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Abstract. In this article, via the relation between the higher order commutator Ib,m
α and its sparse coun-

terparts, we establish two different types of the two-weight boundedness of Ib,m
α on Morrey spaces. The

main novelties of these results include the predual of the weighted Morrey space Lp,λ(σ), Xp′ ,λ
σ (Rn), the

boundedness of generalized fractional Orlicz maximal operators on Morrey spaces and the boundedness
of generalized Orlicz maximal operators on Xp′ ,λ

σ (Rn).

1. Introduction

Fractional integrals and their commutators, which are important linear operators in harmonic analysis,
were widely used in the theory of function spaces and partial differential equations. See, for examples,
[1, 7, 8, 17, 30] for the classical weighted case and [6, 9, 16, 27, 28] for the two-weight case. For the Morrey-
type spaces and fractional integrals with rough kernel, we refer the reader to [12, 13, 18, 23, 26]. See also
[3, 4, 15] for multilinear operators and [11, 19, 20] for other extensions.

Via the equivalence among dyadic fractional integrals and their sparse counterparts, and fractional
integrals (cf., for example, [9]), Pan and Sun [20] established two-weight norm inequalities for fractional
maximal operators and fractional integrals on two-weight Morrey spaces.

A natural question is whether or not the two-weight norm inequalities remain true for the higher order
commutators of fractional integrals on two-weight Morrey spaces. In this article, we give an affirmative
answer to this question (see Theorem 1.12 below).

Meanwhile, via establishing the sparse dominations for higher order commutators of fractional integrals
Ib,m
α , Accomazzo et al. [1] obtained qualitative Bloom type estimates for Ib,m

α . Based on the aforementioned
sparse dominations for Ib,m

α , Wen and Wu [31] obtained the two-weight bounds for Ib,m
α under more general

bump conditions, the necessity of two-weight bump conditions and the converse of Bloom type estimates
for Ib,m

α .
Motivated by [20, 31], in this article, we show two different types of the two-weight boundedness of Ib,m

α

on Morrey spaces (see Theorems 1.12 and 1.13 below); see, for instance, [2, 20, 23–26] for more information
on the theory of Morrey spaces and its extensions and applications.

To state the main results of this paper, we recall some basic notions and notation. Recall that the space
L1

loc (Rn) is defined to be the set of all locally integrable functions.
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Definition 1.1. Let n, m ∈N, α ∈ (0,n) and b ∈ Lm
loc (Rn), namely, |b|m ∈ L1

loc (Rn). Then

(i) the fractional integral Iα (cf. [29, p. 117]) is defined by setting, for any suitable function f on Rn,

Iα( f )(x) :=
1
γ(α)

∫
Rn

f (y)
|x − y|n−α

dy, ∀ x ∈ Rn;

(ii) the higher order commutator of the fractional integral Ib,m
α (cf., for example, [1, p. 1209]) is defined by

setting, for any suitable function f on Rn,

Ib,m
α ( f )(x) :=

1
γ(α)

∫
Rn

[b(x) − b(y)]m f (y)
|x − y|n−α

dy, ∀ x ∈ Rn,

where γ(α) := πn/22αΓ(α2 )/Γ( n−α
2 ) and Γ is the Gamma function.

Recall that a measurable function u on Rn is called a weight if

(i) 0 < u < ∞ almost everywhere on Rn;

(ii) u ∈ L1
loc (Rn).

Definition 1.2. ([20]) Let p ∈ (1,∞), λ ∈ [0, 1), σ and u be weights. The two-weight Morrey Space is defined to
be the set of all functions f ∈ L1

loc (Rn) with

∥ f ∥Lp,λ(σ,u) := sup
Q

[
1

[u(Q)]λ

∫
Q
| f (x)|pσ(x) dx

]1/p

< ∞,

where the supremum is taken over all cubes Q ⊂ Rn. Let

Lp,λ(σ) := Lp,λ(σ, 1) and Lp,λ(Rn) := Lp,λ(1, 1)

denote the weighted Morrey Space and the classical Morrey space, respectively.
Moreover, Lp

σ(Rn) := Lp,0(σ) is the usual weighted Lebesgue space on Rn.

Definition 1.3. ([2]) Given d ∈ (0,n], the d-dimensional Hausdorff capacity of a set E ⊂ Rn is defined by

Λd(E) := inf


∞∑
j=1

rd
j : E ⊂

⋃
j

Q(x j, r j), j ∈ Z

 .
Here and thereafter, Q(x, r) represents a cube with the center x ∈ Rn and half of sidelength r ∈ (0,∞).

Definition 1.4. ([22]) Let Φ : [0,∞)→ [0,∞) be a Young function, namely, an increasing, convex function with
Φ(0) = 0 and limt→∞Φ(t)/t = ∞. The localized Luxemburg average of a measurable function f on a cube Q is
defined by

∥ f ∥Φ,Q := inf
{
λ ∈ (0,∞) :

1
|Q|

∫
Q
Φ

(
| f (x)|
λ

)
dx ≤ 1

}
.

In particular, when Φ(t) = tp, p ∈ (1,∞), we simply write ∥ f ∥p,Q := ∥ f ∥tp,Q.

Given a Young function Φ, the conjugate function and left-inverse (cf. [22]) of Φ are respectively defined
by

Φ∗(t) := sup
s∈[0,∞)

{st −Φ(s)}, ∀ t ∈ (0,∞),
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and
Φ−1(t) := inf{s ∈ [0,∞) : Φ(s) ≥ t}, ∀ t ∈ (0,∞).

Recall from [22, p. 58, Proposition 1] that, the following generalized Hölder inequality holds true for
any suitable functions f and 1:

1
|Q|

∫
Q
| f (x)1(x)| dx ≤ 2∥ f ∥Φ,Q∥1∥Φ∗,Q. (1.1)

See [14, 22] for more information on the theory of Orlicz spaces.
Now we recall a growth condition on Young functions, which was introduced in [21, Definition 1.6].

Given p ∈ (1,n/α) and 1/q = 1/p − α/n, we say that Φ ∈ Bp,q for some positive constant c, if∫
∞

c

[Φ(t)]q/p

tq
dt
t
< ∞.

When p = q, we simply write Bp := Bp,p.

