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Abstract. In this article, Hermite-Hadamard type inequalities for (h,m)−convex and s−convex functions
are established by using tempered fractional integral operators. Also, some integral inequalities related to
the right and left sides of the Hermite-Hadamard inequality via tempered fractional integrals are proved.

1. Introduction

The theory of convexity plays a vital role in different fields of pure and applied sciences. Consequently,
the classical concepts of convex sets and convex functions have been generalized in different directions. The
concept of function is one of the basic structures of mathematics, and many researchers have focused on new
function classes and made efforts to classify the space of functions. One of the types of functions defined as
a product of this intense effort is the convex function, which has applications in statistics, inequality theory,
convex programming, and numerical analysis. This interesting class of functions is defined as follows:
Definition 1.1. [2] LetH be an interval in R. Then f H → R, ∅ , H ⊆ R is said to be convex if

f (ξa + (1 − ξ) b) ≤ ξ f (a) + (1 − ξ) f (b)

for all a, b ∈ H and ξ ∈ [0, 1] .
Several research papers have been performed related to convexity and related topics in the literature,

see the papers [1-5, 15].
Another aspect due to which the convexity theory has attracted many researchers is its close relation with

theory of inequalities. Many famous inequalities can be obtained using the concept of convex functions.
For more information related to integral inequalities, interested readers are referred to [12-19].

Among the other classical inequalities, Hermite–Hadamard’s inequality, which provides us upper and
lower bound fort he mean-value of a convex function, is one of the most studied inequality in the literature.

Let f : I ⊆ R → R be a convex mapping defined on the interval I of real numbers and a, b ∈ I with
a < b. The following double inequalities:

f
(

a + b
2

)
≤

1
b − a

∫ b

a
f (x)dx ≤

f (a) + f (b)
2
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hold. This double inequality is known in the literature as the Hermite-Hadamard inequality for convex
functions.
Definition 1.2. [20] LetH be an interval in R. Then f : H → R, ∅ , H ⊆ R is said to be s−convex in the
second sense if the following inequality

f (ξa + (1 − ξ) b) ≤ ξs f (a) + (1 − ξ)s f (b)

holds for all a, b ∈ H and ξ ∈ [0, 1] , s ∈ (0, 1].
Definition 1.3. [13] Let h : (0, 1) ⊆ J → R be a non-negative function. A function f : [0, b] → R is called
(h,m)−convex function if f is non-negative and

f
(
ξx +m (1 − ξ) y

)
≤ h(ξ) f (x) +mh(1 − ξ) f (y)

holds for all x, y ∈ [0, b], ξ ∈ (0, 1) and for some fixed m ∈ (0, 1].
Some new integral inequalities involving two nonnegative and integrable functions that are related to

the Hermite-Hadamard type are obtained by many researchers. In [6], Pachpatte proposed some Hermite-
Hadamard type inequalities involving two lo1−convex functions. An analogous result for s−convex func-
tions is established by Kırmacı et al. in [8]. In [10], Sarıkaya presented some integral inequalities for
h−convex functions. For recent results and generalizations concerning Hermite-Hadamard type inequal-
ities for product of two functions, we can refer the paper [18] and the references given therein. It is
remarkable that Sarıkaya et al. proved the following interesting inequalities of Hermite-Hadamard type
involving Riemann-Liouville fractional integrals [17].
Theorem 1.1. [17]. Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b]. If f is a convex
function on [a, b] , then the following inequalities for fractional integrals hold:

f
(

a + b
2

)
≤
Γ (α+1)
2(b−a)α

[
Jαa+ f (b)+Jαb− f (a)

]
≤

f (a)+ f (b)
2

(1)

with α > 0.
Theorem 1.2. [19] Let α ≥ 1 and f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b]. If
f is s−convex function on [a, b], then the following inequality for fractional integrals hold:

2s−1 f
(

a + b
2

)
≤
Γ (α + 1)
2(b − a)α

[
Jαa+ f (b) + Jαb− f (a)

