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Abstract. Let A be a Banach algebra, A and B be Banach A-module with compatible actions and X
be a Banach left A-A-module and Banach right B-A-module. Then the corresponding triangular Banach
algebra Tri(A,X,B) is a Banach A-module with compatible actions. In this paper, we study n-weak module
amenability of module extension Banach algebras to provide necessary and sufficient conditions for n-weak
module amenability (as an A-module) of Tri(A,X,B), when A and B are not necessarily unital and not have
bounded approximate identity. This not only fixes the gaps in some known results in the literature but
also extends that results and gives a direct proof for them. Furthermore, we characterize n-weak module
amenability of triangular matrix algebras related to inverse semigroups and some triangular Banach algebra
related to locally compact groups.

1. Introduction and some Preliminaries

A Banach algebra A is amenable if H1(A,X∗) = {0}, for every Banach A-bimodule X, where H1(A,X∗)
is the first Hochschild cohomology group of A with coefficients in X∗. It is n-weakly amenable (n ≥ 0)
if H1(A,A(n)) = {0}, where A(n) is the nth-dual space of A and A(0) = A. When A is 1-weakly amenable,
it is called weakly amenable. A Banach algebra is called permanently weakly amenable if it is n-weakly
amenable for each n ∈ N. These concepts were introduced and studied by Johnson [14], and Dales et al.
[10], respectively. See the monograph [9], for more background.

For a locally compact group G, the famous Johnson’s theorem assert that the convolution algebra L1(G)
is amenable if and only if G is amenable [14]. Moreover, it is well known that L1(G) is always n-weakly
amenable for every n ∈ N (for a proof see [8], [10] and [20]). Both of these facts are not true for inverse
semigroups in general, [7]. Amini in [1] and Amini et al. in [2] and [4], introduced and studied the concepts
of module amenability and n-weak module amenability for Banach algebras which are Banach module over
another Banach algebra with compatible actions. These notions could be considered as a generalization of
the notions amenability and n-weak amenability of Banach algebras. They extended the classical results on
(n-weak) amenability of L1(G) and showed that the inverse semigroup algebra l1(S) is module amenable,
as an l1(E)-module, if and only if S is amenable [1, Theorem 3.1], and that it is always n-weakly module
amenable, when n is odd and l1(E) acts trivially on l1(S) from left and by multiplication from the right
[4, Theorem 3.15]. This result for even number n ∈ N was proved in [11, Theorem 2.2]. Moreover, it is
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shown in [5, Theorem 2.7, Corollary 2.8] that l1(S) is n-weakly module amenable for all n ≥ 0, when S is a
commutative and l1(E) acts on l1(S) by usual multiplication from both sides.

Forrest and Marcoux [13], studied the n-weak amenability of triangular Banach algebra Tri(A,X,B) for
the case where A and B are unital Banach algebras and X is a unital Banach (A,B)-module. They showed
that Tri(A,X,B) is weakly amenable if and only if both A and B are weakly amenable. The module version
of this result was proved in [18]. The n-weak amenability of Tri(A,X,B), for the case that A and B are not
necessarily unital, was investigated by Medghalchi et al. in [16]. Bodaghi and Jabbari [6], extended the
results of [16] and studied n-weak module amenability of Tri(A,X,B). As a main result, they showed in [6,
Theorem 4.3] that, if A and B have bounded approximate identity and X is a non-degenerate (A,B)-module,
then for n ≥ 0, (2n+ 1)-weak module amenability of Tri(A,X,B) and that of corner Banach algebras A and B
are equivalent. They use [6, Proposition 4.2] in their proof, but the assumptions of this proposition do not
appear in [6, Theorem 4.3]. Thus, the result will be valid, if A(2n−1), B(2n−1) and X(2n−1) are also non-degenerate
modules.

This paper is designed to improve and fix gaps in the main results of [6] on n-weak module amenability
of Tri(A,X,B) and extend the results of [16]. For this purpose, we first study n-weak module amenability
(as an A-module) of the module extension Banach algebra A ⊕ X, which can be seen as a generalization of
triangular Banach algebras. We then, employ our results for Tri(A,X,B) to not only improve and extend the
main results of [6] and [16], but also give necessary and sufficient conditions for Tri(A,X,B) to be n-weakly
module amenable (as an A-module).