Definition 1.5. ([20, Section 2]) A set of cubesD in Rn is said to be a general dyadic lattice if

(i) when Q ∈ D, its side-length l(Q) = 2k for some k ∈ Z+ := {0} ∪N ;
(ii) when Q, R ∈ D, Q ∩ R = {Q,R, ∅};

(iii) the subsetDk = {Q ∈ D : l(Q) = 2k
} ⊂ D forms a partition of Rn for any k ∈ Z+.

Definition 1.6. ([1, Section 2]) Given a general dyadic lattice D and η ∈ (0, 1), a subset S ⊂ D is said to be
η-sparse, if ∣∣∣∪R∈S,R⫋QR

∣∣∣ ≤ (1 − η)|Q|, ∀Q ∈ S.

Remark 1.7. Let S ⊂ D be η-sparse and, for any Q ∈ S,

E(Q) := Q\
(
∪R∈S,R⫋QR

)
.

Then {E(Q)}Q∈S are mutually disjoint and |E(Q)| ≥ η|Q| for any Q ∈ S.

Definition 1.8. ([17]) Let p ∈ [1,∞). The class of Ap weights is defined to be the set of all functions u ∈ L1
loc (Rn)

such that

[u]Ap :=

supQ

(
1
|Q|

∫
Q u(x) dx

) (
1
|Q|

∫
Q[u(x)]1−p′ dx

)p−1
< ∞, p ∈ (1,∞);

supQ

(
1
|Q|

∫
Q u(x) dx

)
∥u−1
∥L∞(Q) < ∞, p = 1,

where the suprema above are taken over all cubes Q ⊂ Rn.
The A∞ weights is defined by A∞ := ∪p∈[1,∞)Ap.

Definition 1.9. ([31]) Let α ∈ (0,n),m ∈ Z+, η ∈ (0, 1), b ∈ Lm
loc(R

n) and p, q ∈ (1,∞) with p ≤ q. A pair of weight
(u, σ) is said to belong to Aαp,q,Φ,Ψ if

[u, σ]Aαp,q,Φ,Ψ
:= sup

Q∈D
|Q|

α
n+

1
q−

1
p ∥u∥Φ,Q ∥σ∥Ψ,Q < ∞,

where the supremum is taken over all cubes Q ⊂ Rn. In particular, when Φ(t) = tq andΨ(t) = tp′ , we simply write

[u, σ]Aαp,q := [u, σ]Aα
p,q,tq ,tp

′
.
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Hereafter, for any η-sparse general dyadic lattice S, measurable function f with compact support and
x ∈ Rn,

I
b,m
S,α

( f )(x) := sup
Q∈S
|Q|α/n−1

∫
Q
|b(y) − bQ|

m
| f (y)| dyχQ(x)

and

(Ib,m
S,α

)∗( f )(x) := sup
Q∈S
|Q|α/n−1

|b(x) − bQ|
m
∫

Q
| f (y)| dyχQ(x).

Definition 1.10. Let σ ∈ A∞. A function b ∈ L1
loc (Rn, σ(x) dx) is said to belong to the space BMOσ(Rn) if

sup
B

1
σ(B)

∫
B
|b(x) − bσ,B|σ(x) dx < ∞,

where bσ,B := 1
σ(B)

∫
B b(y)σ(y) dy and the supremum is taken over all balls B ⊂ Rn. When σ = 1, we simply write

bB := b1,B and BMO(Rn) := BMO1(Rn), which is just the classical space of functions with bounded mean
oscillation.

Remark 1.11. Let q ∈ (1,∞) and σ ∈ A∞. It was shown by the John–Nirenberg inequality on spaces of homogeneous
type (see the proof of [5, Theorem B]) that, for any b ∈ BMOσ(Rn),

∥b∥BMOσ(Rn) ∼ sup
B

[
1
σ(B)

∫
B
|b(x) − bσ,B|qσ(x) dx

]1/q

, (1.2)

where the supremum is taken over all balls B ⊂ Rn.

Now we are ready to state the two main results of this article.

Theorem 1.12. Let α ∈ (0,n), λ ∈ [0, 1), η ∈ (0, 1), m ∈ N, b ∈ BMOσ(Rn) ∩ BMOu(Rn) and p, q ∈ (1,∞) with
p ≤ q. If u, σ ∈ A∞ satisfying

c(u,σ) :=
[
u1/q, σ1/p′

]
Aαp,q
< ∞, (1.3)

then there exists a positive constant c such that, for any η-sparse general dyadic lattice S and f ∈ Lp,λp/q(σ,u) with
compact support,∥∥∥∥Ib,m

S,α
( fσ)

∥∥∥∥
Lq,λ(u,u)

+
∥∥∥∥(Ib,m

S,α
)∗( fσ)

∥∥∥∥
Lq,λ(u,u)

≤ cc(u,σ)

[
∥b∥mBMOσ(Rn) + ∥b∥

m
BMOu(Rn)

]
∥ f ∥Lp,λp/q(σ,u);

in particular,∥∥∥Ib,m
α ( fσ)

∥∥∥
Lq,λ(u,u)

≤ cc(u,σ)

[
∥b∥mBMOσ(Rn) + ∥b∥

m
BMOu(Rn)

]
∥ f ∥Lp,λp/q(σ,u).

Theorem 1.13. Let α ∈ (0,n), λ ∈ [0, 1), η ∈ (0, 1), m ∈N, b ∈ Lm
loc (Rn) and p, q ∈ (1,∞) with p ≤ q. Assume that

A,B,C,D are Young functions which satisfy A∗,C∗ ∈ Bq′ and B∗,D∗ ∈ Bp,q. Then the following statements hold true:

(i) If a pair of weights (u, σ) satisfies

C̃(u,σ,b) :=
[
u1/q, (b − b(·))mσ−1/p

]
Aαp,q,A,B

+
[
(b − b(·))mu1/q, σ−1/p

]
Aαp,q,C,D

< ∞,

then exists a positive constant C̃ such that, for any η-sparse general dyadic lattice S and f ∈ Lp,λ(σ) with
compact support,∥∥∥∥Ib,m

S,α
( f )

∥∥∥∥
Lq,λ(u)

+
∥∥∥∥(Ib,m

S,α
)∗( f )

∥∥∥∥
Lq,λ(u)

≤ C̃C̃(u,σ,b)∥ f ∥Lp,λ(σ); (1.4)

in particular,∥∥∥Ib,m
α ( f )

∥∥∥
Lq,λ(u)

≲ C̃(u,σ,b)∥ f ∥Lp,λ(σ).
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(ii) If (1.4) holds true with λ = 0, then[
u1/q, (b − b(·))mσ−1/p

]
Aαp,q
+

[
(b − b(·))mu1/q, σ−1/p

]
Aαp,q
< ∞.

