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Abstract. In this article, we introduce Ψ-concircular curvature tensor, a new tensor that generalizes
the concircular curvature tensor. At first, we produce a few fundamental geometrical properties of Ψ-
concircular curvature tensor and pseudo Ψ-concircularly symmetric manifolds and provide some inter-
esting outcomes. Besides, we investigate Ψ-concircularly flat spacetimes and establish some significant
results about Minkowski spacetime, RW-spacetime, and projective collineation. Moreover, we show that if
a Ψ-concircularly flat spacetime admits a Ricci bi-conformal vector field, then it is either Petrov type N or
conformally flat. Moreover, we consider pseudo Ψ concircularly symmetric spacetime with Codazzi type
of Ricci tensor and prove that the spacetime is of Petrov types I, D or O and the spacetime turns into a
RW spacetime. Also, we establish that in a pseudo Ψ concircularly symmetric spacetime with harmonic
Ψ-concircular curvature tensor, the semi-symmetric energy momentum tensor and Ricci semi-symmetry
are equivalent. At last, we produce a non-trivial example to validate the existence of a (PCS)4 manifold.

1. Introduction

The concircular curvature tensor C plays a significant role in differential geometry and general relativity
(briefly, GR). In semi-Riemannian manifolds, C is demonstrated as [29]

C(U,V)G = K(U,V)G −
R

n(n − 1)
[1(V,G)U − 1(U,G)V], (1)

in which R and K are scalar curvature and the (1,3) type Riemannian curvature tensor, respectively.
Investigating the nature of curvature features is one of the primary concerns in differential geometry.

In light of the previously mentioned concept, we create a new curvature tensor in the present investigation
that we call theΨ-concircular curvature tensor.
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In a semi-Riemannian manifold Mn, we describe, the Ψ-concircular curvature tensor C of type (1,3) in
the following way:

C(U,V)G = K(U,V)G

−
ΨR

n(n − 1)
[1(V,G)U − 1(U,G)V], (2)

in whichΨ is an arbitrary scalar function.
The aforesaid curvature tensor, in particular, simplifies to a concircular curvature tensor forΨ = 1.
The preceding equation can also be written as

Ĉ(U,V,G,H) = K̂(U,V,G,H)

−
ΨR

n(n − 1)
[1(V,G)1(U,H) − 1(U,G)1(V,H)], (3)

in which Ĉ(U,V,G,H) = 1(C(U,V)G,H) and K̂ stands for the (0,4)type Riemannian curvature tensor given
by

K̂(U,V,G,H) = 1(K(U,V)G,H). (4)

Suppose that {ek} (1 ≤ k ≤ n) is an orthonormal basis of the tangent space at every point of the manifold.
Then the equation (3) entails

n∑
1

Ĉ(V,G, ek, ek) = 0 =
n∑
1

Ĉ(ek, ek,V,G) (5)

and
n∑
1

Ĉ(ek, ek,G,H) =
n∑
1

Ĉ(G, ek, ek,H)

= (1 −Ψ)S(G,H), (6)

in which R = ϵk
∑n

k=1 S(ek, ek) (ϵk = 1(ek, ek), that is, ϵ1 = −1,ϵ2 = · · · = ϵn = 1).
Subsequent equations can be simply obtained from the equation(3)

Ĉ(U, V, G, H) = −Ĉ(V, U, G, H), (7)

Ĉ(U,V,G,H) = −Ĉ(U,V,H,G), (8)

Ĉ(U,V,G,H) = Ĉ(G,H,U,V) (9)

and

Ĉ(U,V,G,H) + Ĉ(V,G,U,H) + Ĉ(G,U,V,H) = 0. (10)

Since symmetric spaces are so important to differential geometry, we are focusing on them in the present
paper. These areas were developed in [3].

For the Levi-Civita connection ∇ of (Mn, 1), the Riemannian manifold Mn is known as locally symmetric
if ∇K = 0 [3]. The aforementioned local symmetry criterion holds true for each point U ∈ Mn where the
local geodesic symmetry F(U) is an isometry [24].