2. n-Weak module amenability of module extensions

Throughout this paper, A and A are Banach algebras such that A is a Banach A-module with compatible
actions, that is α · (ab) = (α · a)b and (ab) · α = a(b · α) for a, b ∈ A, α ∈ A. Let X be a Banach A-module and a
Banach A-module with compatible actions, that is

α · (a · x) = (α · a) · x, a · (α · x) = (a · α) · x, (α · x) · a = α · (x · a) (a ∈ A, α ∈ A, x ∈ X),

and the same for the right or two-sided actions. Then, we say that X is a Banach A-A-module. If moreover
α · x = x · α for α ∈ A, x ∈ X, then X is called a commutative A-A-module. If X is a (commutative) Banach
A-A-module, then so is X∗, where the actions of A and A on X∗ are defined by

⟨α · f , x⟩ = f (x · α), ⟨a · f , x⟩ = f (x · a) (a ∈ A, α ∈ A, f ∈ X∗, x ∈ X),

and the same for the other side actions. So, X(n) is a (commutative) Banach A-A-module.
Let A and A be as above and X and Y be Banach A-A-modules. A map T : X→ Y is called an A-module

map if
T(x ± z) = T(x) ± T(z), T(α · x) = α · T(x), T(x · α) = T(x) · α,

for x, z ∈ X and α ∈ A. If moreover, T(a · x) = a · T(x) and T(x · a) = T(x) · a for x ∈ X and a ∈ A, then T is
called an A-A-module map. Although T is not necessary linear, but still its boundedness implies its norm
continuity.

Let X be a Banach A-A-module. A bounded A-module map D : A → X is called a module derivation
if D(ab) = D(a) · b + a · D(b) for a, b ∈ A. When X is commutative, each x ∈ X defines a module derivation
adx(a) = a · x − x · a for a ∈ A, which is called an inner A-module derivation.

Note that when A acts on itself by algebra multiplication, it is not in general a Banach A-A-module, as
we have not assumed the compatibility condition a(α ·b) = (a ·α)b for α ∈ A, a, b ∈ A. Let J be the closed ideal
of A generated by {(a ·α)b−a(α ·b) ; a, b ∈ A, α ∈ A}. Then, J is an A-submodule of A. So, the quotient Banach
algebra A/J is a Banach A-module with compatible action. We say that A is n-weakly module amenable, as
an A-module, if A/J is a commutative Banach A-A-module, and each A-module derivation D : A→ (A/J)(n)

is inner; that is H1
A

(A, (A/J)(n)) = {0}. Also A is called permanently weakly module amenable if A is n-weakly
module amenable for each n ∈N; see [4] and [5] for more details.
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Let A be a Banach algebra and let X be an A-module. Then, the module extension Banach algebra
corresponding to A and X is A ⊕ X, the ℓ1-direct sum A × X with the algebra multiplication defined by

(a, x) · (b, y) = (ab, a · y + x · b) (a, b ∈ A, x, y ∈ X).

Following [19], we take A(n)
× X(n) as the underlying space of (A ⊕ X)(n). One can directly check that the

A ⊕ X-module actions on (A ⊕ X)(n) for (a, x) ∈ A ⊕ X and (a(n), x(n)) ∈ A(n)
× X(n) are formulated as follows:

(a, x) · (a(2n), x(2n)) = (a · a(2n), a · x(2n) + x · a(2n))
(a, x) · (a(2n+1), x(2n+1)) = (a · a(2n+1) + x · x(2n+1), a · x(2n+1)),

where x · a(2n)
∈ X(2n) and x · x(2n+1)

∈ A(2n+1) are defined by

⟨x · a(2n), x(2n−1)
⟩ = ⟨a(2n), x(2n−1)

· x⟩, ⟨x · x(2n+1), a(2n)
⟩ = ⟨x(2n+1), a(2n)

· x⟩.

And similarly for the right module actions.
Zhang in [19], investigated the n-weak amenability of module extension Banach algebras and used

them to construct an example of a weakly amenable Banach algebra which is not 3-weakly amenable. In
this section, we extend the main results of [19], and characterize n-weak module amenability of module
extension Banach algebra A ⊕ X in terms of A and X. From now on, we shall assume that A ⊕ X is a
commutative A-module with compatible actions. A simple computation shows that this assumption holds
if and only if A is a commutative A-module, and X is a commutative A-A-module.

We start with the following result which is a module version of [19, Theorem 2.1] and can be proved by
a similar argument. However, we bring its proof.