]
≤

f (a) + f (b)
2

[ 1
α + s

+
2
α + s

(
1 −

1
2α+s

)]
Theorem 1.3. [16] Let f : [a, b] → R be a positive function with 0 ≤ a < b and f ∈ L1[a, b]. If f is a convex
function on [a, b] , then the following inequalities for fractional integrals hold:

f
(

a + b
2

)
≤

2α−1 Γ (α + 1)
(b − a)α

[
Jα
( a+b

2 )+
f (b) + Jα

( a+b
2 )−

f (a)
]
≤

f (a) + f (b)
2

Mathematics uses a variety of tools and methods in the quest to explain physical phenomena of nature
and life. Since many phenomena related to nature and life have a dynamic process, the methods put
forward with the help of classical analysis are insufficient due to some limitations and disadvantages. One
of the most effective methods for explaining, discussing and developing dynamic processes is fractional
analysis, whose origins go back as far as classical analysis. It has succeeded in bringing a new momentum
not only to mathematics but also to many disciplines with effective applications (see [21-26]). Fractional
analysis is a field that tries to achieve this movement by introducing new fractional derivative and integral
operators. In particular, researchers who argue that real world problems cannot be explained only by
power laws have introduced fractional derivative and integral operators, which include the exponential
function and its generalized versions in their kernels. These new operators differ in their kernel structures,
such as singularity, locality and general form. In this context, we will continue by introducing two integral
operators that have an important place in fractional analysis. Among the operators defined here, especially
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the tempered fractional integral operator is a useful operator that has attracted the attention of many
researchers due to the advantages it offers in applications.
Definition 1.4. [11] Let f ∈ L1[a, b]. The Riemann Liouville integrals Iαa+ f and Iαb− f of order α > 0 with
a ≥ 0 are defined by

Iαa+ f (x) =
1
Γ (α)

∫ x

a
f (ξ) (x − ξ)α−1dξ, x > a (2)

and

Iαb− f (x) =
1
Γ (α)

∫ b

x
f (ξ) (ξ − x)α−1dξ, b > x (3)

The tempered fractional integral was first studied by Buschman [5], but Li et al. [9] and Meerschaert et
al. [10] have described the associated tempered fractional calculus more explicitly as following:
Definition 1.5. [5,7,10] Let [a, b] be a real interval and ζ ≥ 0, α > 0. Then, for a function f ∈ L1[a, b], the
left and right tempered fractional integral, respectively, defined by

τ
(c)+ I

α,ζ

b
f (b) =

1
Γ(α)

∫ x

c
(x − ξ)α−1e−ζ(x−ξ) f (t) dξ (4)

and

τ
(x)− I

α,ζ

a
f (a) =

1
Γ(α)

∫ b

x
(ξ − x)α−1e−ζ(ξ−x) f (ξ) dξ (5)

where Γ(α) is the gamma function.
Remark 1.1. If we take ζ = 0 in the Equations (4) and (5), then we have the left and right RL operators (2)
and (3) respectively.
Definition 1.6. [12] For the real numbers, α > 0 and x, ζ ≥ 0, we define the ζ−Incomplete gamma function
by

Iα (α , b) =
1
Γ(α)

∫ b

0
xα−1e−ζtdx

If ζ = 1, it reduces to the incomplete gamma function.

I (α , b) =
1
Γ(α)

∫ b

0
xα−1e−xdx, α > 0

Remark 1.2. For the reel numbers α > 0 and x, ζ ≥ 0, we have

1. Iζ(b−a) (α, 1) =
∫ 1

0 xα−1e−ζ(b−a)xdx = 1
(b−a)α Iα (α , b − a)

2.
∫ 1

0 Iα(b−a) (α, x) dx = Iα(α ,b−a)
(b−a)α −

Iα(α+1 ,b−a)
(b−a)α+1

2. Hermite-Hadamard Type Inequalities for Tempered Fractional Integral Operators

Now, we are in a position to establish some generalized inequalities of Hermite-Hadamard type involv-
ing tempered fractional integrals for (h,m)−convex and s−convex functions in the second sense.
Theorem 2.1. Let f : (0,∞) → R be (h,m)−convex function where 0 < a < b < ∞ such that f ∈ L1[a, b].
Then, we have the following inequality for tempered fractional integral operators

1
h (1/2)

f
(

a + b
2

)
≤

2αΓ (α)
Iα (α,mb − a) (mb − a)α

[
τ

( a+mb
2 )+

Iα,ζ
b

f (mb) +mατ
( a+mb

2 )−
Iα,ζ

a
f
( a

m

)]
(6)

≤
f (a) + f (b)

Iα (α,mb − a)
φ +

[
f
(

a
m

)
+ f ( b

m )
]

Iα (α,mb − a)
ω.
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with ζ ≥ 0, α > 0 and m ∈ (0, 1) where φ=
∫ 1

0
ξα−1

eζ
ξ
2 (b−a)

h
(
ξ
2

)
dξ and ω =

∫ 1

0
ξα−1

eζ
ξ
2 (mb−a)

h
(

2−ξ
2

)
dξ.

