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Some Milne’s rule type inequalities for convex functions with their
computational analysis on quantum calculus
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?Ministry of Education Key Laboratory for NSLSCS, School of Mathematical Sciences, Nanjing Normal University, Nanjing, China

Abstract. In this paper, we establish some new Milne’s type inequalities for the differentiable convex
functions in quantum calculus (g-calculus). We prove g-integral identity first and then we prove some new
Milne’s type inequalities for g-differentiable convex functions. These inequalities play an important role in
Open-Newton’s Cotes formulas. Furthermore, we give the computational analysis of these inequalities for
convex functions and prove that the bounds of this paper are better than the existing ones. Ultimately, we
provide some mathematical examples to show the validity of newly establish inequalities in g-calculus.

1. Introduction

A function f : [a,b] ¢ R — Ris said to be convex, if
f(A-Hb+ta)<A-t)f(b)+tf(a), Yabel&tel0,1].

The theory of convexity refers to the shape of the graph of a function and can be described as a function whose
graph lies below or on the line segment connecting any two points on the graph. Convexity offers several
advantages in mathematics and optimization problems. Convex functions are mathematically controllable
and have well-defined properties. These properties make it easier to analyze and understand the behavior
of the function. Convexity often provides validity in optimization problems, meaning that small changes in
the problem formulation or data do not significantly affect the optimal solution. This validity is valuable in
practical applications where uncertainties and variations exist. Convexity plays an important role in various
fields such as engineering, economics, statistics, machine learning, and operations research. Mathematical
inequalities are mathematical statements that compare two values or expressions, indicating their relative
sizes or relationships. They provide a way to express and analyze the differences or relationships between
quantities. The concept of inequalities has been a fundamental part of mathematics for a long time, with
records of their use dating back to ancient civilizations. However, the systematic study of inequalities
and their properties gained prominence in the 17th and 18th centuries. Mathematicians such as Pierre de
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Fermat, Isaac Newton, and Joseph Louis Lagrange made notable contributions to this field. Inequalities play
a crucial role in various areas of mathematics. They are extensively used in calculus, real analysis, number
theory, optimization, and functional analysis, among other branches. In calculus, inequalities are essential
for studying limits, continuity, and convergence. In optimization and mathematical modeling, they are
used to find the maximum or minimum values satisfying certain constraints. The field of inequalities was
comprehensively and systematically studied by Hardy, Littlewood, and Polya, and their findings were
compiled in the book ”“Inequalities”. In recent years, mathematical inequalities and their applications
have rapidly developed and had a considerable impact on various modern mathematical disciplines such
as information theory, game theory, integral operator theory, error analysis, and approximation theory.
Several well-known inequalities, such as Hermite-Hadamard, Simpson’s, Ostrowski, and Gruss, provide
bounds for quadrature rules. Several inequalities can be obtained directly from the applications of convex
functions, one of which is the Hermite-Hadamard inequality for convex functions.

b b
f(”;b)sﬁfﬂ fyax < LO2TO 1)

This inequality has several applications in various areas of mathematics, including analysis, optimization
theory, and economics. It provides a powerful tool for proving numerous other inequalities and has
implications for the study of convex functions. Due to its numerous applications, mathematicians began to
study it and produced new results. In [1, 2], the bounds of the trapezoidal and midpoint types inequalities
are produced by using differentiable convexity from (1), respectively. A new Bullen’s type inequality was
established in [3], by using inequality (1).

Milne’s rule type inequalities for classical and g-calculus were established by mathematicians named
Joseph P. Milne and Mourad E. H. Ismail respectively. Joseph P. Milne is known for his work in numerical
analysis and the development of approximation methods, while Mourad E. H. Ismail has made significant
contributions to the field of g-calculus, which is a generalization of classical calculus. These inequalities
have been extensively studied in classical calculus and have proven to be powerful tools in analyzing
functions. The aim of this study, is to explore and analyze some Milne’s rule type inequalities for convex
functions within the framework of (g-calculus). The main focus is to determining the optimal values,
defining bounds, and understanding the properties of these inequalities in g-calculus. This analysis will
not only deepen our understanding of how convex functions behave in g-calculus but also provide practical
tools for solving problems that involve convex functions within g-calculus. Milne’s inequality, which is
comparable to the Simpson’s inequality in terms of its applicability is the only inequality that provides
estimates of error bounds for Milne’s formula. Assume that f : [4,b] — R is four times differentiable
function on (a, b), and || |, then

b b- 3a+b b 3b 7 (b
: o= 52 (2) o () o (|« S sl

xe(a b)

(b—a)

In recent years, researchers have paid close attention to Milne’s inequality. In [4], authors introduced
fractional analogs of this inequality by utilizing the properties of convex functions, bounded functions,
bounded variation, and Lipschitz conditions. In [5], certain integral inequalities for the Milne’s formula
using local fractal integrals via generalized convexity property of functions were examined. In [6], the
authors investigated the fractional error bounds for Milne’s inequality associated with convex functions.