Theorem 2.1. Let n ≥ 0. Then A ⊕ X is (2n + 1)-weakly module amenable if and only if

(i) A is (2n + 1)-weakly module amenable.

(ii) H1
A

(A,X(2n+1)) = {0}.

(iii) For every bounded A-A-module map T : X → A(2n+1), there is 1 ∈ X(2n+1) such that a · 1 = 1 · a and
T(x) = x · 1 − 1 · x for all a ∈ A and x ∈ X.

(iv) The only bounded A-A-module map S : X→ X(2n+1) for which S(x) · y+ x · S(y) = 0 in A(2n+1), for all x, y ∈ X,
is zero.

Proof. Suppose that conditions (i)-(iv) hold. Let D : A ⊕ X → (A ⊕ X)(2n+1) be a A-module derivation.
Then, a direct verification reveals that D(a, x) = (DA(a)+T(x),DX(a)+S(x)), where the component mappings
DA : A → A(2n+1) and DX : A → X(2n+1) are A-module derivations, T : X → A(2n+1) is a bounded A-module
map such that T(x · a) = T(x) · a + x ·DX(a) and T(a · x) = a · T(x) +DX(a) · x and S : X→ X(2n+1) is a bounded
A-A-module map satisfying S(x) · y + x · S(y) = 0 in A(2n+1). By conditions (i) and (ii), DA and DX are inner
derivations and by condition (iv), S = 0. Thus, there are f ∈ A(2n+1) and 10 ∈ X(2n+1) such that DA = ad f and
DX = ad10 . Define T1 : X→ A(2n+1) by

T1(x) = T(x) − x · 10 + 10 · x.

It simply follows from commutativity A-module X that, T1 is a A-A-module map. Thus, from (iii), there
exists 11 ∈ X(2n+1) such that a · 11 = 11 · a and T1(x) = x · 11 − 11 · x. It follows that T(x) = x · 1 − 1 · x and
DX = ad1, where 1 = 10 + 11. Consequently,

D(a, x) = (DA(a) + T(x),DX(a) + S(x))
= (ad f (a) + x · 1 − 1 · x, ad1(a)) (1)
= ad( f ,1)(a, x),
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for all (a, x) ∈ A ⊕ X. This complete the proof of sufficiency.
For necessity, suppose that A⊕X is (2n+1)-weakly module amenable, as anA-module. Let d : A→ A(2n+1)

be a A-module derivation. Then, D : A⊕X→ (A⊕X)(2n+1) defined by D(a, x) = (d(a), 0) is a A-module map.
We follow from [19, Lemma 3.5] that D is a A-module derivation and so it is inner. Now relation (1) implies
that d is also inner, so A is (2n + 1)-weakly module amenable.
To prove (ii), let d : A→ X(2n+1) be a A-module derivation. Then, [19, Lemma 3.4] implies that D : A ⊕ X→
(A ⊕ X)(2n+1) given by D(a, x) = (−d(2n+1)(x), d(a)) is a A-module derivation, so it is inner. Hence, d is also
inner, again by [19, Lemma 3.4]. This shows that H1

A
(A,X(2n+1)) = {0}, as required.

Let T : X→ A(2n+1) and S : X→ X(2n+1) be A-A-module maps such that S(x) · y + x · S(y) = 0 in A(2n+1) for all
x, y ∈ X. Define D : A ⊕ X → (A ⊕ X)(2n+1) by D(a, x) = (T(x),S(x)). Then, Lemma 3.1 and 3.5 of [19] jointly
show that D is a A-module derivation, so it is inner. Let f ∈ A(2n+1) and 1 ∈ X(2n+1) be such that D = ad( f ,1).
By (1), we have

(T(x),S(x)) = (ad f (a) + x · 1 − 1 · x, ad1(a)) (a ∈ A, x ∈ X).

Taking a = 0 we obtain S = 0 and T(x) = x · 1 − 1 · x for all x ∈ X. And if we take x = 0 we get a · 1 = 1 · a for
all a ∈ A. This proves (iii) and (iv) and completes the proof.

Before to characterize n-weak module amenability of A ⊕ A(m), we need the following module version
of [10, Proposition 1.2]. Since the natural embedding ι : A(n)

→ A(n+2) and the projection P : A(n+2)
→ A(n)

used in the proof of [10, Proposition 1.2] are A-module maps, the argument of [10, Proposition 1.2] suffices
to show n-weak module amenability.

