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On the stability of a degenerate vibrating system under fractional
derivative controls

Noureddine Mouslim?®, Abbes Benaissa®

*Laboratory of Analysis and Control of PDEs, Djillali Liabes University, P. O. Box 89, Sidi Bel Abbes 22000, Algeria

Abstract. In this paper, we consider a coupled system of degenerate wave equations with the fractional
feedback acting at the boundary. First, we reformulate each system into an augmented model and using a
general criteria of Arendt-Batty, we prove that our models are strongly stable. Next, by using a spectrum
method, we establish nonuniform stabilization.

1. Introduction

In this work, we consider a system of coupled wave equations with only one fractional dissipation law.
This system defined on (0, 1) X (0, +o0) takes the following form

uy(x, t) — (@(X)uy(x, 1)y + a(u —v) =0 in (0,1) X (0, +c0),
vp(x, t) — (@(x)vy(x, t))y + a(v—u) =0 in (0,1) X (0, +0c0), (1)
(u(x,0),v(x,0), us(x, 0), v4(x, 0)) = (ug(x), vo(x), u1(x), v1(x)),

where a(x) = V1 —x? and « is a strictly positive constants, and the followed boundary conditions

u(0,t) =v(0,£) =0
(V1 = 22u,)(1,8) + 0™ u(1,£) = 0, Vt € (0, +00), 2)
(V1 =x%0)(1,t) + 9d;“v(1,t) =0, Vt e (0,+00),

where ¢ > 0 and § > 0, the initial data (uo, u1, v, v1) belong to a suitable function space. The notation d;"
stands for the generalized Caputo’s fractional derivative of order 7, 0 < 7 < 1, with respect to the time
variable t defined by

1 ' df
T, -1 —w(t-s)
2,“f = —(1 T)I) (t—s)"e I ds, w >0, 3
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where I' denotes the Gamma function. The fractional derivatives are nonlocal and involve singular and
non-integrable kernels (t™,0 < 7 < 1). We refer the readers to [21], [22].

Here, the coefficient a(x) = V1 — x2 vanishes at the boundary and the problem is weakly degenerate, in
the sense that 1 € L'(-1,1).

Physically, u and v may represent the displacements of two vibrating objects measured from their
equilibrium positions, the coupling terms +a(u — v) are the distributed springs linking the two vibrating
objects. Indeed, a mathematical model that describes transverse vibration of an elastic string is given by
uy(x, t) — (&i)ux(x, )y = lower termes = 0,

p(x)

where T is the tension of a string and p is the density of the string.

The exponential stability of the system (1) has been established for a = 1 by Najafi et al [19] in the case
of linear boundary feedback and by Komornik-Rao [24] in the case of nonlinear boundary feedback.

In [4], Mbodje investigate the asymptotic behavior of solutions with the system

utt(x/ t) - uxx(x/ t)) = O/ ln (0/ 1) X (O/ +OO),
u(0,t) =0, on (0, +00), @
uy(1,t) + y&?’”u(l, ) =0, on (0, +c0),n >0, )

u(x,0) = ug(x), us(x,0) = u1(x), on (0,1).

He proved that the associated semigroup is not exponentially stable, but only strongly asymptotically and
the solution of this system will decay, as times goes to infinity, as 1/t.
This work is a generalization of the work in [1], where the system is described by

Uy (x, 1) — e (x, ) + a(u—0v) =0 in (0,L) X (0, +00),
vp(x, 1) — () +a(w—u) =0 in(0,1) X (0, +0),
u(0,t) =v(0,£) =0
ux(1,t) + 09, “u(1,t) = 0 on (0, +o0), (5)
ux(1,t) + 89, “u(1,t) = 0 on (0, +c0),
{ u(x, 0) = up(x), ur(x,0) = u1(x),
U(xr 0) = UO(X)/ vt(x/ 0) =0 (X)

The authors considered that coupled wave equations with a two boundary nonlocal control and showed
that the energy of the system decays polynomially of type t~2/1-7).

We underline that this is the first paper to consider the stabilization of the system (1)-(2) that couples
a degenerate variable coefficient a(x) = V1 — x2 in the principal part with a fractional damping acting at a
degenerate boundary.

This paper is organized as follows. In section 2, we introduce our notations, functional space, we
show that the system (1)-(2) can be replaced by an augmented model by coupling the wave equation with
a suitable diffusion equation that can be reformulated into an evolution equation, we deduce the well-
posedness property of the problem by the semigroup approach, and using the criteria of Arendt-Batty, we
show that the augmented model is strongly stable. In section 3, we show the lack of exponential stability
by spectral analysis.