The g-Hermite-Hadamard type inequality is an extension of the classical Hermite-Hadamard inequality
in mathematical analysis. This inequality provides bounds on the convex functions based on their values
at the endpoints of an interval. The g-Hermite-Hadamard type inequality was derived from the notion
of g-calculus, which is the extensions of traditional calculus that deal with g-derivatives. The g-Hermite-
Hadamard type inequality is expressed as follows:

f(qla::) ffx) dox L @+fO) )+f(b) 3
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for g € (0,1). The fundamental reason to established this inequality (3), was discussed in [7].
The Hermite-Hadamard inequality can be shown in g-calculus in a number of ways, but Burmudo et al.
[8] provided the new version of Hermite-Hadamard inequality for g € (0, 1), which is as follows:

il _f@+af®)
f(1+q) ffx)bd C 1+q 4)
and
b 1 b b )
f(a; )Szw—a)[fa f@ ﬂdq“faf(x) %x]sw. 5

These inequalities has gained significant attention in recent years due to its various applications in fields
such as quantum physics, economics, and information theory. It provides a valuable tool for establishing
bounds on certain mathematical quantities and analyzing convex functions in a g-calculus. In [7, 9], authors
using the g-differentiable convexity throughout, to determine the bounds of the midpoint and trapezoidal
formulas in g-calculus from the inequality (3), respectively. The trapezoidal formula in g-calculus was
constructed using the inequality (4), and Budak used the same methods as in [10] to get the midpoint
bounds. Utilizing the inequality (5), some further bounds for midpoint and trapezoidal formulas in g-
calculus were established in [11]. In [12, 13], the authors proved new Hermite-Hadamard inequalities in
g-calculus for piecewise continous convex function, respectively. We demonstrate certain dual Simpson’s
type inequalities in g-calculus in response to modern research. We establish required inequalities for
g-differentiable convex functions within the framework of g-calculus by first proving a novel quantum
integral identity. The error bounds for the dual Simpson’s formula in quantum and classical calculus can be
determined with the use of these inequalities. One can consult to [14, 15], and sources referenced therein for
more contemporary inequalities of Simpson’s and Newton'’s type in g-calculus. For more detials, one can
consult [16-18] for more interesting inequalities. However, in the results demonstrated here, only the first
differentiability of the function is necessary, but previously calssical Milne’s type inequality (2) has been
proven, and we need a function that is four times differentiable. We only need the first differentiability of
functions to find the error bounds for Milne’s rule.

Inspired by the continuing studies, we establish Milne’s type inequalities using the convexity property
of the function in terms of g-calculus. We also show that the inequalities given here are an extension of some
existing ones and we give some numerical examples to show the validity of newly established inequalities.

The organization of the paper is as follows: The second Section provides an overview of convex functions
and g-calculus. The third Section presents our main results on Milne’s inequality with the help of g-identity.
In the fourth Section, we provide some numerical examples and graphical illustrations to validate our
results. Finally, we give some concluding remarks about this work and some future directions in Section 5.

2. Preliminaries of g-calculus

g-calculus, which focuses on a meaningful modification of integration and differentiation techniques
from a theoretical perspective, is a fundamental research topic in the field of mathematical analysis. The
g-derivative and integral operations were first carefully studied by Jackson. Jackson’s g-operators played
a pivotal role in the development of g-theory, which has tremendous applications in special functions,
modern mathematical analysis, physics, number theory, combinatorics, cryptography, etc. For more detials
see [20, 21]. To proceed further, let us recall the essentials of g-calculus.

Tariboon and Ntouyas [19] introduced the left or g,-derivative and integral concept in 2013. They
also discuss their properties, here we recall the definitions from their work. Throughout this Section, the
functions f and h are continuous f,h : [4,b] — R.