Proposition 2.2. Suppose that n ∈ N and A is (n + 2)-weakly module amenable. Then, A is n-weakly module
amenable.

Recall that an A-module X is called symmetric if a · x = x · a for a ∈ A and x ∈ X. As a consequence of
Theorem 2.1, we have the next result concerning (2n + 1)-weak module amenability of A ⊕ A(2m+1).

Corollary 2.3. Suppose that A is commutative and m ≥ 0. Then, A⊕A(2m+1) is not (2n+1)-weakly module amenable.

Proof. Using Proposition 2.2, we show that A ⊕ A(2m+1) is not weakly module amenable. Set X = A(2m+1) in
Theorem 2.1 and let T : X = A(2m+1)

→ A∗ be the adjoint map of the canonical embedding ι : A → A(2m).
Then, T is a non-zero bounded A-A-module map. Since A is commutative, X = A(2m+1) is a symmetric
A-module and so x · 1 = 1 · x in A(2n+1) for all x ∈ X and 1 ∈ X(2n+1). This follows that condition (iii) of
Theorem 2.1 does not hold. Hence, A ⊕ A(2m+1) is not weakly module amenable.

In the next result which is a module version of [19, Theorem 2.2], we characterize 2n-weak module
amenability of A ⊕ X. The proof is based on the argument used in Theorem 2.1 and [19, Theorem 2.2], so
the details omitted.

Theorem 2.4. Let n ≥ 0. Then A ⊕ X is 2n-weakly module amenable if and only if

(i) If DA : A → A(2n) is a A-module derivation such that there is a bounded A-module map S : X → X(2n) with
S(x · a) = S(x) · a + x ·DA(a) and S(a · x) = a · S(x) +DA(a) · x (a ∈ A, x ∈ X), then D is inner.

(ii) H1
A

(A,X(2n)) = {0}.

(iii) The only bounded A-A-module map T : X→ A(2n) for which T(x) · y + x · T(y) = 0 (x, y ∈ X) in X(2n) is zero.

(iv) For every boundedA-A-module map S : X→ X(2n), there is f ∈ A(2n) such that a · f = f ·a and S(x) = x · f − f ·x
for a ∈ A and x ∈ X.

Proof. To prove the necessity, suppose that A ⊕ X is 2n-weakly module amenable. Let d : A → A(2n)

be a A-module derivation with the property given in condition (i). Define D : A ⊕ X → (A ⊕ X)(2n) by
D(a, x) = (d(a),S(x)). Then, D is a A-module derivation, so is inner. A simple computation shows that d is
also inner. This proves (i). Conditions (ii)-(iv) can be proved by analogous argument given in Theorem 2.1.
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For sufficiency, let D : A⊕X→ (A⊕X)(2n) be aA-module derivation. Then, D(a, x) = (DA(a)+T(x),DX(a)+S(x)),
where the component mappings DA : A→ A(2n) and DX : A→ X(2n) areA-module derivations, T : X→ A(2n)

is a bounded A-A-module map satisfying T(x) · y + x · T(y) = 0 in X(2n) and S : X → X(2n) is a bounded
A-module map such that S(x · a) = S(x) · a + x · DA(a) and S(a · x) = a · S(x) + DA(a) · x. By conditions (i)
and (ii), DA = ad f0 and DX = ad1 for some f0 ∈ A(2n) and 1 ∈ X(2n) and from condition (iii), T = 0. Define
S1 : X → X(2n) by S1(x) = S(x) − x · f0 + f0 · x. It simply follows from commutativity of A-module A that, S1
is a A-A-module map. Thus, from (iv), there exists f1 ∈ A(2n) such that a · f1 = f1 · a and S1(x) = x · f1 − f1 · x.
It follows that, S(x) = x · f − f · x and DA = ad f , where f = f0 + f1. Consequently, D = ad( f ,1). This complete
the proof.

As a consequence of Theorems 2.4, we have the next result.

Corollary 2.5. If X is non-zero and symmetric, then A ⊕ X is not 2n-weakly module amenable, for every n ≥ 0. In
particular, A ⊕ A(m) is not 2n-weakly module amenable, if m ≥ 0 and A is commutative.