2. Well-posedness and strong stability

This section is concerned with the reformulation of the model (1)-(2) into an augmented system. For
that, we need the following claims.
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Proposition 2.1. (see [4] ) Let u be the function:
uE) = g2, —o <E <400, 0<1 <1 6)

Then the relationship between the ‘input’ U and the ‘output” O of the system

P&, ) + (E2 + w)P(&, 1) = U(Du(E) =0, —00 < & < 400, @ 2 0,t >0, (7)

$(E 1) =0 ®)

0() = (m) sintem) [ (@0(6, e ©)
is given by h

0 = [y (10)
where

[ f1() = % fo (-9 o, (11)

Lemma 2.2. (see [5]) If A € D, = C\]—00, —w] then

+00 2
Fn(/\):j: : pe(€) dé:(l—T)(Z—T)...(I’l—l—T) T L+ @),

A+ w+ &) (n—1) sin(7)

2.1. Well-Posedness

We are now in a position to reformulate system(1)—(2). Indeed, by using Propostion (2.1), system (1)—(2)
becomes

up(x, 1) — (V1 = x2uy),(x, 1) + a(u — v) = 0 in (0,1) X (0, +c0),

0 (x, 1) — (V1 = x20y)(x, 1) + (v — u) = in (0,1) x (0, +o0),
DD+ (€ e Era(L) =0 (o 101 (0, <9)
P&, t) + (&2 + a))gb(é, t) = u(&)v(1,t) = in (=0, +00) X (0, +00),
u(-1,t) =ov(-1,t) =

(V1 = x2u,)(1,t) = —C f wE)PE, td on (0, +00), (12)
(VT=2%0,)(1, 1) = ~C f WOMEDIE  on (0, +00),

u(x,0) = up(x), ui(x,0) = uy(x) on (0,1),

o(x,0) = vo(x), vi(x,0) = v1(x) on (0,1),

P(&,0) = @(&,0) on (—oo, +00),

where C = () !sin(t7t)y, and = (n)"'sin(tr)j. For a solution (1,9, o, J)) of (12), we define the energy
associated to the solution of the problem (P’) by the following formula:
1
B =1 [ Quf + of + a0 + a0 o + alu o)
0

+h [ ol +Cfopiee,

(13)

where a(x) = V1 — x2.
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Lemma 2.3. Let (u,v,,}) be a reqular solution of the problem (12). Then, the energy functional defined by (13)
satisfies

E() = ~C f (& + ) |p(e, o de — € f (& +w)|b(e, o de (14)

Proof. Multiplying the first equation in (12) by i, , integrating by parts over (-1, 1), we obtain

2dtf (el +a(0) i = R [@C0u(1, Hu(l, H)IL, +a9‘f (u —v)idx = (15)

Multiplying the second equation in(12) by & , integrating by parts over (-1, 1), we obtain

v [ P e - (a0, 0ot + o [0 ey =o. 6

Adding the two equations above, we obtain

[P o ) P 4 e+ o 7)

— R(a)ux(1, Hu(1, 1)) — R(a(x)ox(1, t)o(1, 1)
=0.

From boundary condition (12)¢ — (12);, we have

2dtf (el + o + a(x) [ + a(0) [o,* + | = of*)dx (18)

+C‘Rﬂt(1,t)f w(EP(E, Has + CRB(1, f)f HEP(E, Hde
=0.

Multiplying the third and the fourth equations in (12) by ¢, (fcf) and integrating over (—oo, +00), we obtain:

e f (& + )¢ (&, H de - CRu(L, b f w(EB(E DiE =0, (19)

2dtH<¢>Ilz+C f £+ w) (&, n[ de — CRu (1, 1) f WEIPE, Hde = 0. 20)

Consequently, it is resulted from (13), (18) and (19), (20).

E() = ~C f (& + ) |p(e, o de — € f (& +w)|b(e, o de 1)

This completes the proof of the lemma. [



N. Mouslim, A. Benaissa / Filomat 38:10 (2024), 3577-3595 3581
2.2. Global Existence

Now, we introduce, as in [25], the following weighted spaces:
For a(x) = V1 - x2, we define the Hilbet space H ,(~1,1), as

H (-1,1) = {u € [2(-1,1) : va(u, € L2(0,1) /u(-1) =0},

Hi(-1,1) = {u € L¥(~1,1) : a()uy € L*0, 1)}

We remark that H} (-1, 1) is Hilbert space with the scalar product

(u,v) = fo 1 T + a(x)u’ (x)v' (x))dx, Vu,v e H(-1,1).
Proposition 2.4. (see [25] ). There is a positive constant C = C(a) such that
llif 1 1) < C ||u||§qﬂ(_1/l) Vu € HX(-1,1).
Next, we define
H(-1,1) = {u € H)(-1,1): VI-22/(x) € H'(0,1)}.
Notice that if u € H2(~1,1), 1/a ¢ L?(~1,1), we have (a(x)u,)(x1) = 0.