Remark 1.14. When λ = 0, Theorem 1.13 returns to [31, Theorems 1.1 and 1.2].

This paper is organized as follows.
In Section 2, we recall some preliminary results which are necessary to the proofs of Theorems 1.12 and

1.13.
Section 3 is devoted to proofs of Theorems 1.12 and 1.13. To prove Theorem 1.12, by Lemma 2.1

below, we first reduce the estimates to those of some sparse counterparts {Ib,m
S j,α

( f )}3
n

j=1 and {(Ib,m
S j,α

)∗( f )}3
n

j=1,

which follows by the duality between Lq
u(Rn) and Lq′

u (Rn), the Hölder inequality (1.1), equivalent norms
of functions in BMOσ(Rn) [see (1.2)], boundedness of weighted maximal operators on weighted Lebesgue
spaces, η-sparsity of S and some ideas from the proof of [20, Theorem 1.2].

Theorem 1.13 follows by some similar arguments as those used in the proof of [31, Theorem 1.1]. The
main novelties of this proof include the applications of duality between Xp′,λ

σ (Rn) and Lp,λ(σ) (see Theorem
2.3 below), the boundedness of generalized fractional Orlicz maximal operators on Morrey spaces (see
Lemma 2.5 below) and the boundedness of generalized Orlicz maximal operators on the predual of Lp,λ(σ),
Xp′,λ
σ (Rn) (see Corollary 2.8 below).

Finally, we list some conventions on notation. LetN := {1, 2, 3, . . .},Z+ := {0}
⋃
N andZ := {0,±1,±2, . . .}.

Let C̃ denote a positive constant which is independent of the main parameters, but it may change from line
to line. For two real functions f and 1, we write f ≲ 1 if f ≤ C1; f ∼ 1 if f ≲ 1 ≲ f . For any p ∈ [1,∞], let
p′ := p/(p − 1). Moreover, denote by E∗ the dual space of a Banach spaces E.

2. Preliminaries

In Section 2, we recall and establish some preliminary results which are important to the proofs of
Theorems 1.12 and 1.13. First, by the proof of [1, Theorem 2.1] and [31, Lemmas 2.3 and 2.4], we have the
following conclusion.

Lemma 2.1. Let α ∈ (0,n), η ∈ (0, 1), b ∈ Lm
loc (Rn) and m ∈ N. Then there exist a family {D j}

3n

j=1 of general dyadic
lattices and a family {S j}

3n

j=1 of η-sparse general dyadic lattices with S j ⊂ D j, for any j ∈ {1, . . . , 2n
}, such that, for

any measurable function f with compact support,

∣∣∣Ib,m
α ( f )(x)

∣∣∣ ≲ 3n∑
j=1

[
I

b,m
S j,α

( f )(x) + (Ib,m
S j,α

)∗( f )(x)
]
, ∀ x ∈ Rn.

The following conclusion is adapted from [2, Theorem 5.2]. Recall that L1(Λd) denotes the set of all
Λd-quasi-continuous functions f (namely, those functions f such that, for any ϵ ∈ (0,∞), there exists a subset
E ⊂ Rn such that Λd(E) < ϵ and f restricted to Rn

\ E is continuous) for which

∥ f ∥L1(Λd) :=
∫
Rn
| f (x)| dΛd(x) =

∫
∞

0
Λd({x ∈ Rn : | f (x)| ≥ t}) dt < ∞.

Lemma 2.2. Let p ∈ (1,∞), γ ∈ (0,n) and λn = n − γ. Then

∥ f ∥Lp,λ(σ) = sup
w

[∫
Rn
| f (x)|pw(x)σ(x) dx

]1/p

,

where the supremum is taken over all non-negative measurable functions w with ∥w∥L1(Λd) ≤ 1 and d = λn.
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Proof. From [2, Theorem 5.1], we deduce that∫
Rn
| f (x)|pw(x)σ(x) dx =

∫
Rn

(
| f (x)|[σ(x)]

1
p
)p

w(x) dx

≤ ∥w∥L1(Λd)

∥∥∥∥ fσ
1
p

∥∥∥∥
Lp,λ(Rn)

= ∥w∥L1(Λd)∥ f ∥Lp,λ(σ).

On the other hand, if w0 := χQ(x0,r0)r0
−λn, then ∥w0∥L1(Λd) =

∫
Q(x0,r0) r0

−λn dΛd = 1,

∥ f ∥Lp,λ(σ) = sup
(x0,r0)∈(Rn×∞)

[∫
Rn
| f (x)|pr0

−λnχQ(x0,r0)(x)σ(x) dx
] 1

p

= sup
(x0,r0)∈(Rn×∞)

[∫
Rn
| f (x)|pw0(x)σ(x) dx

] 1
p

≤ sup
w

[∫
Rn
| f (x)|pw(x)σ(x) dx

] 1
p

,

where the supremum is taken over all non-negative functions w on Rn with ∥w∥L1(Λd) ≤ 1, d = λn. This completes
the proof of Lemma 2.2.

We also need to introduce the notion of the predual of the weighted Morrey space Xp,λ
σ (Rn). Given p ∈ (1,∞)

and λ ∈ (0, 1), we say f ∈ Xp,λ
σ (Rn) if

∥ f ∥Xp,λ
σ (Rn) = inf

w

(∫
Rn
| f (x)|p[w(x)]1−pσ(x) dx

)1/p

< ∞, (2.1)

where the supremum is over all non-negative functions w with ∥w∥L1(Λd) ≤ 1, d = λn. When σ(·) := | · | is the
Lebesgue measure on Rn, let Xp,λ(Rn) := Xp,λ

|·|
(Rn).

By borrowing some ideas from the proof [2, Theorem 5.3], we obtain the following conclusion.

