), 99–117 114

Conversely, we assume that the conditions (17), (18) and (23) hold true. Also let f ∈ Xq(p). Then
Du ∈

[
Xq(p)

]β . This implies that D f exists.

We now consider the following equality for I > 1:

r∑
v=0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
I−1

∣∣∣∣∣∣p
′
v

≦ sup
u∈N0

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
I−1

∣∣∣∣∣∣p
′
v

.

Thus, upon proceeding to the limits as r,u→∞ and by using (17) and (23), we get

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
I−1

∣∣∣∣∣∣p
′
v

< ∞. (24)

Again, if we proceed to the limits as u→∞ in (18), we see that
(
αv[v + 1]q

qv

)p′v
 ∈ ℓ∞.

This fact together with (24) yields (αv) ∈
[
Xq(p)

]β . Thus the series
∞∑

v=0
αv fv converges for each f ∈ Xq(p).

One can now observe from the equality (22) that the following condition holds true:

∞∑
v=0

(duv − αv) fv =
∞∑

v=0

[v + 1]q

(
duv − αv

qv −
du,v+1 − αv+1

qv+1

)
1v. (25)

By using the conditions (17) and (23), it follows immediately from Lemma 2 that(
[v + 1]q

(
duv − αv

qv −
du,v+1 − αv+1

qv+1

))
u,v∈N0

∈ (ℓp, c0).

This statement together with (25) yields

lim
u→∞

∞∑
v=0

(duv − αv) fv = 0.

Since
∞∑

v=0
αv fv converges, it follows immediately that

D f =
∞∑

v=0

duv fv ∈ c

for each f ∈ Xq(p). This completes the proof of Theorem 7.

Upon replacing the space c with c0, in Theorem 7, we are led to the following result.

Theorem 8. Each of the following assertions holds true:

(i) Let 1 < pv ≦ P < ∞ for k ∈ N0. Then D = (duv) ∈
(
Xq(p), c0

)
if and only if (17) and (18) hold true and the

condition (23) with αv = 0 is satisfied for all v ∈N0.

(ii) Let 0 < pv ≦ 1 for k ∈ N0. Then D = (duv) ∈
(
Xq(p), c0

)
if and only if (19) and (20) hold true and the condition

(23) with αv = 0 is satisfied for all v ∈N0.
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In a similar way, one can characterize matrix transformations from the spaces Xq
0(p), Xq

c (p) and Xq
∞(p)

to any of the spaces ℓ∞, c or c0. The lines of proof are analogous to those of Theorems 6, 7 and 8. Hence,
in order to avoid unnecessary repetitions, we state the results without proof. Before proceeding, we list
several conditions that will be utilized in proving the following results:

(
[v + 1]q

qv duvI1/pv

)
v∈N0

∈ c0 (u ∈N0), (26)

sup
u∈N0

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)∣∣∣∣∣∣ I1/pv < ∞, (27)

lim
u→∞

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
− αv

∣∣∣∣∣∣ I1/pv < ∞ (αv ∈ C), (28)

sup
u∈N0

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)∣∣∣∣∣∣ I−1/pv < ∞, (29)

sup
u∈N0

∞∑
v=0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)∣∣∣∣∣∣ < ∞, (30)

lim
u→∞

∣∣∣∣∣∣∣
∞∑

v=0

[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
− α

∣∣∣∣∣∣∣ < ∞ (α ∈ C), (31)

lim
u→∞

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
− αv

∣∣∣∣∣∣ < ∞ (αv ∈ C) (32)

and

lim
u∈N0

∣∣∣∣∣∣[v + 1]q

(
duv

qv −
du,v+1

qv+1

)
− αv

∣∣∣∣∣∣ I−1/pv < ∞ (αv ∈ C). (33)

Theorem 9. Each of the following assertions holds true:

(1) D ∈
(
Xq
∞(p), ℓ∞

)
if and only if (26) and (27) hold true;