In order to study the system (12) we use a reduction order argument. First, we introduce the following
Hilbert space (the energy space):

H = H} ,(-1,1) x L*(=1,1) X H} ,(-1,1) X L*(=1,1) X L*(R) X L*(R).
For U = (u,il,v,8,¢,$)T, Uy = (uy,l1,01,91,H1,P1)T, we define the following inner product in H
1

1
U, Uy) = f (ﬁﬁ_l + a(x)u,tiy)dx + f (1777_1 + a(x)vy 01y )dx
,1 —

1
1 +00 +oo
+ afl(u —v)(uy — v1)dx + Cf dP1dE + Cf PPdE.

Let (u,i,v,9, ¢, q3)T and rewrite (12) is equivalent to

u = AU,
{ U(0) = Uo = (1o, u1,9,01,0,0), (22)

where the operator A is defined by

u u
i (a(x)uy)x — a(u — )
v 0
Al 5 @@y —ao—1u) | @3
o | | ~&+wo+
6 ) | ~(@+ w3+ p©s)
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The domain of A is
(u,1,0,0,¢,9)T inH : u € HX(-1,1)NH! (-1,1),
ieH (-1,1),veH¥(-1,1)nH (-1,1),0¢€ H! (-1,1),
y . y y
by =] @@+ [ w0 e =0, o
~Foo

(@@)os)(1) + & f WEBE e = 0,
€161 6 € AR

The well-posedness of problem (12) is ensured by the following theorem.

Theorem 2.5. (Existence and uniquenesss).
(1) If Uy € D(A), then system (22)has a unique trong solution

U e CO(R,, H) N CY(R,, H)
(2) If U € H, then system (22) has a unique weak solution

U e CO(R,, H).

Proof. We use the semigroup approach. In what follows, we prove that A is monotone. For any Uy € D(A),
and using (21) and the fact that

R (AU UY = ~C f &+ o) de-C f (€ + ) B d. (25)

Hence, A is monotone. Next, we prove that the operator AI — ?} is surjective for A > 0. Given
F=(f, f2 f5 fu f5, fo)* € H, we prove that there exists U = (u, 1,0, 7, ¢, p) € D(A) satisfying

AU-AU=F (26)
Au—ii= f1,
A= (V1 = x%uy)y + a(u —0) = fo,
A—7=f, (27)

AD — (V1 = xX20y) + a(u —v) = fu,
A+ (&2 + w)p — uw(©)i(l) = fs,
A + (&% + w)d — p(&)a(1) = fi.

Suppose 1 and v is found with the appropriate regularity. Then, (27); and (27); yield

A~ fi =i eH (-1,1)
Ao—f3=0€H! (-1,1).

(28)

Furthemore, by (27)sand (27), , we can find ¢ and cf) as

f5(&) + u(&)i(l)
" everi @9)

fe(&) + u(&)a(1)
E2r+w+A

<

S
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By using(27)and (28) it can easily be shown that u and v satisfies

{ Au— (V1 =22uy)y +a(u—-v) = oL+ Afy
A2 — (V1 =220, + a(v—u) = fi+ Afs.

Solving system (30) is equivalent to finding u € H>(-1,1) N Hj (-1,1) and v € HX(-1,1) N H] (-1,1) such
that ' ’

(30)

1 1
f 02 = (@), + e — 0 = f (e Afm, (31)

1 1
f P05 — (@(00.0:75) + au — )T = f (s AT

for all wy,w, € H% ,(=1,1). By using (31), the boundary conditions (24),(28) and (29), the functions u and v
satisfy the following system

1 1
2 f (T + ) + f @)sTTT + @0 + A + @) (u(@r (D)
-1 1 -1 1
PO +a [ (0= )@ 0= | (o AR + (4 A TN -
o) [ e - Cam) [ e+ 0+ o 0RO
+7f(Dwa(1),

—+00

where we have used the fact that f L&)/ (A + @ + E2)dE = 1t/ sin(tr)(A + w)*"!. Consequently, problem
(32) is of the form -

B((u, ), (w1, wr)) = L(wy, wy), (33)