Theorem 2.3. Let p ∈ (1,∞), λ ∈ (0, 1). Then the predual of Lp,λ(σ) is Xp′,λ
σ (Rn) in the sense that

(i) if f ∈ Lp,λ(σ), then the linear functional L f defined by

L f (1) := ⟨ f , 1⟩ =
∫
Rn

f (x)1(x)σ(x) dx, ∀ 1 ∈ Xp′,λ
σ (Rn) (2.2)

is a bounded linear functional on Xp′,λ
σ (Rn) as in (2.2) with ∥L f ∥(Xp′ ,λ

σ (Rn))∗ ≤ 2∥ f ∥Lp,λ(σ);

(ii) if L ∈ (Xp′,λ
σ (Rn))∗, then there exists a function f ∈ Lp,λ(σ) such that L = L f with

∥ f ∥Lp,λ(σ) ≤ ∥L f ∥(Xp′ ,λ
σ (Rn))∗ .

Proof. (i) For any 1 ∈ Xp′,λ
σ (Rn), by (2.1), we may choose a non-negative functions w with ∥w∥L1(Λd) ≤ 1 and

d = λn such that∫
Rn
| f (x)|p[w(x)]1−pσ(x) dx ≤ 2∥ f ∥Lp,λ(σ),

which, combined with the Hölder inequality and Lemma 2.2, implies that

|L f (1)| ≤
∫
Rn
| f (x)| |1(x)|[w(x)]

1
p [w(x)]−

1
p [σ(x)]

1
p [σ(x)]

1
p′ dx
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≤

(∫
Rn
| f (x)|pw(x)σ(x) dx

) 1
p
(∫
Rn
|1(x)|p

′

[w(x)]1−p′σ(x) dx
) 1

p′

≤ 2
∥∥∥ f

∥∥∥
Lp,λ(σ)

∥∥∥1∥∥∥Xp′ ,λ
σ (Rn)

,

which shows (i).
(ii) Let L be a bounded linear functional on (Xp′,λ

σ (Rn))∗. Then we claim that, for any cube Q := Q(x1, r1)
with x1 ∈ Rn and r1 ∈ (0,∞), L induces a bounded linear functional on Lp′

σ (Q). Indeed, choose w = rγ−n
1 χQ(x1,r1)

in (2.1). Then we have

∥1∥Xp′ ,λ
σ (Rn) ≤ r

n−γ
p

1

(∫
Q(x1,r1)

|1(x)|p
′

σ(x) dx
) 1

p′

= r
n−γ

p

1 ∥1∥Lp′
σ (Q(x1,r1)),

which implies that

|L(1)| ≤ ∥L∥(Xp′ ,λ
σ (Rn))∗

∥∥∥1∥∥∥Xp′ ,λ
σ (Rn)

≤ r
n−γ

p

1 ∥L∥(Xp′ ,λ
σ (Rn))∗

∥∥∥1∥∥∥Lp′
u (Q(x0,r0))

,

as claimed.
Fix a cube Q0 := Q(x0, r0) with x0 ∈ Rn and r0 ∈ (0,∞). Since

(
Lp′
σ (Q0)

)∗
= Lp

σ(Q0), we know that there
exists f Q0 ∈ Lp

σ(Q0), such that

L(1) =
∫
Rn

f Q0 (x)χQ0 (x)1(x)σ(x) dx, ∀ 1 ∈ Lp′
σ (Q0).

Let Q1 := Q(0, 1) ∩Q(x0, r0). Then there exists f Q1 ∈ Lp
σ(Q1) such that

L(1) =
∫
Rn

f Q1 (x)χQ1 (x)1(x)σ(x) dx, ∀ 1 ∈ Lp′
σ (Q1).

Let Q2 := Q(0, 2) ∩Q(x0, r0). Then there exists f Q2 ∈ Lp
σ(Q2) such that

L(1) =
∫
Rn

f Q2 (x)χQ2 (x)1(x)σ(x) dx, ∀ 1 ∈ Lp′
σ (Q2).

Furthermore∫
Rn

f Q1 (x)χQ1 (x)1(x)σ(x) dx =
∫
Rn

f Q2 (x)χQ2 (x)1(x)σ(x) dx, ∀ 1 ∈ Lp′
σ (Q2) ⊂ Lp′

σ (Q1),

which proves f Q1χQ1 = f Q2χQ1 .
Repeat the process countable infinite times, there exists { f Q j }

∞

j=1 satisfying that, for any j ∈ N,Q j :=

Q(0, j) ∩Q(x0, r0), f Q j
∈ Lp
σ(Q j),

f Q jχQ j = f Q j+1χQ j

and

L(1) =
∫
Rn

f Q j (x)χQ j (x)1(x)σ(x) dx, ∀ 1 ∈ Lp′
σ (Q j).

Thus, we construct f ∈ Lp
σ(Rn) such that f = f Q j on Q j for any j ∈N and hence

L(1) =
∫
Rn

f (x)1(x)σ(x) dx = L f (1)

with 1 ∈ Xp′,γ
σ (Rn) supporting on some cube of {Q j}

∞

j=0.
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Thus, if we choose 1 = χQ0 | f |p f−1,w0 = χQ0 r0
γ−n, then∫

Q0

| f (x)|pσ(x) dx = L f (1) ≤ ∥L f ∥(Xp′ ,λ
σ (Rn))∗ ∥1∥Xp′ ,λ

σ (Rn)

≤ ∥L f ∥(Xp′ ,λ
σ (Rn))∗

(
r0

(γ−n)(1−p′)
∫

Q0

|1(x)|p
′

σ(x) dx
) 1

p′

= ∥L f ∥(Xp′ ,λ
σ (Rn))∗

(
r0

(γ−n)(1−p′)
∫

Q0

| f (x)|(p−1)p′σ(x) dx
) 1

p′

≤ ∥L f ∥(Xp′ ,λ
σ (Rn))∗ r0

n−γ
p

(∫
Q0

| f (x)|pσ(x) dx
) 1

p′

,

which shows that ∥ f ∥Lp,λ(σ) ≤ ∥L f ∥(Xp′ ,λ
σ (Rn))∗ . This completes the proof of (ii) and hence of Theorem 2.3.

Let α ∈ [0,n) and Φ be a Young function. Recall from [7] that the generalized fractional Orlicz maximal
operator, Mα,Φ, is defined by

Mα,Φ( f )(x) := sup
Q∋x
|Q|α/n∥ f ∥Q,Φ, ∀ x ∈ Rn,

where the supremum is taken over all cubes Q in Rn containing x. Let MΦ :=M0,Φ.
We now recall the following conclusion from [7, Lemma 5.28].