Proof Since f is (h,m)−convex function on [a, b], for ξ ∈ [0, 1] with setting ξ = 1
2 , we can write

f
(x +my

2

)
≤ h

(1
2

) [
f (x) + f

(
y
)]
. (7)

By changing of the variables such as x = ξ2 a +m
(

2−ξ
2

)
b and y =

(
2−ξ

2

)
a
m +

ξ
2 b, then we get

1
h (1/2)

f
(

a + b
2

)
≤ f

(
ξ
2

a +m
(2 − ξ

2

)
b
)
+ f

((2 − ξ
2

) a
m
+
ξ
2

b
)
. (8)

Multiplying both sides of (8) by ξα−1

eζ
ξ
2 (mb−a)

, then integrating the resulting inequality with respect to ξ over

[0, 1], we obtain

1
h (1/2)

f
(

a + b
2

) ∫ 1

0

ξα−1

eζ
ξ
2 (mb−a)

dξ ≤
∫ 1

0

ξα−1

eζ
ξ
2 (mb−a)

f
(
ξ
2

a +m
(2 − ξ

2

)
b
)

dξ +
∫ 1

0

ξα−1

eζ
ξ
2 (b−a)

f
((2 − ξ

2

) a
m
+
ξ
2

b
)

dξ.

As consequence, we provide

1
h (1/2)

f
(

a + b
2

)
Iα (α,mb − a)

≤
2α

(mb − a)α

∫ mb

a+mb
2

(mb − x)α−1eζ (mb−x) f (x ) dx +
2αmα

(mb − a)α

∫ a+mb
2

a/m
(x − a)α−1eζ (x−a) f (x ) dx

and the first inequality is proved.
For the proof of the second ineqaulity in (6), we first note that if f is (h,m)−convex function, then for
ξ ∈ [0, 1], we can write

f
(
ξ
2

a +m
(2 − ξ

2

)
b
)
≤ h

(
ξ
2

)
f (a) +mh

(2 − ξ
2

)
f
(

b
m

)
and

f
((2 − ξ

2

) a
m
+
ξ
2

b
)
≤ mh

(2 − ξ
2

)
f
( a

m

)
+ h

(
ξ
2

)
f (b) .

By adding the above inequalities, we have

f
(
ξ
2

a +m
(2 − ξ

2

)
b
)
+ f

((2 − ξ
2

) a
m
+
ξ
2

b
)
≤

[
f (a) + f (b)

]
h
(
ξ
2

)
+

[
f
( a

m

)
+ f

(
b
m

)]
h
(2 − ξ

2

)
. (9)

Multiplying both sides of (9) by ξα−1

eζ
ξ
2 (b−a)

, then integrating the resulting inequality with respect to ξ over [0, 1],

we obtain ∫ 1

0

ξα−1

eζ
ξ
2 (mb−a)

f
(
ξ
2

a +m
(2 − ξ

2

)
b

)
dξ +

∫ 1

0

ξα−1

eζ
ξ
2 (b−a)

f
((2 − ξ

2

) a
m
+
ξ
2

b
)

dξ

≤
[

f (a) + f (b)
]
φ+

[
f
( a

m

)
+ f

(
b
m

)]
ω

where φ=
∫ 1

0
ξα−1

eζ
ξ
2 (b−a)

h
(
ξ
2

)
dξ and ω =

∫ 1

0
ξα−1

eζ
ξ
2 (mb−a)

h
(

2−ξ
2

)
dξ.

The proof is completed.
Remark 2.1. Inequalities (6) become the inequalities (1) by choosing ζ = 0 , α = m = 1 and h (ξ)=ξ.