2
where the sesquilinear form B : [H} (=1L, 1) xH; (-1, 1)] — C, and the antilinear form £ : H} (-1,1) x
H] (-1,1) — C are defined by

1 1
B((,0), (wr, W) = 12 fo (7 + ) + fo (@), TT + (@()0), T
£ A+ 0 Qu)@E() + Fo()@E()

1
ra f (1 - o) (@7 - T,
0
and

1 +00
L(w, wp) = f1((f2 + A 1)W1 + (fa + A f3)w2)dx — Cw_l(l)f SEE) &

oo 2w+ A

- Cw_Z(l)Im g;(f)THf)Adé + (A + o)y AM@I() + 7 01)W2(1)).

It is easy to verify that 8 is continuous and coercive, and L is continuous. Applying the Lax-Milgram
Theorem, we infer that for all (w1, w,) € H} (-1,1)xH] (~1,1) problem (33) has a unique solution H2(—1, 1)

H2(-1,1). Applying the classical elliptic regularity arguments (see [9]), it follows from ( 32) that (1,v) €
H?(-1,1) X H3(-1, 1).Therefore, the operator Al — A is surjective for any A > 0. At last, the result of Theorem
2.5 follows from the Hille-Yosida theorem.

O
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2.3. Strong stability of the system
In this part, we use a general criteria of Arendt-Batty and Lyubich-Vu.

Theorem 2.6. ([10]) Let A be the generator of uniformly bounded Co-semigroup of contractions {em}bo in Hilbert
space X. If -
(i) A does not have eigenvalues on iR.

(ii) The intersection of spectrum o(A) with iR is at most a countable set, then the semigroup {em}

is asymp-
20 ymp

totically stable, i.e, emz“ x> Oast — +oo, forany z € X.

Theorem 2.7. The Co-semigroup of contractions e is strongly stable in H; i.e, for all Uy € H, the solution of (22)
satisies

lim ||eml,lo|| =0.

t—oo

For the proof of Theorem(2.7), we need the following two lemmas.

Lemma 2.8. A does not have eigenvalues on iRR.

Proof. We make a distinction between iA = 0, and iA # 0.
Step 1. Solving for AU = 0 lesds to the following system

V1 = x%uy), —a(u—v) =0
=0
(V1=x%20)y—av—-u)=0
~(E+ @)+ p(@)i(1) = 0
~(& + w)d + p(&)a(1) = 0

Then, from (24), (34); and (34); we have

=0
(

(34)

G=¢=0,a=0=0. (35)
Than, from (35) and (24)
(VI -x20,)(1) = (V1 = x%u,)(1) = 0 (36)
Multiplyng equation (34); by u and (34), by v, using Green formila, we get
1 1
f V1 — 22 [uy P dx + af (u-v)dx =0 (37)
-1 -1
1 1
f V1 —levxlzdx+af (v—u)dx =0.
-1 -1
we have
1
f VI =22 (Jusl + [ox?) dx = 0. (38)
-1

Than

(VI=22?) () = (V1 =22 o) (x) = 0 V€ (-1, 1). (39)
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From boundary conditions (36), we obtain

(V1= x2uy) = (V1 = x2v,) = 0. (40)
Moreover, from (40), we have

Uy(x) =0, v(x) =0 on (-1,1). 41)

Hence 1 and v are constants in (-1, 1). As u(=1) = v(-1) = 0, then u = v = 0, and consequently, we obtain
U = 0. Hence, iA = 0 is not an eigenvalue of A.

Step 2. We will argue by contradiction. let us suppose that there A € R, A # 0 and ||U]| # 0,such that
AU = iAU. Then, we get

iAu—-i=0

Al — (V1 = x%uy)y +a(u—v) =0
ilv—-9=0

iAD— (V1 —x20), +a(u—0)=0
iAQ + (£ + w)p — p(&)ii(1) = 0
A + (&% + w)p — u(&)d(1) = 0.

(42)

Then, from boundary conditions (24). Using (14) and (42), we find

¢=0and ¢ =0. (43)
From (42); and (42),, we have

(1) = 0and 3(1) = 0. (44)
Hence, from (42)and (24), we obtain

A2u— (V1= x2uy), +a(u—0v) =0
A% — (V1 —x20,), +a(w—u) =0
u(-1)=u(l)=0

v(-1)=9v(1)=0

u( V1 - x2u,)(1) = 0,

u(V1 —x20,)(1) = 0,

Thené

Q=u+v
{1[/:u—v (46)

Hence
AZ(P"_( V1 — x2 x)x =0,
(12 = 20) W + (VI = x2yy); = 0,

(1) = (1) = (V1 - x2p,)(1) =0,
P(=1) = ¢(1) = (VI -x29,)(1) = 0.