A non-flat semi-Riemannian manifold (M, 1), (n > 2) is called pseudo symmetric [4] if it’s curvature
tensor K obeys

(∇XK̂)(U,V,G,H) = 2D(X)K̂(U,V,G,H) +D(U)K̂(X,V,G,H)

+D(V)K̂(U,X,G,H) +D(G)K̂(U,V,X,H)

+D(H)K̂(U,V,G,X), (11)



K. De et al. / Filomat 38:10 (2024), 3535–3546 3537

in which D denotes a non-zero 1-form and ρ stands for the vector field described by

1(U, ρ) = D(U), (12)

for all U. In the Cartan sense, M turns into a symmetric manifold if D = 0. A n dimensional pseudo
symmetric manifold is generally indicated by (PS)n.

In this research, we looked at a semi-Riemannian manifold (Mn, 1), (n > 2) whose Ψ-concircular curva-
ture tensor Ĉ satisfies

(∇XĈ)(U,V,G,H) = 2D(X)Ĉ(U,V,G,H) +D(U)Ĉ(X,V,G,H)

+D(V)Ĉ(U,X,G,H) +D(G)Ĉ(U,V,X,H)

+D(H)Ĉ(U,V,G,X). (13)

The manifold stated above is referred to as a pseudoΨ-concircularly symmetric manifold and is desig-
nated by the symbol (PCS)n.

The term Lorentzian manifold refers to a particular type of semi-Riemannian manifold that has a
Lorentzian metric 1. In GR, Spacetime is a connected time-oriented Lorentzian manifold M4 having the
signature (−,+,+,+).

Perfect fluids (briefly, PFs) play a fascinating part in general relativity, lacking the heat conduction terms
and the stress term related to viscosity [17]. In a PF, the energy momentum tensor (briefly, EMT) T is
described by

T(U,V) = (p + σ)B(U)B(V) + p1(U,V), (14)

in which B is a 1-form, p and σ stand for the isotropic pressure and the energy density, respectively [24] and
ρ is a unit time-like vector field {1(ρ, ρ) = −1}.

In absence of the cosmological constant in the theory of GR, Einstein’s field equations are written as

S(U,V) −
R
2
1(U,V) = kT(U,V), (15)

where k is the gravitational constant.
In [31], Zengin and Tasci presented the investigation of pseudo-conharmonically symmetric manifolds.

After that the authors have studied pseudo-conharmonically symmetric spacetimes [32]. Moreover, in [7],
we have studied ψ-conharmonically symmetric spacetime. In [21], Mantica and Suh developed a new (1,3)
type curvature, named Q curvature tensor and pseudo Q-symmetric spacetimes have been investigated
by Mallick and De [23], while m-Projectively flat spacetimes were explored by Ozen [30]. A condition for
which a (PS)4 spacetime would be a PF spacetime was recently discovered by Zhao et al.[33]. As well, many
authors have looked at the spacetime of general relativity in various methods; for additional information,
see ( [6], [15], [22]) and references therein.

Motivated by the above investigations here we characterize the (PCS)n manifold, Ψ-concircularly flat
spacetimes and (PCS)4 spacetimes.

The article is organized as:
The properties of Ψ-concircular curvature tensor are discussed in Section 2. In Section 3, we explore

the curvature properties of (PCS)n (n > 2) manifolds. Ψ-concircularly flat and (PCS)4 spacetimes are
investigated in Section 4. Finally, we produce a non-trivial example of a (PCS)4 manifold.

2. Ψ-concircular curvature tensor

Proposition 2.1. A Ψ-concircularly flat semi-Riemannian manifold Mn is an Einstein manifold with vanishing
scalar curvature.
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Proof. Assuming Ĉ = 0, we obtain from the equation (3) that

K̂(U,V,G,H) =
ΨR

n(n − 1)
[1(V,G)1(U,H)

−1(U,G)1(V,H)]. (16)

In the above equation, contracting V and G gives

S(U,H) =
ΨR
n
1(U,H). (17)

Hence, the manifold is an Einstein manifold.
Again, contracting over U and H yields

R[1 −Ψ] = 0. (18)

Thus, either R = 0 orΨ = 1.
As we choose ψ as an arbitrary scalar function, then ignoring the caseΨ = 1, we conclude with R = 0.
Hence, the proof.

Theorem 2.2. AΨ-concircularly flat manifold is locally a semi Euclidean space.

