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k-type hyperbolic framed slant helices in hyperbolic 3-space
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Abstract. In this paper, we give the existence and uniqueness theorems for hyperbolic framed curves
and define the k-type hyperbolic framed slant helices in three-dimensional hyperbolic space. Using the
hyperbolic curvature, we investigate the k-type hyperbolic framed slant helices and the connection between
them. Hyperbolic framed slant helices might have singular points, they are a generalization of hyperbolic
slant helices. Moreover, as their applications, we give some examples of k-type hyperbolic framed slant
helices.

1. Introduction

Special curves, such as helices, Bertrand curves and Mannheim curves, have captivated the attention of
researchers due to their intriguing properties and have a wide range of applications in the fields of physics
and engineering. Among them, the study of helices is particularly important and extensive. A helix in
Euclidean 3-space is a regular curve whose tangent vector forms a constant angle with a fixed line at any
point. And such a mesmerizing phenomenon finds profound applications in the realms of biology and
physics. For example, in molecular biology, we can regard the double helix structure of DNA as a typical
example [20].

The properties of curves in Euclidean 3-space or Minkowski 3-space are generally characterized by
the algebraic equations concerning their curvature and torsion functions. This holds true for the study of
helices as well. In 1802, Lancret firstly proved that a curve is a helix if and only if the ratio of its curvature
and torsion is constant. In 1997, Barros extended the definition of helices to 3-dimensional real-space-
form and generalized the theorem of Lancret [2]. Subsequently, an extensive body of research unfolded,
delving into the intricate properties of helices in Euclidean space and other spaces [3, 10, 24]. By applying a
transformation to the moving frame of a helix, a new curve emerges – slant helix, whose principal normal
vector makes a constant angle with a fixed line [1, 14, 17, 27]. Further, the authors studied k-type slant
helices in different spaces [5, 22, 25, 26]. Similar to the investigation of curves in other spaces, the necessary
and sufficient conditions for a hyperbolic curve in hyperbolic 3-space to be a k-type slant helix have also
been established, defining these conditions in relation to its hyperbolic curvature functions [25].
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Figure 1: A slant helix has a singular point.

On the other hand, Honda and Takahashi investigated framed curves in Euclidean space [7]. This
is an excellent promotion of Frenet curves and Legendre curves. The theory of framed curves provides
more possibilities for the study of singularities, inspiring many researchers to apply this idea to study
geometric objects in diverse spaces [6, 11–13, 18, 23, 28]. In [21], the authors gave an example of a slant helix
containing a singularity in Euclidean space (Figure 1). In hyperbolic 3-space, regular geometric objects
have been studied in many papers [8, 9, 15, 16, 19]. Using the theory of framed curves as a tool, we can also
generalize regular curves in hyperbolic 3-space to curves which may have singularities.

In the present paper, we give the existence and uniqueness theorems for hyperbolic framed curves and
define the k-type hyperbolic framed slant helices in three-dimensional hyperbolic space. In Section 2, we
review the basic notions and concepts of hyperbolic framed curve. In Section 3, we prove that a hyperbolic
framed curve is uniquely determined by hyperbolic curvature through a Lorentz motion in hyperbolic
3-space. In Section 4, we investigate the k-type hyperbolic framed slant helices and the connection between
them using the hyperbolic curvature. Hyperbolic framed slant helices might have singular points, they are
a generalization of hyperbolic slant helices. As the applications of the results of Section 4, we give some
examples of k-type hyperbolic framed slant helices in Section 5.

All maps and manifolds considered here are of class C∞ unless otherwise stated.

2. Preliminaries

Let R4 be the 4-dimensional real vector space. For any vectors x = (x0, x1, x2, x3), y = (y0, y1, y2, y3) in
R4, the pseudo scalar product of x and y is defined by

⟨x,y⟩ = −x0y0 + x1y1 + x2y2 + x3y3,

we say that x and y is pseudo-orthogonal if ⟨x,y⟩ = 0, then the spaceR4
1 = (R4, ⟨, ⟩) is callled the Minkowski

4-space. We say that a non-zero vector x ∈ R4
1 is spacelike, lightlike or timelike if ⟨x,x⟩ > 0, ⟨x,x⟩ = 0 or