(45)

(47)

From (47); for such A, we find

(= Dpuy + x5 + A2 V1 = x290 =0 (48)
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we take @(x) = 0(&), x = cos &, kn < & < (k+ 1)mt, x € (-1,1), we find

Oz — (A?sin )0 =0
see [26], and equation (49) can write by

Oy — (412 cos2H)6 = 0
where & = (2t + 7). Then we have

02t + g) = c1)o2AeF) + e, Y0206 ),
(see ,[14], p.665).Then it becomes

P(x) = c1Jo(2A€'7) + 2 Yo(2Ae'T)

where [, and Y,, are defined by:

B © (_1)n y 2m+n
h@-zmeJ .
Ifn+0
Vo = 20 - ka 2
n+2k
U(k+1) T(k+n+1) -1)" (%)
__2 T(k+1) F(k+n+1)] Kl(n + k)!
and
(~1)*'H £
Y0=( n(; )+V)]0(x Z e k(z) erZZ?

which vy is the Euler-Mascheroni constant,

3586

(49)

(50)

(51)

(52)

(53)

(54)

(55)

wehre [, and Y, are Bessel functions of the first kind and second kind of order n and are linearly
independent and therefore the pair (J,,Y,) (classical result) forms a fundamental system of solutions of

(48).
The solution of the system (47) is given by

Ppx) = 1D+ (x) + 2P_(x),
P(x) = 3P4 (x) + ca®__(),
where

D, (x) = Jo2iAe" =),
D_(x) = Yo(2iAeTT D),
(1) = Jo(2i VA2 — 2“3 -D)),
D__(x) = Yo(2i VA2 = 2ae/“5=-1)),

from boundary condition (47);,we deduce that

{ C1]0(2A€ 4) +cYo(2A€ %) 0,

clh(ZAe 4) +cY1(2A€ %) 0,
c1J0(2iAe’T) + ¢ Y((2iAeT) = 0.

(56)

(57)
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Using the fact (the Wronskian w)

1
miAelt

JoQRA )Y (2A6T) — [1(2A€' 7)Y (2A6'T) = — #0. (58)

We deduce that c; = ¢; = 0, and similarly, we get ¢3 = ¢4 = 0. Hence
U=0

Therfore U = 0, which contradicts ||U]| # 0. Consequently, A does not have purely imagunary eigenval-
ues. [

To prove scond condition of theorem (2.6), we need the following generalization of the Lax-Milgram
Lemma.

Lemma 2.9. (Lax-Milgram-Fredholm, see [11])

Let V and H be Hilbert space such that the embedding V < H is compact and dense. Suppose thatay : VXV — C
andayg : HxH — C

are two bounded sesquilinar forms such that ay is V-coercive and G : v — C is continuous conjugate linear form.
The equation

ag(u,v) +ay(u,v) = G(v), YoeV
has either a unique solution u € V for all G € V' or has a nontrivial solution for G = 0.

Lemma 2.10. If A # 0, the operator iAl — A is surjective.
If A =0and w # 0, the operator iAl — A is surjective.

Proof. Case1: A # 0. Let F = (fi, 2, f3, fu, f5, fs)T € H be given, and let X = (u,#,v,9, ¢, J)) € D(A) be such
that

iAu—1ii = f1
iA— (a(X)ux)x + a(u —v) = fo
ilv—7 = f3
iAD — (a(x)vy)y + (v —u) = fa (59)
iAp + (& + w)p — p(&)i(l) = f5
IAD + (% + w)p — w(&)d(1) = fe.
We divide the proof into three steps, as follows:
Step 1. Inserting (59)1, (59))3 into (59)s, (59))4, we get
{ AU — (V1 = x2uy)y + a(u —v) = (2 +irf1) (60)
A%0 = (V1 = x20y)y + (v — u) = (fa +iAf3).
Solving system (59) is equivalent to finding (1, v) € [Hﬁ(—l, 1)NH, (-1, 1)]2 such that
1 1
| A - (VT + au - o = [ G+ i fonds
0 0 (61)

1 1
[ e - (T30 + atu - o = [ (ki
0 0

for all wy, w, € H% a(—l, 1). By using (60) the functions u and v satisfying the following system
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1 1
f (=A2uwy — V1 — x2u,w7)dx + f (=A%vw, — V1 — x20,70,)dx

1 -1

f (s + i fi)T + f (i + iAfyYRdx - (1) f BOUE 4

~Cwr(1) f LM g 1 (14 + 0) Yo (T1(1) + 6fs(L)@a(1)).