Proof. Since the scalar curvature R = 0 in aΨ-concircularly flat manifold, from the equation (16) we assert
that the manifold has vanishing sectional curvature. Hence, a Ψ-concircularly flat space is locally a semi
Euclidean space.

This ends the proof.

Theorem 2.3. AΨ-concircularly flat manifold is a conformally flat manifold.

Proof. For a semi-Riemannian manifold, the Weyl conformal curvature tensor W is described as[29]

W(U,V)H = K(U,V)H −
1

n − 2
[1(V,H)QU − 1(U,H)QV

+S(V,H)U − S(U,H)V]

+
R

(n − 1)(n − 2)
[1(V,H)U − 1(U,H)V]. (19)

If we consider a Ψ-concircularly flat manifold, then by Proposition 2.1, we acquire that the manifold is of
zero scalar curvature. Therefore, from equation (17) we acquire S = 0 which entails that the manifold is
Ricci flat. Hence, using the foregoing results in the equation (19) we say that the manifold is conformally
flat.

Thus the proof is completed.

3. (PCS)n (n > 2) manifolds

Proposition 3.1. In (PCS)n manifolds, Bianchi’s Second Identity is satisfied by theΨ-concircular curvature tensor,
that is,

(∇XĈ)(U,V,G,H) + (∇GĈ)(U,V,H,X) + (∇HĈ)(U,V,X,G) = 0. (20)

Proof. Using (13) in the left hand side of the previous equation, we get the desired result.

Proposition 3.2. If a (PCS)n is of divergence-freeΨ-concircular curvature tensor, then the scalar curvature vanishes.
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Proof. From (3), taking a frame field and contracting over V and G, we obtain

C⋆(U,H) = S(U,H) −
RΨ
n
1(U,H), (21)

in which C⋆ indicates the contractedΨ-conformal curvature tensor.
Now contracting the equation(13) over X and H, we infer

(divC)(U,V)G = D(C(U,V)G))
+D(U)C⋆(V,G) −D(V)C⋆(U,G). (22)

Making use of (3) and (21) in the preceding equation, we acquire

(divC)(U,V)G = D(K(U,V)G)

+
ΨR

n(n − 1)
[1(V,G)D(U) − 1(U,G)D(V)]

+D(U)[S(V,G) −
RΨ
n
1(V,G)]

−D(V)[S(U,G) −
RΨ
n
1(U,G)]. (23)

Let us choose divC = 0. Now contracting the equation (23), we provide

R{1 −Ψ}D(U) = 0. (24)

Hence, either R = 0 orΨ = 1, a contradiction(discussed earlier).
Therefore, the proof is finished.

Proposition 3.3. If a (PCS)n (n > 2) manifold satisfies the Codazzi type of Ricci tensor, then the scalar curvature
vanishes.

Proof. Let in a (PCS)n (n > 2) the Ricci tensor be of Codazzi type [13]. Therefore, we reveal

(∇US)(V,G) = (∇VS)(U,G). (25)

Equation (3) yields

(∇XĈ)(U,V,G,H) = (∇XK̂)(U,V,G,H)

−
(XΨ)R +Ψ(XR)

n(n − 1)
[1(U,H)1(V,G) − 1(V,H)1(U,G)]. (26)

Using (26), we provide

(∇XĈ)(U,V,G,H) + (∇UĈ)(V,X,G,H) + (∇VĈ)(X,U,G,H)

= [(∇XK̂)(U,V,G,H) + (∇UK̂)(V,X,G,H) + (∇VK̂)(X,U,G,H)]

−
(XΨ)R +Ψ(XR)

n(n − 1)
[1(U,H)1(V,G) − 1(V,H)1(U,G)]

−
(UΨ)R +Ψ(UR)

n(n − 1)
[1(V,H)1(X,G) − 1(V,G)1(X,H)]

−
(VΨ)R +Ψ(VR)

n(n − 1)
[1(U,G)1(X,H) − 1(U,H)1(X,G)]. (27)
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Making use of the Second Bianchi identity for the Riemannian curvature tensor K̂ , we acquire

(∇XĈ)(U,V,G,H) + (∇UĈ)(V,X,G,H) + (∇VĈ)(X,U,G,H)