⟨x,x⟩ < 0, respectively. The norm of vector x is given by ∥x∥ =
√
|⟨x,x⟩|. For any vectors x1,x2,x3 ∈ R4

1,
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we define a vector x1 ∧ x2 ∧ x3 by

x1 ∧ x2 ∧ x3 =

∣∣∣∣∣∣∣∣∣∣
−e0 e1 e2 e3
x1

0 x1
1 x1

2 x1
3

x2
0 x2

1 x2
2 x2

3
x3

0 x3
1 x3

2 x3
3

∣∣∣∣∣∣∣∣∣∣ ,
where e0, e1, e2, e3 are the canonical basis of R4

1, xi = (xi
0, x

i
1, x

i
2, x

i
3).

⟨x,x1 ∧ x2 ∧ x3⟩ = det(x,x1,x2,x3),

so that x1 ∧ x2 ∧ x3 is pseudo-orthogonal to any xi (i = 1, 2, 3).We now define hyperbolic 3-space by

H3 =
{
x ∈ R4

1 | ⟨x,x⟩ = −1
}
,

and de Sitter 3-space by
S3

1 =
{
x ∈ R4

1 | ⟨x,x⟩ = 1
}
.

The set ∆5 in [4] is defined by
∆5 =

{
(ν1,ν2) ∈ S3

1 × S3
1 | ⟨ν1,ν2⟩ = 0

}
.

Framed curves may have singularities. The fundamental theorem of framed curves in the Euclidean
space has been given in [7]. Now we have the definition of hyperbolic framed curve in hyperbolic 3-space.

Definition 2.1. We call (γ,ν1,ν2) : I→ H3
×∆5 a hyperbolic framed curve if ⟨γ(t),νi(t)⟩ = ⟨γ′(t),νi(t)⟩ = 0 for

any t ∈ I, i = 1, 2. γ : I → H3 is called a hyperbolic framed base curve if there exists (ν1,ν2) : I → ∆5 such that
(γ,ν1,ν2) : I→ H3

× ∆5 is a hyperbolic framed curve.

Define µ(t) = γ(t) ∧ ν1(t) ∧ ν2(t), then {γ(t),ν1(t),ν2(t),µ(t)} is a moving frame along γ. We have the
Frenet type formulas 

γ′(t)
ν′1(t)
ν′2(t)
µ′(t)

 =


0 0 0 m(t)
0 0 n(t) a(t)
0 −n(t) 0 b(t)

m(t) −a(t) −b(t) 0



γ(t)
ν1(t)
ν2(t)
µ(t)

 ,
where m(t) = ⟨γ′(t),µ(t)⟩, n(t) = ⟨ν′1(t),ν2(t)⟩, a(t) = ⟨ν′1(t),µ(t)⟩, b(t) = ⟨ν′2(t),µ(t)⟩. The map (m,n, a, b) :
I→ R4 is called the curvature of (γ,ν1,ν2). Clearly, t0 is a singular point of γ if and only if m(t0) = 0.

3. Existence and uniqueness theorems of hyperbolic framed curves

The curvatures of the framed curve are quite useful to analyse the framed curves and their singularities.
Now we give the local theory for hyperbolic framed curves by using their curvature.

Theorem 3.1. (The Existence Theorem) Given a smooth map (m,n, a, b) : I → R4, then there exists a
hyperbolic framed curve (γ,ν1,ν2) : I→ H3

× ∆5 with the curvature (m(t),n(t), a(t), b(t)).

Proof. Fix t0 ∈ I. Consider the equation system
γ′(t)
ν′1(t)
ν′2(t)
µ′(t)

 =


0 0 0 m(t)
0 0 n(t) a(t)
0 −n(t) 0 b(t)

m(t) −a(t) −b(t) 0



γ(t)
ν1(t)
ν2(t)
µ(t)

 (1)
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with the initial value

⟨γ(t0),γ(t0)⟩ = −1, ⟨ν1(t0),ν1(t0)⟩ = ⟨ν2(t0),ν2(t0)⟩ = ⟨µ(t0),µ(t0)⟩ = 1,
⟨γ(t0),ν1(t0)⟩ =⟨γ(t0),ν2(t0)⟩ = ⟨γ(t0),µ(t0)⟩ = ⟨ν1(t0),ν2(t0)⟩ = ⟨ν1(t0),µ(t0)⟩ = ⟨ν2(t0),µ(t0)⟩ = 0.