E2+w+id

We can rewrite (62)as

L/\(u, V) + a(Hiﬂ(,lll))z(u, V) = l(V),

2
where the sesquilinear froms L, : [LZ(O, 1) x L%(0, 1)] - C,

2
Agn e [Hiu(—l, 1) x Hj (-1, 1)] — C and the antilinear form
I:H} (-1,1)x H] (-=1,1) — C are defined by

1 1
Ly(UV)=- f AN uwidx + f A2vtidx
-1 -1

1 1 1

a(x)v,wodx + af (u — v)(wy — wy)dx

-1

gt -, V) = Ilﬂ(x)uxw_ﬁdx"‘ Il
+ (i + @) (A1) + P f3(D)W2(1))

and
1 1
(v) = f o+ infimr+ f (fa + iA fy)T3)dx
- [ SO e ) | RAULOW

52 +w+id 52 +w+ z/\
+ (iA + @) Ny ADWI(L) + 7 HQ)W(1)).

It is easy to verify that ag (1) is continuous and coercive and L, is bounded. Furthermore

Ragyy (U V) = [0 =] + [0 =0, + i — ol
+ AR(GA + ) (e lu()P + 5 l1)P)
> [|a = Py + ]| = 2o,

where we have used the fact that

+00 2
RN + @) 1) = 12 f v

AT @i gl

+a f (1 — v)(@7 — W)dx + ioAGA + ) (@1 (1) + ipAGA + @)™ o(1)T5(1)

3588

(62)

(63)

(64)

(65)

(66)

(67)

(68)

Now, following Fredholm alternative, we still need to prove that the operator [ is injective to obtain that

the operator / is an isomorphism. Let (1, v) € ker(l), then

Ly V) +agp (U, V) = 0Y(U, V) € Hi,(-1,1).

(69)
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In particular for U =V, it follows that

A2 (lully + o) = ioA A + @)™ fu(D)P
—igAGA + @) = (D) (70)
= ||(1 - xz)uxni + H(l - xz)vx”i +alu—olf3.
Hence, we have
u(1) =o(1) = 0. (71)

From (69) , we obtain

(V1 =22u,)(1) = (V1 = x20,)(1) = 0 (72)
and then

Au— (V1= x2uy), +a(u—0v) =0

A%0 — (V1 = x20,), +a(w —u) =0

u(-1)=ov(-1)=0 (73)
u(l) = (V1 —x%u,)(1) =0

(1) = (V1 - x2v,)(1) = 0.

We deduce that U = 0. Hence iAl — A is surjective for all A € R".
Case 1: A = 0 and w # 0. Using Lax-Milgram Lemma, we obtain the result. [

3. Spectral analysis and lack of uniform stability

This section will be devoted to the study of the lack of exponential decay of solutions associated with
the system (22). To do this, we shall usethe following well-known result from semigroup theory.

Theorem 3.1. ([12]-[13]) Let S(t) be a Co-semigroup of contractions on Hilbert space H with generator A. Then
S(t) is exponentially stable if and only if

iR = {if : p € R} C p(A) (74)

0o. (75)

ﬁ”(iﬁ[—ﬂ.)ﬂ 00 <

Our main result is

Theorem 3.2. The semigroup generated by the operator A is not exponentially stable in the energy space H.

Proof. We will examine two cases.

Caselw =0.

We shall show that iA = 0 is not in the resolvent set of the operator A. Indeed, noting that (sin(x +
1),0,sin(x + 1),0,0,0) € H, and denoting by (i, i, v, 5, ¢, )T the image of (sinx,0sinx,0,0,0)T by AL, we
see that (&) = IEI°T sin 2. But ¢ ¢ L*(R), since 7 € (0,1) and (u, 1,0, 5, ¢, p)T ¢ D(A).

Case2 w # 0.

We aim to show that an infinite number of eigenvalues of A approach the imaginary axis which prevents
the system (1)—(2) from being exponentially stable. Indeed, we first compute the characteristic equation
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that gives the eigenvalues of A. Let be an eigenvalue of A with associated eigenvector U = (u, ,v,7, ¢, P)’.
Then AU = AU is equivalent to

iAlu—i =0,
Al — (V1 — x2uy) + a(u —0) =0,
ilv—7=0,

A — (V1 = x2uy)y + a(v—u) =0, 76)

A+ (€2 +w)p - u(E)i(1) =0,
iAG + (&2 +w)p — w()a(1) = 0.