Lemma 2.4. Let Φ be a Young function. Then, for any cube Q, one has

MΦ( fχQ)(x) = sup
x∈R⊂Q

∥∥∥ f
∥∥∥
Φ,R , ∀ x ∈ Q,

where the supremum is taken over all cubes R containing x with R ⊂ Q.

Adapting the proof of [8, Theorem 3.3], we further have the following conclusion.

Lemma 2.5. Assume that α ∈ (0,n), p ∈ (1, α), λ ∈ [0, 1), 1/q = 1/p − α/n and Φ ∈ Bp,q. Then there exists a
positive constant C̃ such that, for any f ∈ Lp,λ(Rn),

∥∥∥Mα,Φ( f )
∥∥∥

Lq,λ(Rn)
≤ C̃

(∫
∞

0

[Φ(t)]q/p

tq
dt
t

) 1
q ∥∥∥ f

∥∥∥
Lp,λ(Rn)

.

Proof. For any s ∈ (0,∞), let Φp(s) := Φ(s1/p). By a result in [8, p.443], we know that

∥| f |p∥Q,Φp = ∥ f ∥pQ,Φ

and hence
[Mα,Φ f ]q = [Mpα,Φp (| f |p)]q/p.

From [7, Lemma 5.49], it follows that∣∣∣{x ∈ Q : Mαp,Φp (| f |p)(x) > s}
∣∣∣ n−pα

n ≲

∫
{x∈Q: | f (x)|p>s/c)}

Φp

(
| f (x)|p

s

)
dx,

which, combined with the Minkowski inequality and the change of variables t = | f (x)|
s1/p ,(

1
|Q|λ

∫
Q

[Mα,Φ f (x)]q dx
) 1

q

=

(
1
|Q|λ

∫
Q

[Mpα,Φp (| f |p)(x)]q/p dx
) 1

q



Y. Zhu, X. Fu / Filomat 38:10 (2024), 3313–3328 3321

=

(
1
|Q|λ

∫
∞

0
sq/p

∣∣∣{x ∈ Q : Mpα,Φp (| f |p)(x) > s}
∣∣∣ ds

s

) 1
q

≲

 1
|Q|λ

∫
∞

0
sq/p

[∫
{x∈Q: | f (x)|p>s/c}

Φp

(
| f (x)|p

s

)
dx

]q/p ds
s


1
q

≲

 1
|Q|λ

∫
Q

∫ c| f (x)|p

0

{
Φ

(
| f (x)|
s1/p

)}q/p

sq/p ds
s

p/q

dx


1
p

≲

 1
|Q|λ

∫
Q

[∫
∞

0
[Φ(t)]q/p

(
| f (x)|

t

)q dt
t

]p/q

dx


1
p

∼

(∫
∞

0

[Φ(t)]q/p

tq
dt
t

) 1
q
(

1
|Q|λ

∫
Q
| f (x)|p

) 1
p

.

Take the supremum over all cubes Q in Rn on both sides of the above inequality. We finish the proof of
Lemma 2.5.

Remark 2.6. When λ = 0, Lemma 2.5 returns to [8, Theorem 3.3].

The following conclusion is taken from [10, Theorem 3.1].

Lemma 2.7. Assume that p ∈ (1,∞), A, B and C are Young functions which satisfy

B−1(t)C−1(t) ≤ A−1(t), ∀ t ∈ (0,∞), and C ∈ Bp is doubling. (2.3)

If the weight u satisfies

sup
Q cube

(
1
|Q|

∫
Q

u(x) dx
) 1

p

∥u−
1
p ∥B,Q < ∞,

then, there is a positive constant C̃ such that∥∥∥MA( f )
∥∥∥

Lp
u(Rn)

≤ C̃
∥∥∥ f

∥∥∥
Lp

u(Rn)
, ∀ f ∈ Lp

u(Rn). (2.4)

In particular, MA is bounded on Lp(Rn).
As an easy consequence of Lemma 2.7, we have the following conclusion.

Corollary 2.8. Let p ∈ (1,∞) ,λ ∈ (0, 1) and A be a Young function. Then there exists a positive constant C̃ such
that, for any f ∈ Xp,λ(Rn),∥∥∥MA( f )

∥∥∥
Xp,λ(Rn)

≤ C̃
∥∥∥ f

∥∥∥
Xp,λ(Rn)

.

Proof. By [2, Theorem 5.5], we know that Xp,λ(Rn) is equivalent to

Hp,λ(Rn) =

 f ∈ Lp(Rn), ∥ f ∥Hp,λ(Rn) := inf
w

[∫
Rn
| f (x)|p[w(x)]1−p dy

] 1
p

< ∞

 ,
where the infimum is taken over all weights w ∈ A1(Rn) such that∫

Rn
w(x) dΛλn(x) =

∫
∞

0
Λλn ({x ∈ Rn : w(x) > t}) dt ≤ 1.

From this, (2.4) with u = w1−p, B(t) = tp′ for any t ∈ (0,∞), and C(t) satisfying (2.3), we deduce that∥∥∥MA( f )
∥∥∥

Xp,λ(Rn)
∼

∥∥∥MA( f )
∥∥∥

Hp,λ(Rn)
≲

∥∥∥ f
∥∥∥

Hp,λ(Rn)
∼

∥∥∥ f
∥∥∥

Xp,λ(Rn)
,

as desired.
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3. Proofs of Theorems 1.12 and 1.13

In this section, we aim to prove Theorems 1.12 and 1.13. First, we show Theorem 1.12.

Proof. [Proof of Theorem 1.12] (i) By Lemma 2.1, it suffices to show that, for any j ∈ {1, . . . , 3n
},∥∥∥∥Ib,m

S j,α
( fσ)

∥∥∥∥
Lq,λ(u,u)

+
∥∥∥∥(Ib,m

S j,α
)∗( fσ)

∥∥∥∥
Lq,λ(u,u)

≲ ∥ f ∥Lp,λp/q(σ,u).