Then we have a solution (γ,ν1,ν2,µ) of the equation (1).
Define ten smooth functions a1, ..., a10 : I→ R by

a1(t) = ⟨γ(t),γ(t)⟩, a2(t) = ⟨γ(t),ν1(t)⟩, a3(t) = ⟨ν1(t),ν1(t)⟩, a4(t) = ⟨γ(t),ν2(t)⟩, a5(t) = ⟨ν1(t),ν2(t)⟩,
a6(t) = ⟨ν2(t),ν2(t)⟩, a7(t) = ⟨γ(t),µ(t)⟩, a8(t) = ⟨ν1(t),µ(t)⟩, a9(t) = ⟨ν2(t),µ(t)⟩, a10(t) = ⟨µ(t),µ(t)⟩.

Consider the equation

a′1(t)
a′2(t)
a′3(t)
a′4(t)
a′5(t)
a′6(t)
a′7(t)
a′8(t)
a′9(t)
a′10(t)


=



0 0 0 0 0 0 2m(t) 0 0 0
0 0 0 n(t) 0 0 a(t) m(t) 0 0
0 0 0 0 2n(t) 0 0 2a(t) 0 0
0 −n(t) 0 0 0 0 b(t) 0 m(t) 0
0 0 −n(t) 0 0 n(t) 0 b(t) a(t) 0
0 0 0 0 −2n(t) 0 0 0 2b(t) 0

m(t) −a(t) 0 −b(t) 0 0 0 0 0 m(t)
0 m(t) −a(t) 0 −b(t) 0 0 0 n(t) a(t)
0 0 0 m(t) −a(t) −b(t) 0 −n(t) 0 b(t)
0 0 0 0 0 0 2m(t) −2a(t) −2b(t) 0





a1(t)
a2(t)
a3(t)
a4(t)
a5(t)
a6(t)
a7(t)
a8(t)
a9(t)
a10(t)


with the initial value

a1(t0) = −1, a3(t0) = a6(t0) = a10(t0) = 1,

a2(t0) = a4(t0) = a5(t0) = a7(t0) = a8(t0) = a9(t0) = 0.

Thus we have
a1(t) = −1, a3(t) = a6(t) = a10(t) = 1,

a2(t) = a4(t) = a5(t) = a7(t) = a8(t) = a9(t) = 0,

for any t ∈ I.
Hence, (γ,ν1,ν2) : I→ H3

×∆5 is a hyperbolic framed curve with the curvature (m(t),n(t), a(t), b(t)).

Definition 3.2. Let (γ,ν1,ν2) : I→ H3
× ∆5 and (γ̄, ν̄1, ν̄2) : I→ H3

× ∆5 be two hyperbolic framed curves.
We say that (γ,ν1,ν2) and (γ̄, ν̄1, ν̄2) are congruent through a Lorentz motion if there exists a matrix M and
a constant vector c ∈ R4

1 such that

γ̄(t) =M (γ(t)) + c and ν̄i(t) =M (νi(t)), i = 1, 2

for all t ∈ I, where M satisfies

MTGM = G, det(M ) = 1, G =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Theorem 3.3. (The Uniqueness Theorem) Let (γ,ν1,ν2) : I → H3

× ∆5 and (γ̄, ν̄1, ν̄2) : I → H3
× ∆5 be two

hyperbolic framed curves with the same curvature (m(t),n(t), a(t), b(t)). Then (γ,ν1,ν2) and (γ̄, ν̄1, ν̄2) are
congruent through a Lorentz motion.
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Proof. Let µ(t) = γ(t) ∧ ν1(t) ∧ ν2(t) and µ̄(t) = γ̄(t) ∧ ν̄1(t) ∧ ν̄2(t). For a fixed t0 ∈ I, there exists a 4 × 4
matrix M such that ν̄1(t0) =M (ν1(t0)), ν̄2(t0) =M (ν2(t0)), µ̄(t0) =M (µ(t0)),where M satisfies

MTGM = G, det(M ) = 1, G =


−1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

 .
Then γ̄(t0) =M (γ(t0)).