Definition 2.1. [19] The g,-derivative of f at x € (a, b] is defined by

fx) - fla+(x-a)q)
(x—a)(1-q)

qu (x) =
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If x = a, we define ;D f (a) = lim,,, ,D, f (x) if it exists and it is finite.

Definition 2.2. [19] The q,-integral is defined by

[ 10 ui=a-00-0Y ¢ @+ a-a),
a n=0

where x € [a,b].

In 2020, some new definitions of quantum derivative and integral using a different approach were
introduced by Bermudo et al. [8], namely right or g°-derivative and integral. They also discussed some
basic properties of the given operators, here we recall the following definitions from their work.

Definition 2.3. [8] The q"-derivative of f at x € (a,b) is defined by

f+x-bgq)-fx)
b-x(1-q

If x = b, we define "D, f (b) = lim,_,;, °D, f (x) if it exists and it is finite.

"Dy f (x) =

Definition 2.4. [8] The q"-integral is defined by

b (o]
[ rotie=e-0a-9 Y q' @ s -0,
x n=0

where x € [a,b].
Lemma 2.5. [19] We have the following equality for the functions f and h:

h(t) f(ta+ (1 —1t)b)
b-a

c

f h(t) Dyf (ta+ (1 —£)b) od,t = bia f Fta+(1=1)b) (Dh () odgt. (6)
0 0

0

Lemma 2.6. [8] We have the following equality for the functions f and h:

h(t) f(ta+ (1 -1)Db)[
b—a 0.

fo h(b) "D, f (ta + (1 — ) b) od,t = blTa fof(ta +(1=1Db) oDyh(t) odgt - 7)

3. Milne’s Type Inequalities

Here, we use quantum differentiable convex functions to demonstrate the main inequalities. For this,
first, we give the following quantum integral identity involving a quantum differentiable function. For the
sake of brevity, we use the following quantum number notation:

1—g" n-1
[n], = < _qq =Y 4 q9e0.
k=0

Lemma 3.1. If f : [a,b] — R be a g-differentiable function. If ¥qu(t) , ”TMqu(t) , %%qu (t) and "D, f (t) are
g-integrable on [a, b], and t € [0, 1], then the following equality holds:

3a+b a+b a+3b

B 3a+h 7 a+h i as3b b
(bia) [f f(x) 1 dqx+f3m f(X) 2dqx+fm f(x) 1 dqx+fa+3,,f(x) bd,,x)
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:b1"6” [h+Dh+L+1], ®
where,
1
L = f(qt—1)%”D,,f(ta+(1—t)(3”;b))dqt
0
1 2\ aw 3a+b +b
L = fo(qt+§) quf(t( ”4 ) (1—t)(” )) dt
1 5\ ww +b +3b
I = fo(qt_g) 4qu(t(“2 )+<1_t>(“4 ))dqt

1
L = fqthqf(t(az3b)+(1—t)b)dqt.
0

Proof. By the definition of g-integral and using Lemma 2.6, we have

1 3ath 3a+b
11=f0 (qt-1)% qu(m+(1—t)( ”; ))dqt

f(ta+(;:;)<3u7+b)) l " b4—qa flf(qta+(1 qf)(3a+b)) dgt

= —4qt

4 O q)iﬂ/”f(qﬁ(l f/)( ))l—b4_l)af(3a;b)

if(3”+b) o)

similarly,

e Ll (52 0o

MERL L [ )

b-a

5045 (Hb)]

(=) e (52 ()
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B 3<b8—a> [f(3azb)_f(a;b)]

a+b

16 z s 20 3a+b 8 a+b
=(b—ﬂ)2f3a4+b f(x) 2dqx_3(b—[1)f( 4 )+3(b—a)f( 2 ), (10)
1 5 w a+b a+3b
I3=f0(qt—§) qf(( ) (1—t)( - ))dqt
16 (T 8 _(a+b\ 20 _[{a+3b
:(b_a)2fn+2b f(x) 4 dqx+3(b_a)f( 2 )_3(b—a)f( 4 ), (11)

and

1
L :fo qthqf(t(a z3b)+(1 —t)b)dqt

_ 16 b, 4 [a+3b
- bex) dgx b_af( 7 ) (12)

Adding (9)-(12) and multiplying by %2 on both side then we obtain the required result. The proof is
completed. [

Now, we calculate the integrals that will be used in our next results .