Inserting (76)1, (76)3 into (76), (76)4, we get

A% — (V1 = x2u ) +a(u—0v) =0

A%0— (V1 =x20,), +a(@—u) =0 77)
iAQ + (£ + w)p — p(&)ii(1) = 0,

iAp + (&2 + w)P — u(&)a(1) = 0.

With boundary conditions

(V1 = 22uy)(1) = oAA + @)™ + p(Eu(1) =0,
(V1 =x20)(1) = GA(A + @) + p(&)o(1) =0, (78)
u(—1) = v(-1).

Finally, we get the follwing system

A2u— (V1= x2uy), +a(u—-0) =0,

A%0 — (V1 —x20,), +a(v—u) =0,

u(-1)=ov(-1) =0, (79)
V1 = 22u,)(1) = pA(A + @)™ + w(@u(1) = 0,

(V1 =x%0,)(1) — GAA + @)™ + u(&)o(1) = 0.

Let us set
{ (e i u+o, (80)
P=u—u.

Then, we obtain

{ Az(P—( Vl _xijx)x = Ol

(12 + 200 — (V1 = ) = 0. &)

It is well-known that Bessel functions play an important role in this type of problem. Assume that ¢ is
a solution of (81) associated to eigenvalue —A? then one easily cheks that the function.
The general solution of system (81) is given by

() = C1o(2Ae" ™5 9) + GoYo (2571, (82)

arcosx _ arcosx _

P(1) = CaJo(2iAae™ D) + CYo(2iAae 7).

Where A, = VA2 + 2a. Thus the boundary conditions may be written as the following system

G 0
C 0

M(A) Cz =l o | (83)
Cy 0
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where
g1,A g2,A I3, J4,0,
M@) = %&Ae{g) %?2)@3) ﬁ@?ﬁ;aaﬂ ;Ogéé/\ilaei’z.)n : (84)
Jo(2Ae'3)  Yo(2Ae')  —Jo(2Aa€'3)  —Y0(2A0€'%)
and

g1 = IAeTE L 2AeTH) + oA + o) o(2Ae ),
JoA = ideiY(2Me7F) + oAA + w)™? Yo(2Ae7),
g3, = A5 J12A0713) + DAL + @) o(2Ae ™),
Jap, = i/\e"% Y1(2Aa6_7%) + @/\(A + w)T_lYQ(Z/\ae_i%).

(85)

Hence a non-trivial solution exist if only if the determinant of M(A) vanishes.

Set f(A) = det M(A), thus characteristic equationis f(A) = 0. Our purpose in the sequel is to prove, thanks
to Rouch’s theorem, that there is a sequence of eigenvalues for which their real part tends to 0. since A is
dissipative, we study the asymptotic behavior of the large eigenvalues A of A in the strip —ay < R(A) <0,
for some a > 0 large enough.and for such A, we remark that Jy, Yo remains bounded. [

Lemma 3.3. The large eigenvalues of the dissipative operator are simple and can be slit into two families (Ai)kgz,
j=1,2, (ko € N, chosen large enough).
Moreover, the followine asymptotic expansions for the eigenvalues hold:

2k +1 @ B 1 o
/\11( = lﬁ + kl—lr + kfi’[ O(F), a1 €1R, ‘31 <0, k=>ko,
A=A, k< —k, (86)
Qk+1) &  po
4\/5 + kl—’r + kl—'r +

/\i :/\_Ek, kS —ko.

2 _ .
Ay =i

1 ~
O(F), a €1R, 2 <0, k = ko,

Proof. Stepl. We will use thefollowing classical asymptotic development (see [15]) forall > 0, thefollowing
development holds when |arg z| <m-90:

2\!/2 T T 1 2\2 T T 1

]U(Z) = (E) COS(Z - UE - Z) (1 + O(E)) - (E) sm(z - UE - Z)O(E) (87)
2\2 T T 1 2\!/2 T n 1

@ =(=) sine-vZ-0) (1 ¥ O(E)) (=) costz- 03 - DO (88)

The determinant of M(A) is given by
FA) = 4(YoAe'F g1 — Jo@Ae)g20) (Jo@Aae ) gs,1, = Yo(24ae')g3,1,) (89)
=4(AXB)
where

A= Yo(ZAEi‘%gL/\ - ]0(2/\ei§)g27{ar (90)
B = Jo(2A4€'%)gs 0, — Yo(2Aa€'4)g3 1, -
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Using (87)—(88), we get

A= iE;Z [COS(Z V220) + (/\+a))T sin 2\/_)\1)+O % ]
B=it [cos(Z\/_)\ i)+ &2 ELA + o) cos(2 V24, 1)+O(%)]

we have

A= L2 [(eMA +1)+ &5V - 1)+ 0 (5 )]
B = % 22, [(€4vm +1)+ ﬁﬁ—li(e‘*‘m” —1)+ O(AL )]

Tt

We start by the expansion of A, and ¢* V21,

a 1
A“_A+X+O(ﬁ)’

2 1
¢t Ve —e4‘”(1+/\ +%+O(—)).