Consider (M (γ),M (ν1),M (ν2),M (µ)) : I → H3
× ∆5 × S3

1 and (γ,ν1,ν2,µ) : I → H3
× ∆5 × S3

1. They
are both the solution of the equation system (1) with the same initial value. So we have (γ,ν1,ν2,µ)
= (M (γ),M (ν1),M (ν2),M (µ)). Thus (γ,ν1,ν2) and (γ̄, ν̄1, ν̄2) are congruent through a Lorentz motion.

Honda and Takahashi defined the adapted frame along a curve in R3 and gave Frenet type formulas in
[7]. Similarly, we also consider a special moving frame of γ in H3. (γ,ν1,ν2) : I → H3

× ∆5 is a framed
curve with the curvature (m(t),n(t), a(t), b(t)),which satisfies a2(t) + b2(t) , 0, for any t ∈ I. Let

n1(t) =
1√

a2(t) + b2(t)
(a(t)ν1(t) + b(t)ν2(t)),

n2(t) =
1√

a2(t) + b2(t)
(−b(t)ν1(t) + a(t)ν2(t)).

(γ,n1,n2) is also a hyperbolic framed curve and γ(t) ∧ n1(t) ∧ n2(t) = µ(t), then we have a new frame
{γ(t),n1(t),n2(t),µ(t)} along γ, which is called the Frenet type frame along γ. And we have the following
Frenet type formulas 

γ′(t)
n′1(t)
n′2(t)
µ′(t)

 =


0 0 0 M(t)
0 0 N(t) A(t)
0 −N(t) 0 0

M(t) −A(t) 0 0



γ(t)
n1(t)
n2(t)
µ(t)

 , (2)

where
M(t) = m(t), A(t) =

√
a2(t) + b2(t),

N(t) =
a(t)b′(t) − b(t)a′(t) +

(
a2(t) + b2(t)

)
n(t)

a2(t) + b2(t)
.

Remark 3.4. A regular curve γ : I → H3 is also a hyperbolic framed base curve, we can easily show that
the condition a2(t)+ b2(t) = 0 is equivalent to the hyperbolic curvature κh(t) of γ vanishes [9]. So we assume
that a2(t) + b2(t) , 0 for any t ∈ I.

The vectors µ(t),n1(t),n2(t) are called the generalized tangent vector, the generalized principal normal vector
and the generalized binormal vector of the curve γ, respectively. The functions (M(t),N(t),A(t), 0) are referred
to as the framed curvature of γ, and called the Frenet type curvature. Then we have the definition of
hyperbolic Frenet type framed curve.

Definition 3.5. Let (γ,ν1,ν2) : I→ H3
×∆5 be a hyperbolic framed curve with curvature (m(t),n(t), a(t), b(t)).

We call (γ,ν1,ν2) a hyperbolic Frenet type framed curve if a2(t) + b2(t) , 0, for any t ∈ I. γ : I → H3 is called
a hyperbolic Frenet type framed base curve if there exists (ν1,ν2) : I → ∆5 such that (γ,ν1,ν2) is a hyperbolic
Frenet type framed curve.
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4. Hyperbolic Framed Slant Helices

The necessary and sufficient conditions for hyperbolic curves in H3 to be k-type slant helices have been
given in [25]. As a generalization of them, we show the theorems of k-type hyperbolic framed slant helices
which may have singular points in this section. Let us set that

V0(t) = γ(t), V1(t) = µ(t), V2(t) = n1(t), V3(t) = n2(t).

Then, the k-type hyperbolic framed slant helices in H3 are defined as follows.

Definition 4.1. A hyperbolic Frenet type framed base curve γ : I→ H3 with the Frenet type frame
{V0(t),V1(t),V2(t),V3(t)} is called a k-type hyperbolic framed slant helix for k ∈ {0, 1, 2, 3} if there exists a
non-zero fixed vector p ∈ R4

1 such that ⟨Vk(t),p⟩ is a constant.

4.1. 0-type and 1-type hyperbolic framed slant helices
Now we consider 0-type and 1-type hyperbolic framed slant helices in H3. We can get necessary and

sufficient conditions for a hyperbolic curve to be a 0-type slant helix or 1-type slant helix, and these algebraic
formulas can be converted to each other under certain conditions, enabling us to elucidate the relationship
between these two types of curves through algebraic representations.