= −
(XΨ)R +Ψ(XR)

n(n − 1)
[1(U,H)1(V,G) − 1(V,H)1(U,G)]

−
(UΨ)R +Ψ(UR)

n(n − 1)
[1(V,H)1(X,G) − 1(V,G)1(X,H)]

−
(VΨ)R +Ψ(VR)

n(n − 1)
[1(U,G)1(X,H) − 1(U,H)1(X,G)]. (28)

Now using (20) in the foregoing equation gives

(XΨ)R +Ψ(XR)
n(n − 1)

[1(U,H)1(V,G) − 1(V,H)1(U,G)]

+
(UΨ)R +Ψ(UR)

n(n − 1)
[1(V,H)1(X,G) − 1(V,G)1(X,H)]

+
(VΨ)R +Ψ(VR)

n(n − 1)
[1(U,G)1(X,H) − 1(U,H)1(X,G)] = 0. (29)

Contracting (29), we infer

(XΨ)R +Ψ(XR)
n

1(V,G) +
(VΨ)R +Ψ(VR)

n(n − 1)
1(X,G)

−
(XΨ)R +Ψ(XR)

n(n − 1)
1(V,G) −

(VΨ)R +Ψ(VR)
n

1(X,G) = 0. (30)

Again contracting the above equation, we provide

2 − n
n

[(XΨ)R +Ψ(XR)] = 0. (31)

Since the Ricci tensor S is of Codazzi type, then the scalar curvature R = constant and therefore, (XR) = 0
for any X. Using this result in the previous equation, we get

(XΨ)R = 0, (32)

which entails that either R = 0, orΨ = constant.
SinceΨ is a scalar, it can not be constant and hence we acquire R = 0.
Hence the proof.

4. Ψ-Concircularly flat spacetimes and (PCS)4 spacetimes

In this article, we explore the 4 dimensionalΨ-concircularly flat and pseudoΨ-concircularly symmetric
spacetimes. The conclusions reached for the (PCS)n manifolds apply equally to the Lorentzian situation.
Since we consider a spacetime, we may assume the associated vector field corresponding to the 1-form D
is a unit time-like vector field.

Theorem 4.1. AΨ-concircularly flat spacetime is locally isometric to a Minkowski spacetime and of Petrov classifi-
cation O.

Proof. From Proposition 2.1, we find that the scalar curvature R = 0 in a Ψ-concircularly flat spacetime.
Then from the equation (3) we assert that the spacetime has vanishing sectional curvature. Hence, a
Ψ-concircularly flat spacetime and Minkowski spacetime are locally isometric ([10], p. 67).

From Theorem 2.3, we say that aΨ-concircularly flat spacetime is conformally flat and therefore belongs
to Petrov classification O.

Hence, the proof is completed.
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Theorem 4.2. AΨ-concircularly flat PF spacetime with irrotational velocity vector field is a RW-spacetime.

Proof. Now we choose aΨ-concircularly flat PF-spacetime.
From Theorem 2.3, we say that a Ψ-concircularly flat spacetime is conformally flat, and hence the

conformal curvature tensor is divergence free. In [20], it is established that a PF-spacetime with irrotational
velocity vector field and with divergence free conformal curvature tensor reduces to a GRW-spacetime.
Also, since the spacetime is conformally flat, then the GRW-spacetime is a RW spacetime [2].

Therefore, the proof is finished.

Theorem 4.3. A dust fluid spacetime satisfying EFE without cosmological constant with vanishing Ψ-concircular
curvature tensor does not exist.

Proof. For a spacetime of dust fluid [27], T is described by

T(U,V) = µB2(U)B2(V), (33)

in which B2 stands for the velocity vector field and µ is the dust-like matter’s energy density.
Using the equations (15) and (33), we obtain

kµB2(U)B2(V) = 0. (34)

Taking a frame field and contraction the previous equation, we get

kµ = 0, (35)

Therefore, the equation (33) yields

T(U,V) = 0. (36)

Hence, the fluid is vacuum. This is not a physically significant scenario bearing in mind that the universe
contains matter.

This ends the proof.