En = i (1-gt)dyt = ﬁ (13)
Ep = fol (qt+ %)dqt = é + % (14)
Fyo = fol (3- qt)dqt -3-a 15)
Ey= f 1 qdgt = [2]q (16)

_ -1
ft(l qt)dgt = o [3]q’ E, = f(l t) (1 —qt)d,t Bl
_ LAV _ 49,2 9 2
Ea—fo gt + 5)dat oL 3[2]q f(l D+ )yt 5 BT 3BT
15 5
ES—L t(g—qt)dqt—3[2]q—@,E6—](; (].—t) §—qt)dqt—§—m—3[2]q+@/

Yoo q ' 9 q
E, = = — Eq = — = —_— = —
. fo (9?)dyt oL fo (1 —t) (qt) dgt 2L B,

ath rz+3b

Theorem 3.2. Assume that the assumptions of Lemma 3.1 hold. If (¥D > D

convex on [a, b], then the following inequality holds:

D,f| and |'D,f] are

3a+b n+3b

U £ de+f:+hf(x) ”?d“ﬁ £ ““’dx+f f@) bdx)
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() () (22
sb—6[us1>“’ D,f @)+ (E2) SI”qu(?’”b)’ (E3)|* qf(3”+b)|
#8070yt (15| + B [F Dt (52| + B0 | qu(””b)‘

+(E) thf(“?’b)‘ D o) 17)

Proof. By Lemma 3.1, we have

(blfa)(j;%hf@ Mzbdqx+f::f(x) azbdquffa:hf(x) “dequff;f(x) bdqx]
_%[zf(3a;b)_f(a+b) zf(a+3b)]
< 16 U)t—1| 4qu(at+(1_t)(3a+b))
fl qf((3a+b) +(1—t)( ))

dgt

2
qt+

d,t

HE 3b 3b
+f0 ——qt’ qf(( ) (1-1&)(“+ )) dqt+f gt quf((“ ) +(1—t)b) dqt]. (18)
Since ’SHTWD D, f | D D,f | and |b D,f | are convex on [a, b], therefore
"D, f (at + (1 = H)b)| < t|"Dyf @)| + (1 - £) ['D, f )] (19)

Using notion (19) in (18), we have

= Q)U o) 4dx+fa f@) 2dx+f++3bfx) 4dx+f f(x)bdx]
)]
UO qu—ll[ D, @]+ (1 -p|F ,,f(3“+b)
by
Lo orost=)
; fo et [t ', f(” L )‘ +(1-D]'D,f (b))] dqt]

[(foltht—ltdqt) Wqu<a>|+(f1 (-1 |qt—1|dqt)
Sl () [0

IN

dgt

qt+

dot

3

+(1-1t) dt

IA

3“4”’qu(3&+17)
o [#ouf3)

t|gt +
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d t) qf(“b) Jr(fo1 (1—t)‘g—qt dqt) ”*f”qu(” Jfb)‘

Dy (2 ([ a-olala) oo

qf(a)'+(E2 et qf(3a+b) n;quf(3a+b)|

qf(a+b) Haquf(a-;b)’ g | qf(a+3b)‘

quf(a + 3b)‘ + (Es) |quf(b)(] _

Which is the desired conclusion. [

5

([
([

t|gt|d t)

= b— [(El)

3n+h

+(E3)

+(Eg)| T

(Es)

+(E7)

Corollary 3.3. If we take the g — 17 in Theorem 3.2, then we obtain the following inequality:

‘(b—a)ffx)d"_'[zf(3a+b) ) Zf(ﬁ%)”

3a+b 3a+b
ot () - ()
+3f a+b’ ’f a+b‘+4‘f a+3b‘

atb

Theorem 3.4. We assume that the given conditions of Lemma 3.1 hold. If the mappings (¥D 2D

o qf| and ( qu| are convex on [a, b] and +1 = 1 with p,r > 1, then the following lenesformula type
inequality holds:

a+3b

= a)( i 3””dx+fmf<x> deL £ “*“”dx+f @ bdx)
__[zf(3a+b) f(a+b) zf(a+3b)”

1 ’%ah

( f - gif 4, ) Dyf @) +[Z];4+thf (*)

N

! oF \ ";thf(3Tb)| +tq aEquf
+ (f(; qt + 3 dqt) [2]

15 P\ "Tquf( )’ E D, f T3 r 17
+(fo 377 dqt) oI,

(20)

g ; ’quf(’“jTE}b)’r +q Iquf (b)|r '
’ ([ ) 2,
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Proof. By using g-Holder inequality in (18), we have