Proof. Let S : X → X(2n) be the canonical embedding. Then, it is a non-zero A-A-module map. Since X is
symmetric, x · f = f · x in X(2n), for all x ∈ X and f ∈ A(2n). It follows that, condition (iv) of Theorem 2.4 does
not hold for such X. Hence A ⊕ X is not 2n-weakly module amenable, as an A-module.

If we combine Corollaries 2.3 and 2.5, we get the following result.

Proposition 2.6. Suppose that A is commutative and m,n ≥ 0. Then, A⊕A(2m+1) is not n-weakly module amenable,
as an A-module.

We conclude this section with the following results on direct product of two Banach algebras, that will
be needed in the next section.

Theorem 2.7. For n ≥ 0, the direct product A × B is n-weakly module amenable, as an A-module, if and only if

(i) both A and B are n-weakly module amenable.

(ii) The only bounded A-module map S : A→ B(n) for which S(ac) = 0 and S(a) · b = b · S(a) = 0 for all a, c ∈ A
and b ∈ B is S = 0.

(iii) If T : B→ A(n) is a bounded A-module map such that T(bd) = 0 and a ·T(b) = T(b) · a = 0 for all a ∈ A and
b, d ∈ B, then T = 0.

Proof. To prove the necessity, let dA : A → A(n) and dB : B → B(n) be A-module derivations. Then,
D : A × B → (A × B)(n) defined by D(a, b) = (dA(a), dB(b)) is a A-module derivation and so it is inner. Thus,
D = ad( f ,1), for some ( f , 1) ∈ A(n)

×B(n)
≃ (A×B)(n). From the equality ad( f ,1)(a, b) = (ad f (a), ad1(b)), it follows

that dA and dB are inner, so (i) holds.
Let S : A→ B(n) be a boundedA-module map satisfying the hypotheses in (ii). Then, D : A×B→ (A×B)(n)

given by D(a, b) = (0,S(a)), is a bounded A-module derivation, and so D = ad( f ,1), for some ( f , 1) ∈ (A×B)(n).
Applying the equality, (0,S(a)) = (ad f (a), ad1(b)), for b = 0, we get S = 0. This proves (ii). Similarly we can
prove (iii).

For sufficiency, suppose that D : A×B→ (A×B)(n) is aA-module derivation. A direct verification shows
that D enjoys the presentation

D(a, b) = (DA(a) + T(b),S(a) +DB(b)) ((a, b) ∈ A × B),

where DA : A → A(n) and DB : B → B(n) are A-module derivations and T : B → A(n) and S : A → B(n) are
bounded A-module map satisfying T(bd) = 0, a · T(b) = T(b) · a = 0, S(ac) = 0 and b · S(a) = S(a) · b = 0, for
every a, c ∈ A and b, d ∈ B. By condition (ii) and (iii), S = 0 and T = 0. From conditions (i), it follows that
DA = ad f and DB = ad1, for some f ∈ A(n) and 1 ∈ B(n). Consequently, D(a, b) = (ad f (a), ad1(b)) = ad( f ,1)(a, b),
for all (a, b) ∈ A × B. Thus, D is inner, as claimed.
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Let A be a Banach algebra and X be a Banach left A-module. By ⟨AX⟩, we denote the linear span of
AX = {a · x | a ∈ A, x ∈ X}, in X. We also recall that, X is non-degenerate if

AnnA(X) = {x ∈ X; a · x = 0 ∀a ∈ A} = {0}.

Non-degenerate right A-module are defined similarly.

Corollary 2.8. Let n ≥ 0. If the direct product A × B is n-weakly module amenable then both A and B are also
n-weakly module amenable. The converse holds if any of the following statements holds.

(1) ⟨A2
⟩ is dense in A and ⟨B2

⟩ is dense in B.

(2) ⟨B2
⟩ is dense in B and B(n) is a non-degenerate left or right B-module.

(3) ⟨A2
⟩ is dense in A and A(n) is a non-degenerate left or right A-module.

Proof. For n-weak module amenability of A × B, we need to prove conditions (ii) and (iii) of Theorem 2.7.
The other side is clear. Suppose that S and T are A-module maps satisfying conditions (ii) and (iii) of
Theorem 2.7, respectively. Then, S(a) ∈ AnnB(B(n)) and T(b) ∈ AnnA(A(n)), for a ∈ A and b ∈ B. Since S is a
A-module map and S = 0 on A2, we have S = 0 on ⟨A2

⟩. Indeed, if z ∈ ⟨A2
⟩ then z =

∑m
i=1 λiaici, for some

λi ∈ C and ai, ci ∈ A. Thus, S(z) =
∑m

i=1 S((λiai)ci) = 0. As the same way, T = 0 on ⟨B2
⟩. Now conditions (ii)

and (iii) of Theorem 2.7, will be simply concluded from each of the assumptions (1) to (3).