4.1. Projective collineation

If a continuous group of local diffeomorphism of M maps geodesics into geodesics, it is referred to as
projective collineation (PC) [1] and its generator is referred to as a projective vector field. A vector field V
is a PC if and only if

LVΓ
i
jk = δ

i
jqk + δ

i
kq j,

where LV denotes the Lie derivative operator along V and q j = q, j in which q is a 1-form. Therefore, locally
q j is an exact form. Specifically, if LVΓ

i
jk = 0, then the PC turns into the affine collineation or affine motion.

We know that the projective vector field V obeys

LVKl
i jk = δ

l
kqi, j − δ

l
jqi,k, (37)

LVKi j = (1 − n)qi, j, (38)

LVPl
i jk = 0, (39)

where Kl
i jk, Ki j and Pl

i jk are the components of the curvature tensor, Ricci tensor, and projective curvature
tensor, respectively.
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Theorem 4.4. Let aΨ-concircularly flat spacetime admits a projective collineation V. Then
(i) the projective collineation is proper and, for dimension 4, the metric is either a pp-wave or flat, provided qi , 0.
(ii) An affine collineation is generated by V and the metric is a pp-wave or decomposable, or a homothetic Killing

vector field, provided qi = 0.

Proof. Let us choose the PC in a Ψ-concircularly flat spacetime. We prove earlier that the Ψ-concircularly
flat spacetime is Ricci flat and hence from (38), we acquire qi, j = 0. If qi , 0, then the PC is proper and
for dimension 4, the metric must be either a pp-wave [12] or flat. If qi = 0, then an affine collineation is
generated by V and for the spacetime the metric is a pp-wave or decomposable, or V is a homothetic Killing
vector field.

This finishes the proof.

Definition 4.5. On a semi Riemannian manifold a vector field X is called Ricci bi-conformal vector field [8] if it
obeys the subsequent equations

LX1 = α1 + βS (40)

and

LXS = αS + β1 (41)

for non-zero smooth functions α and β.

Theorem 4.6. If a Ψ-concircularly flat spacetime admits a Ricci bi-conformal vector field, then it is either Petrov
type N or conformally flat.

Proof. Since in a Ψ-concircularly flat spacetime S = 0, then equation (40) implies LX1 = α1 which entails
that X is a conformal vector field.

In [26], Sharma has established that “ If a spacetime with divergence-free conformal curvature tensor
permits a conformal Killing vector field, then it is either Petrov type N or conformally flat.”

Obviously, in aΨ-concircularly flat spacetime the divergence of the conformal curvature tensor vanishes.
Hence, the proof is completed.

Theorem 4.7. A (PCS)4 spacetime satisfying Codazzi type of Ricci tensor is of Petrov type I, D or O and the spacetime
turns into a RW spacetime.

Proof. Let us assume a (PCS)4 spacetime with the Codazzi type of Ricci tensor. Then by Proposition 3.3, we
get the scalar curvature R = 0, and hence (PCS)4 spacetime reduces to a (PS)4 spacetime. We know that the
1-form D is closed in a (PS)4 spacetime [25] and hence D is closed in a (PCS)4 spacetime.

We know that

(divW)(U,V)X =
n − 3
n − 2

[{(∇US)(V,X) − (∇VS)(U,X)}

−
1

2(n − 1)
{1(V,X)dR(U) − 1(U,X)dR(V)}]. (42)

Since the Ricci tensor is of Codazzi type, then the conformal curvature tensor is divergence free. From [19]
it is to be noted that in a GRW spacetime, W(U,V)ρ = 0 if and only if (div W)(U,V)Z = 0. Also, W(U,V)ρ = 0
entails W is purely electric[16]. The spacetimes are of Petrov types I, D or O if W is purely electric ([28], p.
73).

In 4-dimension, W(U,V)ρ = 0 is identical to ([18], p. 128)

η(U)W(X,Y,Z,V) + η(X)W(Y,U,Z,V) (43)

+η(Y)W(U,X,Z,V) = 0,

where η(X) = 1(X, ρ) and W(X,Y,Z,V) = 1(W(X,Y)Z,V) for all X, Y, Z, V, U.
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Replacing U by ρ yields

W(X,Y,Z,V) = 0, (44)

that is, the spacetime is conformally flat.
A GRW spacetime is conformally flat if and only if it is a RW spacetime [2].
Thus, we have the proof.