Since

(b—a)

[ 3Mf(x) 4dx+j‘ﬂ+bf(x) 2dx+f+

a+3b

() ()

o I
oo ([
([

+

+

qt +

A
[T

" ([p z,,llq),, (f

3a+b
i

1
f ‘ ,,f(ta+(1—t)(3“+b
0

<

_[2

b

Dyfl

3a+b

b

2a+h

Similarly,

and

K

1

a+b

Dofl

D,f <a>| +(1-1)

Dif @) +

a+b

a+3b

a+3h

oo

quf

quf(t(a 13b)+(1—t)b)

311+h 3a+b
o (¥

%a+hD (3(1 +b

3a+b

qf( (a+b) (1_t)(az3b

w}

dgt

)

dgt

1 3a+b b

< [ o () oo o () oo
1 ath 3El+b a+b

=[2L,2D"f( 4 )+[ qf( )'

fl ”ffquf( (u+b) (1—t)(u+3b))dt

0
S b wu 3b

< [ ()] wo-o] Tou (=)
1 a+3b a+b ' Mb a+3b

", 4Dﬂf(7)|+ﬁ (5 )

[

ol

a+3b

)+(1—t)b) dgt

r

qf(ta+(1—t)(3a+b))

(ool

)

fx) 4dx+f f(x)bdx]

i

i

i

D,f ( and |qu f | are convex on [4, b], we have

3337

(21)

(22)

(23)

(24)
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a+3b

)‘ + (1= 1)|'Dyf @) |dgt

ffol[

0,

qf(a+3b)

On the other way, we also have the equalities

1 1 1 q
d = - — d = —
fo”t 21, fo (=Dt =

I r

and

1 qp
Py
fo (1) dyt = [p+1], 20)

By substituting (22)-(26) in (21), then we obtain the required result. [

Corollary 3.5. By taking q — 1~ in Theorem 3.4, then we obtain the following inequality:

‘ )f F)dx - [ (3a+b) f(a+b) zf(a+3b)”
b—a ( 1 ) If (a))’+| '(3u4+b)|r !
16 [\(p+1) 2

(2 z)é 7 (32)

oD 3

==

~ =

~ =

(5 1 )37 I (+22)

M ERNCESY

(e (228

Theorem 3.6. We assume that the given conditions of Lemma 3.1 hold. If the mappings

n+®b

ath

3a+b

T D 2D

D,f | and | D,f | are convex on [a, b] with r > 1, then the following Milne’s formula type inequality holds
a+3b

(f f(x) En dx+ﬁa+bf(x) qux+f;
—g[zf(?)a;b) f(a+b) zf(a+3b)”

1\ [ Def @] +9(1+9)
(1 + ‘1) (2], 3],

3a+h

fx) 4dx+f f ) bdx)

rod
~1

')

b_u SnIquf(
<

16
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1
r

2450\ [(2+57+58) D, f (22)] + g(2+ 29 +502) | Dy (152)]
’ (3[21q) 302, 3],
5+ 24 : (5+2q+2q2) +3I)Df(‘“rb) +q(5+5q+2q) qf(”+3b)r ’
' (3[21q) 30,1,
1-1 1 bp f(ax3b "3 'p )
+(i) 70+ ) "Dy (22)] + ¢ 'D,f 0] -
(2], [2], [3],
Proof. By using g-power mean inequality in (18), we have
= a)( f(x) 3de+fg f(x) zdx+f§ f(x) Mbdx+f f(x) bdx]
__[zf(3a+b) f(a+b) Zf(a+3b)”
b ! sa+b\\[ .\
s—ﬁ;(l:h—qﬂda (j‘a qt) 4DJGa+1—ﬂ(u4 » %ﬂ
-7 g
+( ) (f qt+ st qf( (3a+b) (1—t)(ﬂ+b)) dqt)
-3, g
’ 5 ws b 3b
Rl (Bl ocot=2) o
! 3b Y
(f |qt|dt) (fo gt bqu(t(w4 )+(1—t)b) dqt) ] (28)
Since | D,f| , | D,f| , |* D, f‘ and |'D, f| are convex on [a, b], then we have
\f|ﬂ gt)| |+ D J&a+u—ﬂ(%+b» dyt
Sf |(1—qt)| dasb qf(ﬂ)| +(1—t) < qf(3a+b)|:|dqt
st qf(a‘ W g1 +q)|5 Sl qf(3a4_+b)
= , (29)