We first show that, for any general dyadic latticeD and j ∈ {1, . . . , 3n
},

sup
R∈D

1
[u(R)]λ/q

∥∥∥∥Ib,m
S j,α

( fσ)χR

∥∥∥∥
Lq

u(Rn)
≲ c(u,σ)∥b∥mBMOσ(Rn)∥ f ∥Lp,λp/q(σ,u). (3.1)

Fix an R ∈ D. By duality (Lq′
u (Rn))∗ = Lq

u(Rn), we have

1
[u(R)]λ/q

∥∥∥∥Ib,m
S j,α

( fσ)χR

∥∥∥∥
Lq

u(Rn)
(3.2)

= sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∣∣∣∣∣∫
Rn
I

b,m
S j,α

( fσ)(x)1(x)u(x)χR(x) dx
∣∣∣∣∣

= sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∫
Rn

sup
Q∈S j

|Q|α/n−1
∫

Q
|b(y) − bQ|

m
| f (y)|σ(y) dy

× χQ(x)χR(x)|1(x)|u(x) dx

≤ sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∫
Rn

∑
Q∈S j

|Q|α/n−1
∫

Q
|b(y) − bQ|

m
| f (y)|σ(y) dy

× χQ(x)χR(x)|1(x)|u(x) dx

≤ sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

|Q|α/n−1
∫

Q
|b(y) − bQ|

m
| f (y)|σ(y) dy

∫
Q∩R
|1(x)|u(x) dx

+ sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∑
Q∈S j,R⊂Q

...

=: I1 + I2.

Choose r ∈ (1, p). From the Hölder inequality, the facts that, for any measurable function 1 on Rn and
u ∈ A∞,

1
u(Q)

∫
Q
|1(y)|u(y) dy ≤ inf

Q∋x
Mu(1)(x),

where the weighted maximal function Mu(1) for any suitable function 1 is defined by

Mu(1)(x) := sup
Q∋x

1
u(Q)

∫
Q
|1(y)|u(y) dy

with the supremum taking over all cubes Q ⊂ Rn,

u(Q) ≲ u(E(Q))

and (1.2), it follows that

I1 ≤ sup
∥1∥

L
q′
u (Rn)

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

|Q|α/n−1

[∫
Q
|b(y) − bQ|

mr′σ(y) dy
]1/r′
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×

[∫
Q
| f (y)|rχR(y)σ(y) dy

]1/r

u(Q) inf
Q∋x

Mu(1)(x)

≲ sup
∥1∥

L
q′
u (Rn)

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

|Q|α/n−1
∥b∥mBMOσ(Rn)[σ(Q)]1/r′ [σ(Q)]1/r

[
inf
Q∋x

Mσ
(
| f |rχR

)
(x)

]1/r

× u(Q) inf
Q∋x

Mu(1)(x)

≲ c(u,σ)∥b∥mBMOσ(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

[σ(Q)]1/p
{

inf
Q∋x

[
Mσ

(
| f |rχR

)
(x)

]p/r
}1/p

× [u(Q)]1/q′ inf
Q∋x

Mu(1)(x)

≲ c(u,σ)∥b∥mBMOσ(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

[σ(E(Q))]1/p
{

inf
E(Q)∋x

[
Mσ

(
| f |rχR

)
(x)

]p/r
}1/p

× [u(E(Q))]1/q′ inf
E(Q)∋x

Mu(1)(x),

which, combined with p′ > q′ and the boundedness of Mu on Lp
u(Rn) (see, for example, [5, (3.6)]) for any

u ∈ A∞ and p ∈ (1,∞), further implies that

I1 ≲ c(u,σ)∥b∥mBMOσ(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q


∑

Q∈S j,Q⊂R

σ(E(Q)) inf
E(Q)∋x

[
Mσ

(
| f |rχR

)
(x)

]p/r


1/p

×


∑

Q∈S j,Q⊂R

[u(E(Q))]p′/q′ inf
E(Q)∋x

[
Mu(1)(x)

]p′


1/p′

≲ c(u,σ)∥b∥mBMOσ(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q


∑

Q∈S j,Q⊂R

∫
E(Q)

[
Mσ

(
| f |rχR

)
(x)

]p/r σ(x) dx


1/p

×


∑

Q∈S j,Q⊂R

∫
E(Q)

[
Mu(1)(x)

]q′ u(x) dx


1/q′

≲ c(u,σ)∥b∥mBMOσ(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∥∥∥Mσ
(
| f |rχR

)∥∥∥1/r

Lp/r
σ (Rn)

∥∥∥Mu(1)
∥∥∥

Lq′
u (Rn)

≲ c(u,σ)∥b∥mBMOσ(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∥∥∥ fχR

∥∥∥
Lp
σ(Rn)
∥1∥Lq′

u (Rn)

≲ c(u,σ)∥b∥mBMOσ(Rn)∥ f ∥Lp,λp/q(σ,u).

As for I2, by (1.3), we know that

|Q|
α
n−1 ≲ c(u,σ)[u(Q)]−

1
q [σ(Q)]−

1
p′ , ∀Q ∈ D,

which, together with the Hölder inequality, (1.2) and a result used in the estimation of J2 in [20, Theorem
1.2] ∑

Q∈S j,R⊂Q

[
u(R)
u(Q)

](1−λ)/q

< ∞,
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implies that

I2 ≤ sup
∥1∥

L
q′
u (Rn)

=1

1
[u(R)]λ/q

∑
Q∈S j,R⊂Q

|Q|α/n−1

[∫
Q
|b(y) − bQ|

mp′σ(y) dy
]1/p′

×

[∫
Q
| f (y)|pσ(y) dy

]1/p [∫
R
|1(x)|q

′

u(x) dx
]1/q′

[u(R)]1/q

≲
1

[u(R)]λ/q
∑

Q∈S j,R⊂Q

|Q|α/n−1[σ(Q)]1/p′
∥b∥mBMOσ(Rn)[u(Q)]λ/q∥ f ∥Lp,λp/q(σ,u)[u(R)]1/q

≲c(u,σ)∥b∥mBMOσ(Rn)∥ f ∥Lp,λp/q(σ,u)

∑
Q∈S j,R⊂Q

[
u(R)
u(Q)

](1−λ)/q

≲c(u,σ)∥b∥mBMOσ(Rn)∥ f ∥Lp,λp/q(σ,u).

This, combined with (3.2) and the estimate of I2, implies (3.1).
Moreover, by the proof of [20, Theorem 1.1], we know that, for any cube R in Rn, there exist {Rk}

2n

k=1 ⊂ D

such that R ⊂
⋃2n

k=1 Rk and l(R) ≤ l(Rk) ≤ 2l(R) for any k ∈ {1, . . . , 2n
}. Then |R| ∼ |Rk| for any k ∈ {1, . . . , 2n

}.
From u ∈ A∞ and , it follows that u(R) ∼ u(Rk),∀k ∈ {1, ..., 2n

}, which shows that

1
[u(R)]λ/q

∥∥∥∥Ib,m
S j,α

( fσ)χQ

∥∥∥∥
Lq

u(Rn)
≲

2n∑
k=1

1
[u(Rk)]λ/q

∥∥∥∥Ib,m
S j,α

( fσ)χRk

∥∥∥∥
Lq

u(Rn)
.