Definition 4.8. A semi Riemannian manifold is called Ricci semi-symmetric if the Ricci tensor S fulfills

K(U,V) · S = 0,

for all U,V ∈ χ(M), where K(U,V) acts as a derivation on the curvature tensor K.

Theorem 4.9. In a (PCS)4 spacetime with harmonicΨ-concircular curvature tensor, the semi-symmetric EMT and
Ricci semi-symmetry are equivalent.

Proof. Consider a (PCS)4 spacetime with harmonic Ψ-concircular curvature tensor. Then, using equation
(15), we acquire

S(U,V) = kT(U,V). (45)

From the last relation, we infer K · S = K · T.

Also, from equation (45), we obtain ∇S = ∇T. Since ∇T = 0 entails K · T = 0, hence we write the
subsequent:

Corollary 4.10. A (PCS)4 spacetime with harmonicΨ-concircular curvature tensor and covariant constant EMT is
Ricci semi-symmetric.

For a general relativistic spacetime the foregoing result has been established in [5].
A spacetime is called conformally semi-symmetric [14] if it obeys K · W = 0 . A (PCS)4 spacetime

with harmonic Ψ-concircular curvature tensor is obviously conformally semi-symmetric. In [11], it is
established that conformally semi-symmetric spacetimes and semi-symmetric spacetimes are equivalent
and a semi-symmetric spacetimes is of Petrov types D, N, or O. Thus, we write:

Corollary 4.11. A (PCS)4 spacetime with harmonicΨ-concircular curvature tensor is of Petrov types D, N or O.

In [9], De and Velimirovic established the subsequent outcomes:

Theorem 4.12. In a PF spacetime let the EMT be semi-symmetric. Then the spacetime is characterized by the
subsequent cases:

(i) The PF behaves as a cosmological constant and the spacetime represents inflation. Also, it is named a phantom
barrier.

(ii) The PF will start to behave as exotic matter or, equivalently it represents the quintessence barrier.

Remark 4.13. The above theorem holds in a (PCS)4 spacetime with harmonic Ψ-concircular curvature tensor if the
spacetime is Ricci semi-symmetric.

5. Example

In a four-dimensional Lorentzian manifold R4, we define a Lorentzian metric 1, which is written as

ds2 = 1i jdwidw j

= (dw1)2 + (w1)2(dw2)2 + (w2)2(dw3)2
− (dw4)2, (46)
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in which i, j = 1, 2, 3, 4.
Using (46), the Lorentzian metric’s non-vanishing components are expressed as

144 = −1, 133 = (w2)2, 122 = (w1)2, 111 = 1. (47)

The components of the Christoffel symbols, the curvature tensors, and the Ricci tensor are provided by

Γ1
22 = −w1, Γ

2
12 =

1
w1
, Γ3

23 =
1

w2
, Γ2

33 = −
w2

(w1)2 ,

K1332 = −
w2

w1
, S12 = −

1
w1w2

,

in which equation (47) is used.
We shall prove that (R4, 1) is a (PCS)4 manifold.
Now we chooseΨ (the scalar) as

Ψ =
{

2
w2
, for any w ∈ R4

The only components of Ψ-concircular curvature tensor that is not vanishing, along with its covariant
derivatives, are expressed by

C1332 = −
w2

w1
, (48)

C1332,1 =
w2

(w1)2 (49)

and

C1332,2 = −
1

w1
. (50)

Choose the following 1-forms

Di =


−

1
3w1
, when i = 1

1
3w2
, for i = 2

0, for i = 3, 4.

In light of these 1-forms, the equation (13) becomes

C1332,1 = 3D1C1332, (51)

C1332,2 = 3D2C1332, (52)

since (13) trivially holds in all other situations. Equations (48) and (49) are used to acquire

R.H.S. of (51) = 3D1C1332

= 3(−
1

3w1
)(−

w2

w1
)

=
w2

(w1)2

= L.H.S. of (51).
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Utilizing the equations (48) and (50) yield

R.H.S. of (52) = 3D2C1332

= 3
1

3w2
(−

w2

w1
)

= −
1

w1

= L.H.S. of (52).

It follows that the manifold is a (PCS)4 manifold.
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