E. Gül, A. Yalçin / Filomat 38:10 (2024), 3683–3690 3687

Theorem 2.2. Let f : [a, b] → R+ be s−convex function in the second sense on [a, b] with a < b such that
f ∈ L1[a, b]. Then, we have the following inequality for tempered fractional integral operators

f
(

a + b
2

)
≤

Γ(α)
2sIα (α,mb − a) (b − a)α

[
τ

( a+b
2 )+

Iα,2ζ
b

f (b) + τ
( a+b

2 )−
Iα,2ζ

a
f (a)

]
≤

f (a) + f (b)
2s (µ + η) (10)

with ζ ≥ 0, α > 0, s ∈ [0, 1] where µ=
∫ 1

0
ξα−1

eζ ξ(b−a) ξ
sdξ and η =

∫ 1

0
ξα−1

eζ ξ(b−a) (1 − ξ)
sdξ.

Proof: Since f is a s−convex function in the second sense on [a, b], for ξ ∈ [0, 1] with take ξ = 1
2 , we have

f
(x + y

2

)
≤

f (x) + f
(
y
)

2s .

By changing of the variables as x = ξa + (1 − ξ)b and y = (1 − ξ)b + ξa, we get

2s f
(

a + b
2

)
≤ f (ξa + (1 − ξ) b ) + f ((1 − ξ) b + ξa) . (11)

Multiplying both sides of (11) by ξα−1

eζ ξ(b−a) , then integrating the resulting inequality with respect to ξ over
[0, 1], we obtain

2s f
(

a + b
2

) ∫ 1

0

ξα−1

eζ ξ(b−a)
dξ ≤

∫ 1

0

ξα−1

eζ ξ(b−a)
f (ξa + (1 − ξ)b ) dξ +

∫ 1

0

ξα−1

eζ ξ(b−a)
f ((1 − ξ)b + ξa) dξ.

As consequence, we obtain

2s f
(

a + b
2

)
Iα (α, b − a) ≤

Γ(α)
2 (b − a)α

∫ b

a
(b − x)α−1eζ (b−x) f (x ) dx +

Γ(α)
2 (b − a)α

∫ b

a
(x − a)α−1eζ (x−a) f (x ) dx

and the first inequality is proved.
For the proof of the second ineqaulity in (10), we first note that if f is s−convex function, then for ξ ∈ [0, 1]

f (ξa + (1 − ξ)b ) ≤ ξs f (a) + (1 − ξ)s f (b)

and

f ((1 − ξ)b + ξa) ≤ ξs f (b) + (1 − ξ)s f (a) .

By addition, we have

f (ξa + (1 − ξ)b ) + f ((1 − ξ)b + ξa) ≤
[

f (a) + f (b)
] [
ξs + (1 − ξ)s] . (12)

Multiplying both sides of (12) by ξα−1

eζ ξ(b−a) , then integrating the resulting inequality with respect to ξ over
[0, 1], we obtain∫ 1

0

ξα−1

eζ ξ(b−a)
f (ξa + (1 − ξ)b ) dξ +

∫ 1

0

ξα−1

eζ
ξ
2 (b−a)

f ((1 − ξ)b + ξa) dξ ≤
[

f (a) + f (b)
]

(µ + η)

where µ=
∫ 1

0
ξα−1

eζ ξ(b−a) ξ
sdξ and η =

∫ 1

0
ξα−1

eζ ξ(b−a) (1 − ξ)
sdξ.

The proof is completed.
Remark 2.1. Inequalities (10) become the inequalities (1) by choosing ζ = 0, s = 1 and α = 1.
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3. New Findings via Tempered Fractional Integrals

In this section, we give an identity which use to assist us for proving our results as follows:
Lemma 3.1 Let f : [a, b]→ R is a twice differentiable function such that f ′′ ∈ L1[a, b]. Then, we have

2α−1Γ(α)
(b − a)α

[
τ

( a+b
2 )+

I(α,2ζ)

b
f (b) + τ

( a+b
2 )−

I(α,2ζ)

a
f (a)

]
− Iζ(b−a) (α, 1) f

(
a + b

2

)
=

(b − a)2

8

∫ 1

0

[
ξ.Iζ(b−a) (α, ξ) − Iζ(b−a) (α + 1, ξ)

]
×

[
f ′′

(
ξ
2

a +
2 − ξ

2
b
)
+ f ′′

(
ξ
2

b +
2 − ξ

2
a
)]

dξ

with ζ ≥ 0, α > 0, ξ ∈ [0, 1].
Proof. By making the use of integrating by parts for right hand side of the equality and Remark 1.2 (a), we
obtain

l1 =
2

a − b

[
Iζ(b−a) (α, 1) − Iζ(b−a) (α + 1, 1)

]
f ′

(
a + b

2

)
+

2
b − a

∫ 1

0

ξα−1

eζ(b−a)ξ
f ′

(
ξ
2

a +
2 − ξ

2
b
)

dξ.