Theorem 4.2. Let γ : I → H3 be a hyperbolic Frenet type framed base curve with Frenet type curvature
(M(t),N(t),A(t), 0), where N(t) , 0. Then γ is a 0-type hyperbolic framed slant helix if and only if( 1

N(t)

)′(M(t)
A(t)

)′
+

1
N(t)

(M(t)
A(t)

)′′
+

M(t)N(t)
A(t)

= 0. (3)

Proof. Assumeγ is a 0-type hyperbolic framed slant helix in H3 parametrized by t with Frenet type curvature
(M(t),N(t),A(t), 0), where N(t) , 0. Then there exists a non-zero fixed vector p ∈ R4

1 such that

⟨γ(t),p⟩ = c, c ∈ R. (4)

If t are regular points of γ, taking derivative of the equation (4) and using the equation (2), we get

⟨µ(t),p⟩ = 0, ⟨n1(t),p⟩ = c
M(t)
A(t)
. (5)

By using (5), we can write p with respect to the frame {γ(t),µ(t),n1(t),n2(t)} as follows

p = −cγ(t) + c
M(t)
A(t)

n1(t) + λ(t)n2(t), (6)

where λ(t) is a smooth function. Taking derivative of the equation (6), we have(
c
(M(t)

A(t)

)′
− λ(t)N(t)

)
n1(t) +

(
c

M(t)N(t)
A(t)

+ λ′(t)
)
n2(t) = 0.

If c = 0, it can be known that p = 0, so we assume that c ∈ R\{0}. Then we get( 1
N(t)

)′(M(t)
A(t)

)′
+

1
N(t)

(M(t)
A(t)

)′′
+

M(t)N(t)
A(t)

= 0.

Especially, when t0 is a singular point of γ, by the continuity of curvature (M(t),N(t),A(t), 0), t0 also satisfies
the equation (3).

Conversely, assume that (3) holds, choosing the vector p(t) as

p(t) = −c
(
γ(t) −

M(t)
A(t)

n1(t) −
1

N(t)

(M(t)
A(t)

)′
n2(t)

)
, c ∈ R\{0},

we get p′(t) = 0 and ⟨γ(t),p(t)⟩ = c (constant). Then γ is a 0-type hyperbolic framed slant helix.
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Corollary 4.3. The axis of a 0-type hyperbolic framed slant helix parametrized by t is given by

p = −c
(
γ(t) −

M(t)
A(t)

n1(t) −
1

N(t)

(M(t)
A(t)

)′
n2(t)

)
, (7)

where c ∈ R\{0}.

Corollary 4.4. Let γ be a hyperbolic Frenet type framed base curve parametrized by t with Frenet type
curvature (M(t),N(t),A(t), 0), where N(t) , 0. Then γ is a 0-type hyperbolic framed slant helix if and only if(M(t)

A(t)

)2
+
( 1
N(t)

)2((M(t)
A(t)

)′)2
= c, c ∈ R. (8)

Proof. Assume that γ is a 0-type hyperbolic framed slant helix parametrized by t with Frenet type curvature
(M(t),N(t),A(t), 0), where N(t) , 0 . From (7), we have(M(t)

A(t)

)2
+
( 1
N(t)

)2((M(t)
A(t)

)′)2
= c.

Conversely, assume that the equation (8) holds. Then taking derivative of the equation (8) with respect
to t, we get ( 1

N(t)

)′(M(t)
A(t)

)′
+

1
N(t)

(M(t)
A(t)

)′′
+

M(t)N(t)
A(t)

= 0,

which means that γ is a 0-type hyperbolic framed slant helix.

If γ : I → H3 is a 1-type hyperbolic framed slant helix, then there exists a non-zero fixed vector p ∈ R4
1

such that

⟨µ(t),p⟩ = c, c ∈ R. (9)

We have the following theorem.