(2], [3],

a+3b

similarly, by convexity of |#D D,f | and |b D, f | and the results obtained in the proof of Theorem

3.2, we have
ST

1
J
(2+57+50)[FD,f (32)] +a(2+ 29+ 57) ¥ D (52)]
) 3121, 3], ‘ (30)

2

W+ d,t
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1
fo g_qt e qf( (a+b) (1_t)(a+3b)) it
(52 e2p) [ D,f (42)[ +4(5+50+202) Dy f (22)] 1
- 30,5, : D
and
T
(0 +|'Dyf (252) + ¢ PDyf )
= . (32)

(2], [3],
If we substitute (29)-(32) and (13)-(16) in (28) then we obtain the required result. O

Corollary 3.7. By taking g — 17 in Theorem 3.6, then we obtain the following inequality:

s [ros =P o))

1
r

b al(lf @ +2]F () ) (2 f(T3b)|+ 140
) 3 * 3
7(b - a) 4|f’(3;b)|r+3 f’(%)r ’ 3 f’(%)‘r+4 f'(atLSb)r v
9% 7 * 7

4. Numerical Examples
To prove our theory, we now provide some examples of our main results.

Example 4.1. Let f : [a,b] = [0,1] — R be a function defined by f (x) = x°. Then f is g- differentiable. Moreover,
forq=3

|thf(x|_‘D f(x‘ x + 20+ =

is a convex on [0,1]. By applying Theorem 3.2 to the function f (x) = x°, we have

R RIE

and

n+3h

3a+b a+bh
1 4 3a+b 2 a+b
—(b—a)( ) f(x) 4dqx+f3azh f(x) zdx+‘f2

Thus, the left-hand side of (17) is

£ () ”*S”dx+f f(x) bd x]—02346

|0.2346 — 0.25| = 0.0153.
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Now, we consider

“p.f@| = 00039, [ qf(?’“ - b)l = 0.1875, | qu(3” i b)‘ = 0.2383,
”Equ(”%b) = 075, | qf(” * b)‘ = 0.8476, | qf(“ * Sb)‘ = 1.6875,
D, f(” Zab) = "'Dyf ()| =3, Ex (Z) =0.2471, E, (Z) =0.3243,
E; (i) = 07053, E4 (2) = 0.3900, Es (Z) = 0.6281, Eg (Z) = 0.6100, E; (Z) = 0.3243,

and
3
Eg (Z) = 0.1042.
Hence, the right-hand side of (17) is

b

3a+b

4
a+3thf(¥)‘ (E6)

+(Es) "Dy f (b)l] = 0.1869.

- [(El) Dyf (@)| + (E2)

w5 qf(a+b)

a+3b)

3a+h f(3a+b)‘ (E3)

a+b 3&1 + b
“or()

a+3b ﬂ+3b
)

+(Eg) |2 + (Es)

+(E7)

0
It is clear that
0.0153 < 0.1869.

This demonstrates the result described in Theorem 3.2.

Example 4.2. Let f : [a,b] = [0,1] — Rbea function defined by f (x) = x> and p = r = 2. Then f is q- differentiable.
Moreover, for q = 3

pouff =poyof = (3o )
of (%) 3 f (%) —x+ x+E

is a convex on [0, 1]. By applying Theorem 3.4, we have the left-hand side of (20) is 0.0153. Since

3a+| 2 '§[l+
*Df@| = 000001521, |** qf(3”+b)‘ = 0.0352,
2
"Ethf(&z;b) = 0.0568, | qf(“b)‘ = 0.5625, |“#* qf(“b)‘ = 0.7185,
a+3b {1+3b b a+3b 2
“p, (2 = 28477, I'D,f =33563, |'D,f ) =9,

p

2 1
dyt = 1.2591, f§
o 13

1 1
fo (1 - gty dgt 0.3861, f

1
fo (qt) dgt = 0.2432.

g+ 3 dyt = 1.5925,

and



A. Mateen et al. / Filomat 38:10 (2024), 3329-3345

The right-hand side of (20) is

3n+b 3n+b

boal( o V[P @ [y ()]
16 (j(; (1-gt) dqt) )

~

" o :; n;quf( )| +q“5quf( )r T
+ (f(; qt-l‘g dqt) [2]q

" 5 ) ;17 Hfquf( )| n+3b qf( )f ;
+(f0 g—qt dqt) 2,

= 0.2449.