Thus, we get

l1 =
2

a − b

[
Iζ(b−a) (α, 1) − Iζ(b−a) (α + 1, 1)

]
f ′

(
a + b

2

)
+

2
b − a

Iζ(b−a) (α, 1) f
(

a + b
2

)
2

a − b
+

2α+1Γ(α)

(b − a)1+α

∫ b

a+b
2

(b − x)α−1e−2ζ(b−x) f ′ (x) dx


Finally, it is easy to obtain

l1 =
2

a − b

[
Iζ(b−a) (α, 1) − Iζ(b−a) (α + 1, 1)

]
f ′

(
a + b

2

)
−

4

(b − a)2 Iζ(b−a) (α, 1) f
(

a + b
2

)
+

2α+2Γ(α)

(b − a)2+α
τ

( a+b
2 )+

I(α,2ζ)

b
f (b)

Similarly, we get

l2 =

∫ 1

0

(
ξ.Iζ(b−a) (α, ξ) − Iζ(b−a) (α + 1, ξ)

)
f ′′

(
ξ
2

b +
2 − ξ

2
a
)

dξ

=
2

b − a

[
Iζ(b−a) (α, 1) − Iζ(b−a) (α + 1, 1)

]
f ′

(
a + b

2

)
−

4

(b − a)2 Iζ(b−a) (α, 1) f
(

a + b
2

)
+

2α+2Γ(α)

(b − a)2+α
τ

( a+b
2 )−

I(α,2ζ)

a
f (a)

Finally, by adding l1 and l2 and multiplying each side of the resulting identity by (b−a)2

8 , we get the desired
result.
Theorem 3.1. Let f : [a, b]→ R+ be a differentiable mapping on [a, b] with a < b and f ′′ ∈ L1[a, b] . If

∣∣∣ f ′′∣∣∣ is
s−convex function in the second sense, then the following inequality for tempered fractional integral∣∣∣∣∣∣2α−1Γ(α)

(b − a)α

[
τ

( a+b
2 )+

I(α,2ζ)

b
f (b) + τ

( a+b
2 )−

I(α,2ζ)

a
f (a)

]
− Iζ(b−a) (α, 1) f

(
a + b

2

)∣∣∣∣∣∣ ≤ (b − a)2

2s+3

[∣∣∣ f ′′ (a )
∣∣∣ + ∣∣∣ f ′′ (b )

∣∣∣] (τ + ς)

holds for ζ ≥ 0, α > 0, s ∈ [0, 1] where τ =
∫ 1

0
ξα−1

eζ(b−a)ξ (2 − ξ)sdξ and ς =
∫ 1

0
ξα−1

eζ(b−a)ξ (ξ)sdξ.
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Proof. From Lemma 3.1 and using s−convexity of
∣∣∣ f ′′∣∣∣, we obtain∣∣∣∣∣∣2α−1Γ (α)

(b − a)α

[
τ

( a+b
2 )+

I(α,2ζ)

b
f (b) + τ

( a+b
2 )−

I(α,2ζ)

a
f (a)

]
− Iζ(b−a) (α, 1) f

(
a + b

2

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ (b − a)2

8

∫ 1

0

[
ξ.Iζ(b−a) (α, ξ) − Iζ(b−a) (α + 1, ξ)

]
×

[
f ′′

(
ξ
2

a +
2 − ξ

2
b
)
+ f ′′

(
ξ
2

b +
2 − ξ

2
a
)]

dξ

∣∣∣∣∣∣
≤

(b − a)2

8

∫ 1

0

[
ξ.Iζ(b−a) (α, ξ) − Iζ(b−a) (α + 1, ξ)

]
×

[(∣∣∣ f ′′ (a )
∣∣∣ + ∣∣∣ f ′′ (b )

∣∣∣) [(2 − ξ
2

)s

+
(
ξ
2

)s]]
dξ

By calculating the above integrals, we have the desired result. This completes the proof.
Theorem 3.2. Let f : (0,∞) → R be a twice differentiable mapping on [a, b] with 0 < a < b < ∞ and
f ′′ ∈ L1[a, b]. If