(2) D ∈
(
Xq
∞(p), c

)
if and only if (26), (27) and (28) hold true;

(3) D ∈
(
Xq
∞(p), c0

)
if and only if (26) and (27) hold true and the condition (28) with αv = 0 is also satisfied for all

v ∈N0;
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(4) D ∈
(
Xq

c (p), ℓ∞
)

if and only if (26), (29) and (30) hold true;

(5) D ∈
(
Xq

c (p), c
)

if and only if (26), (31), (32) and (33) hold true;

(6) D ∈
(
Xq

c (p), c0

)
if and only if (26) and (31) hold true and the conditions (32) and (33) with αv = 0 are also

satisfied for all v ∈N0;

(7) D ∈
(
Xq

c (p), ℓ∞
)

if and only if (26) and (29) hold true;

(8) D ∈
(
Xq

c (p), c
)

if and only if (26), (29), (32) and (33) hold true;

(9) D ∈
(
Xq

c (p), c0

)
if and only if (26) holds true and the conditions (32) and (33) with αv = 0 are also satisfied for

all v ∈N0.

5. Concluding Remarks and Observations

In our present investigation, we have introduce and systematically study the q-Cesàro matrix C(q) = (cq
uv)

with q ∈ (0, 1) for which we can write

cq
uv =


qv

[u + 1]q
(0 ≦ v ≦ u)

0 (v > u),

where [κ]q denotes, as usual, the basic (or quantum or q-) number. The q-Cesàro matrix C(q), which we have
considered herein, is a q-analogue of the familiar Cesàro matrix C1. We have presented a general theory
of the sequence spaces Xq(p), Xq

0(p), Xq
c (p) and Xq

∞(p), which are obtained by the domain of the matrix C(q)
in the Maddox spaces ℓ(p), c0(p), c(p) and ℓ∞(p), respectively. In particular, we have derived the Schauder
basis and the alpha-, beta- and gamma-duals of each of these spaces which we have defined in this article.
Moreover, we have proved a total of nine theorems characterizing matrix transformation from the spaces
Xq(p), Xq

0(p), Xq
c (p) and Xq

∞(p) to anyone of the spaces c0, c or ℓ∞.

For the interest of the reader and for encouraging further researches along the lines presented herein,
we have chosen to include the citations of several recent developments on the q-theory and the q-analysis.
Indeed it is known that the basic (or q-) series and the basic (or q-) polynomials, especially the basic (or q-)
gamma and q-hypergeometric functions and the basic (or q-) hypergeometric polynomials, are applicable
particularly in several diverse areas (see, for example, [26, pp. 350–351] and [20, p. 328]; see also the recent
developments in [5], [6], [24] and [25] on various diversied applications of the q-theory and q-analysis).
Moreover, in the recently-published survey-cum-expository review articles by Srivastava (see [20], [21] and
[22]), it was exposed, demonstrated and reiterated that the so-called (p, q)-calculus is, in fact, a rather trivial
and inconsequential variation or a trivial and inconsequential translation of the classical q-calculus, simply
because the additional forced-in parameter p is obviously redundant or superfluous (see, for details, [20, p.
340] and [21, pp. 1511–1512]; see also [22, Sections 5 and 6]). This observation by Srivastava (see [20], [21]
and [22]) will surely apply also to any future attempts to produce the rather straightforward (p, q)-variants
of the results which we have presented in this article. Such tendencies on the part of some seemingly
amateurish-type researchers ought to be discouraged by all means.
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[8] S. Demiriz and A. Şahin, q-Cesàro sequence spaces derived by q-analogue, Adv. Math. Sci. J. 5 (2016), 97–110.
[9] K. G. Grosse-Erdmann, Matrix transformation between the sequence spaces of Maddox, J. Math. Anal. Appl. 180 (1993), 223–238.

[10] V. Kac and P. Cheung, Quantum Calculus, Springer, New York, 2002.
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