3. Application to triangular Banach algebras

In this section we apply the results of the previous section, to give necessary and sufficient conditions
for n-weak module amenability of triangular Banach algebras. Our approach not only provides a direct
proof for some known results in the literature, but also it improves and extends the main results of [6, 18]
and [16].

Let A and B be Banach algebras and let X be a Banach (A,B)-module. Then,

Tri(A,X,B) =
{(

a x
0 b

)
; a ∈ A, x ∈ X, b ∈ B

}
,

under matrix-like operations and equipped with the ℓ1-norm
∥∥∥∥(a x

0 b

)∥∥∥∥ = ∥a∥ + ∥b∥ + ∥x∥, becomes a Banach
algebra, which is called a triangular Banach algebra. This Banach algebra was first introduced and studied
in [12]. Some aspects of triangular Banach algebras have been discussed in [6, 13] and [18].

The triangular Banach algebra Tri(A,X,B), can be viewed as a module extension Banach algebra (A ×
B)⊕X, where A×B is the direct product of A and B and X as an (A×B)-module is equipped with the module
operations

(a, b) · x = a · x and x · (a, b) = x · b (a ∈ A, b ∈ B, x ∈ X).

In the whole of this section, we shall assume that Tri(A,X,B) is a commutativeA-module with compatible
actions. The first result, gives a necessary and sufficient conditions for (2n + 1)-weak module amenability
of Tri(A,X,B), for the case where ⟨AX+XB⟩, the linear span of AX+XB = {a · x+ y · b ; a ∈ A, b ∈ B, x, y ∈ X},
is dense in X.

Theorem 3.1. Suppose that ⟨AX + XB⟩ is dense in X and n ≥ 0. Then, Tri(A,X,B) is (2n + 1)-weakly module
amenable if and only if

(1) A × B is (2n + 1)-weakly module amenable.

(2) H1
A

(A × B,X(2n+1)) = {0}.
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Proof. Let conditions (1) and (2) hold, it is enough to prove conditions (iii) and (iv) of Theorem 2.1. Suppose
that T : X→ (A×B)(2n+1) be aA-(A×B)-module map. Then, for all (a, x) ∈ A×X and (a(2n), b(2n)) ∈ A(2n)

×B(2n)

we have

⟨T(a · x), (a(2n), b(2n))⟩ = ⟨(a, 0) · T(x), (a(2n), b(2n))⟩

= ⟨T(x), (a(2n), b(2n)) · (a, 0)⟩

= ⟨T(x) · (a(2n), 0), (a, 0)⟩

= ⟨T(2n)(x · (a(2n), 0)), (a, 0)⟩ = 0.

Similarly, T(y · b) = 0, for all (y, b) ∈ X × B, and so T(a · x + y · b) = 0. Let z ∈ ⟨AX + XB⟩. Then,
z =

∑k
i=1(λi(ai · xi)+ γi(yi · bi)) for some λi, γi ∈ C, ai ∈ A, bi ∈ B and xi, yi ∈ X. Since T is a A-module map, we

have T(z) =
∑k

i=1 T((λiai) · xi + (γiyi) · bi) = 0. From continuity of T and density of ⟨AX + XB⟩ in X, we get
T = 0, so condition (iii) of Theorem 2.1 holds.

For (iv), let S : X→ X(2n+1) be a A-(A × B)-module map with S(x) · y + x · S(y) = 0, for all x, y ∈ X. Then,
S(a · x+ y · b) = (a, 0) · S(x)+ S(y) · (0, b) = 0. Continuity of S and density of ⟨AX +XB⟩ in X imply that S = 0,
as required.

It is proved in [6, Theorem 4.3] that (2n + 1)-weak module amenability of Tri(A,X,B) is equivalent to
(2n + 1)-weak module amenability of A and B, if A and B both have bounded approximate identity and X
is a non-degenerate (A,B)-module. They use [6, Proposition 4.2] in their proof, but the assumptions of this
proposition do not appear in [6, Theorem 4.3]. Thus, the result will be valid, if A(2n−1), B(2n−1) and X(2n−1) are
also non-degenerate. In the next, we improve [6, Theorem 4.3] and extend the main result of [18] and give
a simple proof for them. In fact we obtain the same result with different conditions.