Theorem 4.5. Let γ : I → H3 be a hyperbolic Frenet type framed base curve with Frenet type curvature
(M(t),N(t),A(t), 0), where N(t) , 0. Under the above notion, γ is a 1-type hyperbolic framed slant helix if
and only if either
(i) c , 0 and(( 1

N(t)

)′(M(t)
A(t)

)′
+

1
N(t)

(M(t)
A(t)

)′′
+

M(t)N(t)
A(t)

) ∫
M(t)dt −

(A(t)
N(t)

)′
+
(M(t)

N(t)

)′M(t)
A(t)

+ 2
M(t)
N(t)

(M(t)
A(t)

)′
= 0, (10)

or
(ii) c = 0 and ( 1

N(t)

)′(M(t)
A(t)

)′
+

1
N(t)

(M(t)
A(t)

)′′
+

M(t)N(t)
A(t)

= 0. (11)

Proof. Assume that γ is a 1-type hyperbolic framed slant helix parametrized by t with Frenet type cur-
vature (M(t),N(t),A(t), 0), where N(t) , 0. By equation (9), we can write p with respect to the frame
{γ(t),µ(t),n1(t),n2(t)} as follows

p = λ(t)γ(t) + cµ(t) + λ1(t)n1(t) + λ2(t)n2(t), (12)

where λ(t), λ1(t), λ2(t) are smooth functions of t. Taking derivative of the equation (12) with respect to t, we
have

(λ′(t) + cM(t))γ(t) + (λ(t)M(t) + λ1(t)A(t))µ(t)
+(λ′1(t) − cA(t) − λ2(t)N(t))n1(t) + (λ1(t)N(t) + λ′2(t))n2(t) = 0,

(13)
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solving (13), if c , 0, we get

(( 1
N(t)

)′(M(t)
A(t)

)′
+

1
N(t)

(M(t)
A(t)

)′′
+

M(t)N(t)
A(t)

) ∫
M(t)dt −

(A(t)
N(t)

)′
+
(M(t)

N(t)

)′M(t)
A(t)

+ 2
M(t)
N(t)

(M(t)
A(t)

)′
= 0.

When c = 0, we can know that( 1
N(t)

)′(M(t)
A(t)

)′
+

1
N(t)

(M(t)
A(t)

)′′
+

M(t)N(t)
A(t)

= 0.

Conversely, assume that (10) or (11) holds, choosing the vector p(t) as

p(t) =
(
−

∫
M(t)dt

)
γ(t) + µ(t) +

(M(t)
A(t)

∫
M(t)dt

)
n1(t) +

( 1
N(t)

(M(t)
A(t)

)′ ∫
M(t)dt +

M2(t)
N(t)A(t)

−
A(t)
N(t)

)
n2(t)

or

p(t) = γ(t) −
M(t)
A(t)

n1(t) −
1

N(t)

(M(t)
A(t)

)′
n2(t).

We can get p′(t) = 0 and ⟨µ(t),p(t)⟩ = 1 or 0. Then γ is a 1-type hyperbolic framed slant helix.

Corollary 4.6. The axis of a 1-type hyperbolic framed slant helix is given by

p =
(
−

∫
cM(t)dt

)
γ(t) + cµ(t) + c

(M(t)
A(t)

∫
M(t)dt

)
n1(t) + c

( 1
N(t)

(M(t)
A(t)

)′ ∫
M(t)dt +

M2(t)
N(t)A(t)

−
A(t)
N(t)

)
n2(t)

or

p = cγ(t) −
cM(t)
A(t)

n1(t) −
c

N(t)

(M(t)
A(t)

)′
n2(t),

where c ∈ R\{0}.

According to the above theorem, if γ is a 1-type hyperbolic framed slant helix and satisfies ⟨µ(t),p⟩ = 0,
we have ( 1

N(t)

)′(M(t)
A(t)

)′
+

1
N(t)

(M(t)
A(t)

)′′
+

M(t)N(t)
A(t)

= 0,

which means that γ is also a 0-type hyperbolic framed slant helices. Thus we have the following corollary.

Corollary 4.7. Let γ be a hyperbolic Frenet type framed base curve with Frenet type curvature
(M(t),N(t),A(t), 0), where N(t) , 0. Then γ is a 0-type hyperbolic framed slant helix if and only if γ is a
1-type hyperbolic framed slant helix whose axis p satisfies ⟨µ(t),p⟩ = 0.