Then

@V 4 1) 4 E (@ _ )(e4“+1)+ (4“ 1)+o(%).

We get

f(/\) —2\/7/\ 2\/7/\4\(( 427 + 1)2

1 + 0
+ € iél),,[ Q) (64‘/§A + 1)(64\6/\ _ 1)

b 20 ava 1)2)+o(

/\2—27 Az 27 )

We set
F) = fo(A) +

Where
fod) = @V +1)?,
AQ) =0+ eV + 1)V -1,
AA) = ppi(e V2 - 1)2.

Step2.

AQ) L) 1
i e+ 05

We look at the roots of f;. From (97) has one family of roots that we denote )\2.

) =06 @@V 4172 =0
Hence
20 = (k + 1/2)
kK — 2 \/—

3592

1)

(92)

(93)

(94)

(95)

(96)

97)

(98)

(99)

(100)
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Now with the help of Rouch’s Theorem, we will show that the roots of f are close to those of fy. Let us
start with the first family. Changing in (97) the unknown A by u = 4V2A then (97) becomes

fy= (" +12+0 (ull_T ) (101)

_ L (k+1/2)
The roots of fy are uy =i Y

there exists a constant C > 0 independent of k such that [¢* + 1| > Cr for r small enough. This allows to

apply Rouch’s Theorem. Consequently, there exists a subsequence of roots of which tends to the roots f

which tends to the uy of fo. Equivalently, it means that there exists N and a subsequence (A) >y of the roots

of f(A), such that Ay = A? +0(1), which tends to the roots i @kt1)

n, k € Z, and setting u = u + rel', t € [0,2m], , we can easily check that

11, k € Z. Finally for |k| > N, Ay is simple since

42
/\2 is.

Step3. We can write

Ak = AP + . (102)
Using (102), we get

VM = _1 — 4V2¢ + O(eD) (103)
Substituting (103) into (94), using that f (M) =0, we get:

F(A) =322 + e (g + 0) 8 ‘/Ef’; + i 42% +0(eg) = 0. (104)

Multipying (104) by k=" leads to:

i 2 kl—T .
32(kTer)? + €'t (o + @)8 V2 1_fk) + 001 42—21 +o(1) +o(k""e) = 0. (105)
() (&
Thus, k!~ "¢, is bounded and
i 2V2(kT 1
8(k'"er)* + €1 (0 + D) va( 1_f") + 0gi - +0(1) =0. (106)
() ()

The previous equation has two solutions

2V2¢% (~(0+ ) £ [0~ 4)

KT — +0(1). (107)
(%)
It holds:
~(0+0) +|o- 4] o n 1
& = (Cos(l - 2T)Z —isin(1 — ZT)Z) +0 (F) (108)

— (2 \/5)7‘2 -t

From (108), we have in the case Ikll_T %)\]]; ~ B, j =1,2, with

b = —(0+0) + )Q;@) cos(l - 20)%,
1-7
_ZI . ()2 \_/E)) 4 (109)
1= ere 0" ¢ cos(1 —27)%.

nl—’[ (2 \/5)172
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The operator A has two branches of eigenvalues with eigenvalues admitting real partstending to zero.

Hence, the energy corresponding to the first and second branch of eigenvalues has no exponential decaying.

Now, setting l]]]( = (/\21 —-A) U{c, j1,2, where U;{l is a normalized eigenfunction associated to /\i. We then have

gt - Ayl

0 — -1 =
||(/\k1 A) sz((H) UeH U0 [14|7%

||(A21 A H,{”H
Fl,
Juill,.

*or-mo-all,

Hence, by Lemme 3.3, we deduce that
AL = A) | gy = KT (110)

Thus, Theorem is not satisfied. So that, the semigroup is not exponentially stable. [

Remark 3.4. In this work, the polynomial stability was not studied because of some difficulties on the estimation of
the integral of the Bessel functions, for this we conjuncture that the polynomial energy decay rate of the system (1)—(2)

which depends on the order of the fractional derivative and the type t~

2/(1-),
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