Theorem 3.2. Let B (resp. A) has a bounded right (resp. left) approximate identity, and let X(2n+1) be a non-
degenerate left B-module (resp. right A-module). Then, Tri(A,X,B) is (2n + 1)-weakly module amenable if and only
if A and B are (2n + 1)-weakly module amenable.

Proof. Using Corollary 2.8 and Theorem 3.1, it is enough to show that H1
A

(A × B,X(2n+1)) = {0}. For this,
let D : A × B → X(2n+1) be a A-module derivation. Then, D(a, b) = DA(a) + DB(b) for some right A-module
map DA : A → X(2n+1) and left B-module map DB : B → X(2n+1). Moreover, b · DA(a) = −DB(b) · a for all
a ∈ A, b ∈ B. Since B has a bounded right approximate identity, there is 1 ∈ X(2n+1) such that DB(b) = b · 1.
Thus, b ·DA(a) = −DB(b) · a = −b · 1 · a. Since X(2n+1) is non-degenerate, we get DA(a) = −1 · a. Therefore,

D(a, b) = DA(a) +DB(b) = −1 · a + b · 1 = ad1(a, b).

If we apply Theorem 3.2 for Tri(A,X,A), we get the following result.

Corollary 3.3. Let A has a bounded right (resp. left) approximate identity, and X(2n+1) be a non-degenerate left (resp.
right) A-module. Then, Tri(A,X,A) is (2n + 1)-weakly module amenable if and only if A is (2n + 1)-weakly module
amenable.

To give our results on 2n-weak module amenability of Tri(A,X,B), we need the following lemma, which
can be proved by a similar argument used in Theorem 3.2.

Lemma 3.4. Let n ∈ N and B (resp. A) has a bounded left (resp. right) approximate identity. If X(2n) is a
non-degenerate right B-module (resp. left A-module), then H1

A
(A × B,X(2n)) = {0}.

If we use Theorem 2.4 for Tri(A,X,B), we arrive at the following result, which is a generalization of [6,
Theorem 5.1(iii) and 5.3]. By ⟨AXB⟩, we denote the linear span of AXB = {a · x · b ; a ∈ A, b ∈ B, x ∈ X} in X.
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Theorem 3.5. Let n ∈ N and B (resp. A) has a bounded left (resp. right) approximate identity, and X(2n) be a
non-degenerate right B-module (resp. left A-module). If ⟨AXB⟩ is dense in X, then Tri(A,X,B) is 2n-weakly module
amenable if and only if

(1) The only A-module derivations D : A × B → (A × B)(2n) for which there is a bounded A-module map
S : X → X(2n) such that S(x · b) = S(x) · b + x ·D(a, b) and S(a · x) = a · S(x) +D(a, b) · x (a ∈ A, x ∈ X) are
inner A-module derivations.

(2) For every bounded A-(A×B)-module map S : X→ X(2n), there is ( f , 1) ∈ (A×B)(2n) such that (a, b) · ( f , 1) =
( f , 1) · (a, b) for (a, b) ∈ A × B and S(x) = x · ( f , 1) − ( f , 1) · x for x ∈ X.

Proof. Using Lemma 3.4, it is enough to prove condition (iii) of Theorem 2.4. Let T : X → (A × B)(2n) be
A-(A × B)-module map. Then, for every f ∈ A(2n−1) and 1 ∈ B(2n−1), we have

⟨T(a · y · b), ( f , 1)⟩ = ⟨(a, 0) · T(y) · (0, b), ( f , 1)⟩
= ⟨T(y), (0, b) · ( f , 1) · (a, 0)⟩ = 0.

Since ⟨AXB⟩ is dense in X, we obtain T(x) = 0, for all x ∈ X. So T = 0.

Remark 3.6. It is worthwhile mentioning that, the condition ⟨AXB⟩ = X, in Theorem 3.5, can be replaced by any of
the following statements:

(a) ⟨AX⟩ = X and A(2n) is a non-degenerate right A-module.

(b) ⟨XB⟩ = X and B(2n) is a non-degenerate left B-module.