4.2. 2-type and 3-type hyperbolic framed slant helices
A similar discussion can lead to sufficient and necessary conditions for curves to be 2-type or 3-type

hyperbolic framed slant helices and connection between the two types of curves. If there exists a non-zero
fixed vector p ∈ R4

1 such that

⟨n1(t),p⟩ = c, c ∈ R, (14)

we say that γ : I→ H3 is a 2-type hyperbolic framed slant helix, then we have the following theorem.

Theorem 4.8. Let γ : I → H3 be a hyperbolic Frenet type framed base curve with Frenet type curvature
(M(t),N(t),A(t), 0). Under the above notion, γ is a 2-type hyperbolic framed slant helix if and only if either
(i) c , 0 and

M(t)
∫ (M(t)N(t)

A(t)

∫
N(t)dt

)
dt −
(N(t)

A(t)

)′ ∫
N(t)dt =

N2(t) + A2(t)
A(t)

, (15)
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or
(ii) c = 0 and

M(t)
∫

M(t)N(t)
A(t)

dt −
(N(t)

A(t)

)′
= 0. (16)

Proof. Assume that γ is a 2-type hyperbolic framed slant helix parametrized by t with Frenet type curvature
(M(t),N(t),A(t), 0). By equation (14) we can write p with respect to the frame {γ(t),µ(t),n1(t),n2(t)} as
follows

p = λ1(t)γ(t) + λ2(t)µ(t) + cn1(t) + λ3(t)n2(t), (17)

where λ1(t), λ2(t), λ3(t) are smooth functions of t and c ∈ R. Taking derivative of the equation (17), we have

(λ′1(t) + λ2(t)M(t))γ(t) + (λ1(t)M(t) + λ′2(t) + cA(t))µ(t)
−(λ2(t)A(t) + λ3(t)N(t))n1(t) + (λ′3(t) + cN(t))n2(t) = 0,

which implies that 
λ′1(t) + λ2(t)M(t) = 0,
λ1(t)M(t) + λ′2(t) + cA(t) = 0,
λ2(t)A(t) + λ3(t)N(t) = 0,
λ′3(t) + cN(t) = 0.

(18)

If c , 0, solving (18), we get

M(t)
∫ (M(t)N(t)

A(t)

∫
N(t)dt

)
dt −
(N(t)

A(t)

)′ ∫
N(t)dt =

N2(t) + A2(t)
A(t)

.

Assume that c = 0 in (18), then we have
λ′1(t) + λ2(t)M(t) = 0,
λ1(t)M(t) + λ′2(t) = 0,
λ2(t)A(t) + λ3(t)N(t) = 0,
λ′3(t) = 0,

which implies that

M(t)
∫

M(t)N(t)
A(t)

dt −
(N(t)

A(t)

)′
= 0.

Conversely, assume that (15) or (16) holds, choosing the vector p(t) as

p(t) = −
( ∫ M(t)N(t)

A(t)

( ∫
N(t)dt

)
dt
)
γ(t) +

N(t)
A(t)

( ∫
N(t)dt

)
µ(t) + n1(t) −

( ∫
N(t)dt

)
n2(t)

or

p(t) =
( ∫ M(t)N(t)

A(t)
dt
)
γ(t) −

N(t)
A(t)

µ(t) + n2(t).

We can get p′(t) = 0 and ⟨n1(t),p(t)⟩ = 1 or 0. Then γ is a 2-type hyperbolic framed slant helix.

Corollary 4.9. The axis of a 2-type hyperbolic framed slant helix is given by

p = −c
( ∫ M(t)N(t)

A(t)

( ∫
N(t)dt

)
dt
)
γ(t) +

cN(t)
A(t)

( ∫
N(t)dt

)
µ(t) + cn1(t) −

( ∫
cN(t)dt

)
n2(t)

or

p =
( ∫ cM(t)N(t)

A(t)
dt
)
γ(t) −

cN(t)
A(t)

µ(t) + cn2(t),

where c ∈ R\{0}.
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Theorem 4.10. Let γ : I → H3 be a hyperbolic Frenet type framed base curve with Frenet type curvature
(M(t),N(t),A(t), 0). Then γ is a 3-type hyperbolic framed slant helix if and only if

M(t)
∫

M(t)N(t)
A(t)

dt −
(N(t)

A(t)

)′
= 0. (19)

Proof. Assume that γ is a 3-type hyperbolic framed slant helix parametrized by t with Frenet type curvature
(M(t),N(t),A(t), 0). Then there exists a non-zero fixed vector p ∈ R4