∣∣∣ f ′′∣∣∣ is (h,m)−convex function, then the following inequality for tempered fractional integral
holds: ∣∣∣∣∣∣2α−1Γ(α)

(b − a)α

[
τ

( a+b
2 )+

I(α,2ζ)

b
f (b) + τ

( a+b
2 )−

I(α,2ζ)

a
f (a)

]
− Iζ(b−a) (α, 1) f

(
a + b

2

)∣∣∣∣∣∣
≤

(b − a)2

8

[[∣∣∣ f ′′ (a )
∣∣∣ + ∣∣∣ f ′′ (b )

∣∣∣]φ+ [∣∣∣∣∣ f ′′ ( a
m

)∣∣∣∣∣ +
∣∣∣∣∣∣ f ′′

(
b
m

)∣∣∣∣∣∣
]
ω

]
with ζ ≥ 0, α > 0, m ∈ (0, 1) where φ=

∫ 1

0
ξα−1

eζ
ξ
2 (b−a)

h
(
ξ
2

)
dξ and ω =

∫ 1

0
ξα−1

eζ
ξ
2 (mb−a)

h
(

2−ξ
2

)
dξ.

Proof. From Lemma 3.1 and by using (h,m)−convexity of
∣∣∣ f ′′∣∣∣, we obtain∣∣∣∣∣∣2α−1Γ (α)

(b − a)α

[
τ

( a+b
2 )+

I(α,2ζ)

b
f (b) + τ

( a+b
2 )−

I(α,2ζ)

a
f (a)

]
− Iζ(b−a) (α, 1) f

(
a + b

2

)∣∣∣∣∣∣
≤

∣∣∣∣∣∣ (b − a)2

8

∫ 1

0

[
ξ.Iζ(b−a) (α, ξ) − Iζ(b−a) (α + 1, ξ)

]
×

[
f ′′

(
ξ
2

a +
2 − ξ

2
b
)
+ f ′′

(
ξ
2

b +
2 − ξ

2
a
)]

dξ

∣∣∣∣∣∣
≤

(b − a)2

8

∫ 1

0

[
ξ.Iζ(b−a) (α, ξ) − Iζ(b−a) (α + 1, ξ)

]
×

[[∣∣∣ f ′′ (a )
∣∣∣ + ∣∣∣ f ′′ (b )

∣∣∣] h
(
ξ
2

)]
dξ

+
(b − a)2

8

∫ 1

0

[
ξ.Iζ(b−a) (α, ξ) − Iζ(b−a) (α + 1, ξ)

]
×

[[∣∣∣∣∣ f ′′ ( a
m

)∣∣∣∣∣ +
∣∣∣∣∣∣ f ′′

(
b
m

)∣∣∣∣∣∣
]

h
(2 − ξ

2

)]
dξ

By taking into account the followings in the resulting inequality,φ=
∫ 1

0
ξα−1

eζ
ξ
2 (b−a)

h
(
ξ
2

)
dξ andω =

∫ 1

0
ξα−1

eζ
ξ
2 (mb−a)

h
(

2−ξ
2

)
dξ,

we obtain ∣∣∣∣∣∣2α−1Γ(α)
(b − a)α

[
τ

( a+b
2 )+

I(α,2ζ)

b
f (b) + τ

( a+b
2 )−

I(α,2ζ)

a
f (a)

]
− Iζ(b−a) (α, 1) f

(
a + b

2

)∣∣∣∣∣∣
≤

(b − a)2

8

[[∣∣∣ f ′′ (a )
∣∣∣ + ∣∣∣ f ′′ (b )

∣∣∣]φ+ [∣∣∣∣∣ f ′′ ( a
m

)∣∣∣∣∣ +
∣∣∣∣∣∣ f ′′

(
b
m

)∣∣∣∣∣∣
]
ω

]
This completes the proof.

4. Conclusion

In this paper, we have investigated some novel Hermite Hadamard-type inequalities in the context of
tempered fractional integrals in the light of the incomplete gamma function. Through our work, we have
tried to advance the theoretical foundations of fractional analysis, improve our understanding of convex
functions in the framework of fractional analysis, and inspire further study.
Integral inequalities form a very important branch of analysis and are combined with various types of
fractional integrals, but the main motivation of this study is to provide new integral inequalities involving
different types of convex functions via tempered fractional integrals.
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