Since {Rk}
2n

k=1 ⊂ D, by (3.1), we have

1
[u(R)]λ/q

∥∥∥∥Ib,m
S j,α

( fσ)χR

∥∥∥∥
Lq

u(Rn)
≲ c(u,σ)∥b∥mBMOσ(Rn)∥ f ∥Lp,λp/q(σ,u).

Taking the supremum over all cubes R in Rn in the above equation, we get

∥I
b,m
S j,α

( fσ)∥Lq,λ(u,u) ≲ c(u,σ)∥b∥mBMOσ(Rn)∥ f ∥Lp,λp/q(σ,u),

which proves (3.1).
Now we prove that, for any general dyadic latticeD and j ∈ {1, . . . , 3n

},

sup
R∈D

1
[u(R)]λ/q

∥∥∥∥(Ib,m
S j,α

)∗( fσ)χR

∥∥∥∥
Lq

u(Rn)
≲ c(u,σ)∥b∥mBMOu(Rn)∥ f ∥Lp,λp/q(σ,u). (3.3)

Similar to (3.2), we obtain

1
[u(R)]λ/q

∥∥∥∥(Ib,m
S j,α

)∗( fσ)χR

∥∥∥∥
Lq

u(Rn)

= sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∫
Rn

(Ib,m
S j,α

)∗( fσ)(x)1(x)u(x)χR(x) dx

= sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∫
Rn

sup
Q∈S j

|Q|α/n−1
|b(x) − bQ|

m
∫

Q
| f (y)σ(y)| dyχQ(x)χR(x)1(x)u(x) dx

≤ sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

|Q|α/n−1
∫

Q
| f (y)σ(y)| dy

∫
Q
|b(x) − bQ|

m1(x)u(x)χR(x) dx

+ sup
∥1∥

L
q′
u (Rn)

=1

1
[u(R)]λ/q

∑
Q∈S j,R⊂Q

...
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=: I3 + I4.

Choose r ∈ (q,∞). By some arguments similar to those used in the estimation of I1, we find that

I3 ≤ sup
∥1∥

L
q′
u (Rn)

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

|Q|α/n−1

[∫
Q
|b(y) − bQ|

mru(y) dy
]1/r

×

[∫
Q
|1(y)|r

′

χR(y)u(y) dy
]1/r′

σ(Q) inf
Q∋x

Mσ( fχR)(x)

≲ sup
∥1∥

L
q′
u (Rn)

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

|Q|α/n−1
∥b∥mBMOu(Rn)[u(Q)]1/r[u(Q)]1/r′

[
inf
Q∋x

Mσ

(
|1|r

′
)

(x)
]1/r′

× σ(Q) inf
Q∋x

Mσ( fχR)(x)

≲ c(u,σ)∥b∥mBMOu(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

[u(Q)]1/q′
{

inf
Q∋x

[
Mσ

(
|1|r

′
)

(x)
]q′/r′

}1/q′

× [σ(Q)]1/p inf
Q∋x

Mσ( fχR)(x)

≲ c(u,σ)∥b∥mBMOu(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∑
Q∈S j,Q⊂R

[u(E(Q))]1/q′
{

inf
E(Q)∋x

[
Mu

(
|1|r

′
)

(x)
]q′/r′

}1/q′

× [σ(E(Q))]1/p inf
E(Q)∋x

Mσ( fχR)(x)

and hence

I3 ≲ c(u,σ)∥b∥mBMOu(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q


∑

Q∈S j,Q⊂R

[u(E(Q))]p′/q′ inf
E(Q)∋x

[
Mu

(
|1|r

′
)

(x)
]p′/r′


1/p′

×


∑

Q∈S j,Q⊂R

σ(E(Q)) inf
E(Q)∋x

[
Mσ( fχR)(x)

]p


1/p

≲ c(u,σ)∥b∥mBMOu(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q


∑

Q∈S j,Q⊂R

∫
E(Q)

[
Mu

(
|1|r

′
)

(x)
]q′/r′

u(x) dx


1/q′

×


∑

Q∈S j,Q⊂R

∫
E(Q)

[
Mσ( fχR)(x)

]p σ(x) dx


1/p

≲ c(u,σ)∥b∥mBMOu(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∥∥∥∥Mu

(
|1|r

′
)∥∥∥∥1/r′

Lq′/r′
u (Rn)

∥∥∥Mσ( fχR)
∥∥∥

Lp
σ(Rn)

≲ c(u,σ)∥b∥mBMOu(Rn) sup
∥1∥

L
q′
u (Rn )

=1

1
[u(R)]λ/q

∥∥∥ fχR

∥∥∥
Lp
σ(Rn)
∥1∥Lq′

u (Rn)

≲ c(u,σ)∥b∥mBMOu(Rn)∥ f ∥Lp,λp/q(σ,u).

Moreover, from the same arguments as those used in the estimation of I2, it follows that

I4 = sup
∥1∥

L
q′
u (Rn)

=1

1
[u(R)]λ/q

∑
Q∈S j,R⊂Q

|Q|α/n−1
∫

Q
| f (y)|σ(y) dy

∫
R
|b(x) − bQ|

m1(x)u(x) dx
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≤ sup
∥1∥

L
q′
u (Rn)

=1

1
[u(R)]λ/q

∑
Q∈S j,R⊂Q

|Q|α/n−1
∫

Q
| f (y)|pσ(y) dx[σ(Q)]1/p′

×

[∫
R
|b(x) − bQ|

mqu(x) dx
]1/q [∫

R
|1(x)|q

′

u(x) dx
]1/q′

≲c(u,σ)
1

[u(R)]λ/q
∑

Q∈S j,R⊂Q

[u(Q)]−1/q[u(Q)]λ/q∥ f ∥Lp,λp/q(σ,u)∥b∥
m
BMOu(Rn)[u(R)]1/q

≲c(u,σ)∥b∥mBMOσ(Rn)∥ f ∥Lp,λp/q(σ,u)

∑
Q∈S j,R⊂Q

[
u(R)
u(Q)

](1−λ)/q

≲c(u,σ)∥b∥mBMOσ(Rn)∥ f ∥Lp,λp/q(σ,u),

which, combined with the estimate of I4 and the final arguments used in the proof of (3.1), completes the
proof of (3.3) and hence of Theorem 1.12.