1 such that

⟨n2(t),p⟩ = c, c ∈ R. (20)

Taking derivative of the equation (20), we get

⟨n1(t),p⟩ = 0, ⟨µ(t),p⟩ = −c
N(t)
A(t)
,

then we can write p with respect to the frame {γ(t),µ(t),n1(t),n2(t)} as follows

p = λ(t)γ(t) − c
N(t)
A(t)

µ(t) + cn2(t), (21)

where λ(t) is a smooth function. Taking derivative of the equation (21), we have(
λ′(t) − c

M(t)N(t)
A(t)

)
γ(t) +

(
λ(t)M(t) − c

(N(t)
A(t)

)′)
µ(t) = 0. (22)

If c = 0, it can be known that p = 0, so we assume that c ∈ R\{0}. Solving (22), we get

M(t)
∫

M(t)N(t)
A(t)

dt −
(N(t)

A(t)

)′
= 0.

Conversely, assume that (19) holds, choosing the vector p(t) as

p(t) = c
(( ∫ M(t)N(t)

A(t)
dt
)
γ(t) −

N(t)
A(t)

µ(t) + n2(t)
)
,

where c ∈ R\{0}. We can get p′(t) = 0 and ⟨n2(t),p(t)⟩ = c (constant). Then γ is a 3-type hyperbolic framed
slant helix.

Corollary 4.11. The axis of a 3-type hyperbolic framed slant helix is given by

p = c
(( ∫ M(t)N(t)

A(t)
dt
)
γ(t) −

N(t)
A(t)

µ(t) + n2(t)
)
,

where c ∈ R\{0}.

According to the Theorem 4.8 and Theorem 4.10, if γ is a 2-type hyperbolic framed slant helix and
satisfies ⟨n1(t),p⟩ = 0, we have

M(t)
∫

M(t)N(t)
A(t)

dt −
(N(t)

A(t)

)′
= 0,

which means that γ is also a 3-type hyperbolic framed slant helix. Thus we have the following corollary.

Corollary 4.12. Let γ be a hyperbolic Frenet type framed base curve with Frenet type curvature
(M(t),N(t),A(t), 0). Then γ is a 3-type hyperbolic framed slant helix if and only if γ is a 2-type hyperbolic
framed slant helix whose axis p satisfies ⟨n1(t),p⟩ = 0.

Remark 4.13. For a regular curve in H3, the results of k-type hyperbolic slant helices in [25] are equivalent
to those of k-type hyperbolic framed slant helices in this section. Being different from k-type hyperbolic
slant helices, k-type hyperbolic framed slant helices might have singular points, which is a generalization
of hyperbolic salnt helices.
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5. Examples

In Section 4, we have investigated the k-type hyperbolic framed slant helices and the connection between
them. Hyperbolic framed slant helices might have singular points, we will give two examples.

Example 5.1. (1) Let γ : [0, 2π) → H3 be a hyperbolic Frenet type framed base curve with curvature
(cos t, 1, 1, 0).

By Theorem 4.2, we know that the curvature functions of γ satisfy equation (3) and γ is a 0-type
hyperbolic framed slant helix. Note that γ is singular at t = π/2, 3π/2.

(2) The hyperbolic Frenet type framed base curve with curvature (cos(ln t), 1/t, 1, 0), t ∈ (0,+∞) can also
be proved to be a 0-type hyperbolic framed slant helix.

Example 5.2. Consider the hyperbolic curvature (sin t, 1, 1, 0).
According to the existence and the uniqueness of hyperbolic framed curves, through a Lorentz motion,

there exists a unique framed curve (γ,ν1,ν2) whose curvature is (sin t, 1, 1, 0), and the generalized tangent
vector of γ is µ(t) = γ(t) ∧ ν1(t) ∧ ν2(t). We can take

p(t) = γ(t) − sin tν1(t) − cos tν2(t).

Then we get p′(t) = 0, ⟨µ(t),p(t)⟩ = 0, and the curvature funtions satisfy equation (11), which implies that
γ is a 1-type hyperbolic framed slant helix.

Besides, by Corollary 4.7 we can know that γ is also a 0-type hyperbolic framed slant helix.
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