PR ‘thf(‘%%)r.pqlquf(b)r '
i

It is clear that
0.0153 < 0.2449.
This demonstrates the result described in Theorem 3.4.

Example 4.3. Let f : [

Moreover, for g = 3

Dyl = oy of = (Lt S 2
! 16

is a convex on [0,1]. By applying Theorem 3.6, we have the left-hand side of (27) is 0.0153. Since

the right-hand side of (27) is

1
’%a+b r

')

Srzi-b Dq f (

poall 1 V[ Df @] +q(1+9)
16 (1+q) [Z]q[3]q

2 +5q\7 (2+5q+5q2) ﬂ;bDf<3u+b) +Q(2+2‘7+5‘72) =D, f %

~

T

~ =

')

(5+2q+2q2)|#qu(“;—")|r+q(5+5q+2q2) qf(

N (5 + Zq)
3[2], 3[2],[3],

2n+ 2 1+ b n+ b
‘D,f@| = 000001521, [%¥D ,,f(3“+ )‘ = 0.0351, % qf(3”+ )‘ = 0.0567,
2
a+ b a+ b a+7 b
quf(‘%) = 05625, | qf(‘“r )‘ = 0.7184, | ,,f(“+3 )‘ = 2.8476,
a+3b 2
”qu( 1 ) = 3.3562, ['D,f ()| =09,

3342

= [0,1] = Rbea function defined by f (x) = x> and p = r = 2. Then f is g- differentiable.
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q | Left Term | Right Term
0.2 | 0.0703 0.1613
0.4 | 0.0450 0.1724
0.6 | 0.0265 0.1812
0.8 | 0.0120 0.1888

”_n

Table 1: Comparative analysis between the left and right terms for discretization of ”q” in Theorem 3.2.

q | Left Term | Right Term
0.2 | 0.0703 0.2749
0.4 | 0.0450 0.2632
0.6 | 0.0265 0.2527
0.8 | 0.0120 0.2423

”_n

Table 2: Comparative analysis between the left and right terms for discretization of ”q” in Theorem 3.4.

. (i)l1 71+ |'Dyf (=32) +7 Dy O )

= 0.2084.
2], 21, 3],
It is clear that
0.0153 < 0.2084.
This demonstrates the result described in Theorem 3.6.
o]
0.20:
; Left Term
0.10p == Right Term
0.05}
0.2 04 0.6 08 1.0 <

v

Figure 1: Depicts the comparative analysis between the left and right terms for discretization of ”q” in
Theorem 3.2.

Remark 4.4. When q = 3 in Theorem 3.2, by Example 4.1, then we have 0.0153 < 0.1869 which is more efficient
bound as compared to existing ones.

Remark 4.5. When g = 2 in Theorem 3.4, by Example 4.2, then we have 0.0153 < 0.2449 which is more efficient
bound as compared to existing ones.

Remark 4.6. When q = 3 in Theorem 3.6, by Example 4.3, then we have 0.0153 < 0.2084 which is more efficient
bound as compared to existing ones.
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0.30F

0.25f

0.20f
[ w Left Term
0.15; === Right Term

0.10}

0.05f

0.2 04 0.6 08 1.0 @

7

”_n

Figure 2: Depicts the comparative analysis between the left and right terms for discretization of “q” in
Theorem 3.4.

0]
0.20f
0.15f

[ — Left Term
0.10} === Right Term

0.05}

0.2 04 0.6 0.8 1.0 @

7

v

Figure 3: Depicts the comparative analysis between the left and right terms for discretization of “q” in
Theorem 3.6.

q | Left Term | Right Term
0.2 | 0.0703 0.1939
0.4 | 0.0450 0.2024
0.6 | 0.0265 0.2065
0.8 | 0.0120 0.2092

”_m

Table 3: Comparative analysis between the left and right terms for discretization of ”q” in Theorem 3.6.
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5. Conclusion

In this work, we developed some new inequalities to obtain error bounds for Milne’s rule in the
frameworks of classical and g-calculus, by using g-integrals. Moreover, we give the computational analysis
of new Milne’s rule type inequalities for convex functions. This work also shown that the results presented
here are better than existing ones. The method used in this work to prove these inequalities is quite simple
and less conditional as compared to existing results. It is an interesting and innovative problem that future
researchers may get similar inequalities for convex and coordinate convex functions via different g-integrals
operators.
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