Then we begin to prove Theorem 1.13.

Proof. [Proof of Theorem 1.13] The conclusion (ii) is essentially proved in [31, Theorem 1.1(2)], we omit the
details here.

To prove (i), by Lemma 2.1, it suffices to show that, for any j ∈ {1, . . . , 3n
},∥∥∥∥Ib,m

S j,α
( f )

∥∥∥∥
Lq,λ(u)

+
∥∥∥∥(Ib,m

S j,α
)∗( f )

∥∥∥∥
Lq,λ(u)

≲ ∥ f ∥Lp,λ(σ).

We now prove that, for any j ∈ {1, . . . , 3n
},∥∥∥∥Ib,m

S j,α
( f )

∥∥∥∥
Lq,λ(u)

≲ ∥ f ∥Lp,λ(σ). (3.4)

Let β ∈ [0,n) satisfy 1/q = 1/p − β/n. By Theorem 2.3, (1.1), Lemma 2.5 and Corollary 2.8, we conclude that∥∥∥∥Ib,m
S j,α

( f )
∥∥∥∥

Lq,λ(u)

= sup
∥1∥

X
q′ ,λ
u (Rn )

≤1

∣∣∣∣∣∫
Rn
I

b,m
S j,α

f (x)1(x)u(x) dx
∣∣∣∣∣

≤ sup
∥1∥

X
q′ ,λ
u (Rn )

≤1

∑
Q∈S j

|Q|α/n−1
∫

Q
|b(y) − bQ|

m
| f (y)| dy

∫
Q
1(x)u(x) dx

≲ sup
∥1∥

X
q′ ,λ
u (Rn )

≤1

∑
Q∈S j

|Q|1+
α
n

∥∥∥ fσ1/p
∥∥∥

B∗,Q

∥∥∥(b − bQ)mσ−1/p
∥∥∥

B,Q

∥∥∥u1/q
∥∥∥

A,Q ∥1u
1/q′
∥A∗,Q

≲ C̃(u,σ,b) sup
∥1∥

X
q′ ,λ
u (Rn )

≤1

∑
Q∈S j

|Q|1+
β
n

∥∥∥ fσ1/p
∥∥∥

B∗,Q ∥1u
1/q′
∥A∗,Q,

which, together with Lemma 2.5 and Corollary 2.8, implies that∥∥∥∥Ib,m
S j,α

( f )
∥∥∥∥

Lq,λ(u)

≲ C̃(u,σ,b) sup
∥1∥

X
q′ ,λ
u (Rn )

≤1

∑
Q∈S j

|E(Q)||Q|
β
n

∥∥∥ fσ1/p
∥∥∥

B∗,Q ∥1u
1/q′
∥A∗,Q

≲ C̃(u,σ,b) sup
∥1∥

X
q′ ,λ
u (Rn )

≤1

∫
Rn

Mβ,B∗ ( fσ1/p)(x)MA∗ (1u1/q′ )(x) dx
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≲ C̃(u,σ,b) sup
∥1∥

X
q′ ,λ
u (Rn )

≤1

∥∥∥Mβ,B∗ ( fσ1/p)
∥∥∥

Lq,λ(Rn)

∥∥∥MA∗ (1u1/q′ )
∥∥∥

Xq′ ,λ(Rn)

≲ C̃(u,σ,b) sup
∥1∥

X
q′ ,λ
u (Rn )

≤1

∥∥∥ fσ1/p
∥∥∥

Lp,λ(Rn)

∥∥∥1u1/q′
∥∥∥

Xq′ ,λ(Rn)

∼ C̃(u,σ,b) sup
∥1∥

X
q′ ,λ
u (Rn )

≤1
∥ f ∥Lp,λ(σ)∥1∥Xq′ ,λ

u (Rn) ≲ C̃(u,σ,b)

∥∥∥ f
∥∥∥

Lp,λ(σ)
.

From some arguments similar to those used in the estimation of (3.4), we deduce that

∥(Ib,m
S j,α

)∗( f )∥Lq,λ(u) ≲ ∥ f ∥Lp,λ(σ),

which shows (i) and the desired result.
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[21] C. Pérez, On sufficient conditions for the boundedness of the Hardy-Littlewood maximal operator between weighted Lp-spaces

with different weights, Proc. Lond. Math. Soc. 71 (1995), 135-157.
[22] M. M. Rao and Z. D. Ren, Theory of Orlicz Spaces, Marcel Dekker, New York (1991).
[23] Y. Sawano, Singular integral operators acting on Orlicz-Morrey spaces of the first kind, Nonlinear Stud. 26 (2019), 895-910.
[24] Y. Sawano, Sparse non-smooth atomic decomposition of Morrey spaces, Math. Methods Appl. Sci. 43 (2020), 9320-9326.
[25] Y. Sawano, G. Di Fazio and D. I. Hakim, Morrey Spaces: Introduction and Applications to Integral Operators and PDEs, Volume

I & II (1st ed.), Chapman and Hall/CRC, (2020).



Y. Zhu, X. Fu / Filomat 38:10 (2024), 3313–3328 3328

[26] Y. Sawano, S. Sugano and H. Tanaka, Orlicz-Morrey spaces and fractional operators, Potential Anal. 36 (2012), 517-556.
[27] E. T. Sawyer, A two weight weak type inequality for fractional integrals, Trans. Amer. Math. Soc. 281 (1984), 339-345.
[28] E. T. Sawyer, A characterization of two weight norm inequalities for fractional and Poisson integrals, Trans. Amer. Math. Soc.

308 (1988), 533-545.
[29] E. M. Stein, Singular Integrals and Differentiability Properties of Functions, Princeton University Press, 1970.
[30] Z. Wang, H. Wu and Q. Xue, Borderline weighted estimates for commutators of fractional integrals, Anal. Theory Appl. 37 (2021),

404-425.
[31] Y. Wen and H. Wu, Bump conditions and two-weight inequalities for commutators of fractional integrals, Colloq. Math. 171

(2023), 251-268.