Indeed, if (a) holds and T : X→ (A × B)(2n) is a A-(A × B)-module map. Then, for f ∈ A(2n−1),

⟨T(x), (a · f , 0)⟩ = ⟨T(x), (a, 0) · ( f , 0)⟩ = ⟨T(x · (a, 0)), ( f , 0)⟩ = 0.

And for all 1 ∈ B(2n−1),

⟨T(a · y), (0, 1)⟩ = ⟨(a, 0) · T(y), (0, 1)⟩ = ⟨T(y), (0, 1) · (a, 0)⟩ = 0.

So, by assumption we get ⟨T(x), ( f , 1)⟩ = ⟨T(x), ( f , 0)⟩ + ⟨T(x), (0, 1)⟩ = 0, for x ∈ X, ( f , 1) ∈ A(2n−1)
× B(2n−1).

Therefore, T = 0. A similar argument can be used for (b).

Using Theorem 3.5, we obtain the next result, which improves [6, Corollary 5.3.1].

Corollary 3.7. Let n ∈N and A has a bounded left (resp. right) approximate identity, and A(2n) be a non-degenerate
right A-module (resp. left A-module). Then, Tri(A,A,A) is 2n-weakly module amenable if and only if A is 2n-weakly
module amenable.

Proof. To prove the necessity, suppose that d : A → A(2n) is a A-module derivation. Define D : A × A →
(A × A)(2n) by D(a, c) = (d(a), d(c)). Then, D is a A-module derivation. Using Part (1) of Theorem 3.5 with D
and S = d, we conclude that D is inner. A simple calculation shows that d is also inner.

For sufficiency, it is enough to prove conditions (1) and (2) of Theorem 3.5, by Cohen’s factorization
property. From Corollary 2.8, it follows that A × A is 2n-weakly module amenable. So, condition (1) of
Theorem 3.5 holds.

For condition (2), let S : A→ A(2n) be a bounded A-(A × A)-module map. Then, S is an A-module map.
Since A has a bounded left approximate identity, there is f ∈ A(2n) such that S(a) = f · a, for all a ∈ A. But,

a · f · x = a · S(x) = S(a · x) = f · a · x (x ∈ A).

This implies that a · f = f ·a, since A(2n) is a non-degenerate right A-module. Now (− f , 0) · (a, c) = (a, c) · (− f , 0)
for all a, c ∈ A and S(x) = x · (− f , 0) − (− f , 0) · x for all x ∈ A.
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We close this paper, with some examples.

Example 3.8. 1. Let G be an abelian locally compact Hausdorff group. Since L1(G) has a bounded approxi-
mate identity and Lp(G), 1 ≤ p ≤ ∞, is a commutative L1(G)-module, it follows from Corollary 3.3 that,
Tri(L1(G),Lp(G),L1(G)) is weakly module amenable, as an L1(G)-module. Moreover, Proposition 2.6 shows
that L1(G) ⊕ L∞(G) is not n-weakly module amenable, as an L1(G)-module, for each n ∈N.

2. Let S be an inverse semigroup with the set of idempotents E. Then, E is a commutative sub-semigroup of S
and l1(E) could be regarded as a commutative sub-algebra of l1(S). It is well known that l1(S) has a bounded
approximate identity if and only if E satisfies condition Dk for some k ∈N, [6].

Let l1(E) act trivially on l1(S) from left and by multiplication from right. Then, l1(S) is a Banach l1(E)-module
with compatible actions. Although l1(S) is n-weakly module amenable (as an l1(E)-module) [4, 11], Proposition
2.6 shows that l1(S)⊕ l∞(S) is not n-weakly module amenable, as an l1(E)-module, for each n ∈N. Furthermore,
it follows from Corollaries 3.3 and 3.7 that T2 ⊗ l1(S) = Tri(l1(S), l1(S), l1(S)) is n-weakly module amenable (as
an l1(E)-module) if E satisfies condition Dk for some k ∈N. Theorem 2.7 in [5] shows that, the same conclusion
is also true when S is commutative and l1(E) acts on l1(S) by usual multiplication from both sides.

4. Conclusions

We study and characterize the n-weak module amenability of module extension and triangular Banach
algebras. We also address a gap in the proof of [6, Theorem 4.3] and extend and improve it by discussing
general necessary and sufficient conditions for Tri(A,X,B) to be n-weakly module amenable, for an integer
n ≥ 0.
Acknowledgments. The author would like to thank the referees for their useful comments and suggestions.
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