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Abstract. By applying the Berezin symbols method, we investigate the solvability of the Riccati operator
equation XAX+XB—-CX-D = 0 on the set of operators of the form Toeplitz + compact on the Bergman space
L? (D) of analytic functions in the unit disc D = {z € C: |z| < 1}. We also characterize compact truncated

operators on the standard reproducing kernel Hilbert space in the sense of Nordgren and Rosenthal.
Moreover, we discuss solvability of the equation

Ty, X1 + Ty, Xo + ... + Ty, X, = [+ K,

where T,, (i = L_n) is the Toeplitz operator on L? (D) and K : L2 (D) — L? (D) is a fixed compact operator.

1. Introduction

In this paper, we discuss the solvability of the Riccati operator equation
XAX+XB-CX-D=0 (1)
and the equation
Ty, X1+ Tp,Xo + ...+ Ty, X, =1+ K (2)

with given Toeplitz operators T, i = 1,2, ..., 11, and compact operator K. We also characterise compact trun-
cated operator on the standard reproducing kernel Hilbert space in the sense of Nordgren and Rosenthal.
Our discussion based on the Berezin symbols technique.

Recall that the classical Hardy space H? = H? (D) is the Hilbert space of analytic functions on the unit
disc D = {z € C : |z| < 1} satisfying
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For A € D, the reproducing kernel of H? is the function k, € H? such that
fQA)=<f, k)

for all f € H? and A € . The normalized reproducing kernel k, is the function ”,f—‘” Since {z"},5¢ is an

on1/2
orthonormal basis for H?, it is easy to verify that k; (z) = = A , and hence &, ﬂ . The Banach algebra

of all bounded analytic functions on D is denoted by H* := H* (D). The norm in VH> is defined by
||fH00 = sup If (z)| < 400,
zeD

Clearly, H* c H>.
Recall also that the Bergman space L2 = L2 (D, dA) is the Hilbert space consisting of analytic functions on
D that are also in the Lebesgue space L? (D, dA), where dA is the Lebesgue area measure of D, normalized

so that the measure of D equal 1, i.e., dA = @. The normalized reproducing kernel of the Bergman space
L2 is the function

K _ 1-IAP
Full: " 1-7)

/k\A (z) := A,z e D.

27

ForT € B (Lg), its Berezin symbol (transform) is the function T defined by T(/\) = <T’k\,\,,,,7c\,\,a>, A e D.

Clearly, T is the bounded function on ID. Often the behavior of the Berezin symbol of an operator provides
important information about the operator itself. For instance, it is known that (see, Ahern, Flores and
Rudin [2], Engli$ [6], Fricain [7] and Yang [19], Zhu [20]) in most of the reproducing kernel Hilbert spaces,
including Hardy, Bergman, Dirichlet, Fock and some model spaces, the Berezin symbol uniquely determines
the operator, that is A = 0 if and only if A = 0. Also, Nordgren and Rosenthal [16] proved that compact
operators on the so-called standard reproducing kernel Hilbert space H (Q) are completely characterized
by the boundary behavior of Berezin symbols of their unitary orbits, namely, T € 8 (H) is compact if and
only if

lim UTU-! () =0
A—dQ
for all unitary operators U on H (Q). Recall that the reproducing kernel Hilbert space H (Q) is called

standard if its normalized reproducing kernels ’k\A,«H weakly converge to zero whenever A tends to the
boundary point of Q. For ¢ € L*(D,dA), the Toeplitz operator T, is the operator on L? defined by
Ty f = P(@f), where P is the orthogonal projection from L? (D, dA) onto L? defined by the formula

f )
= | L4 :
(Pf)(2) ]Df 1w A (w)

The Berezin symbol ¢ of a function ¢ in L* (ID,dA) is defined to be the Berezin symbol of the associated
Toeplitz operator T, i.e., ¢ = T,, and hence

1-1AR)
P = Df P @ [ @[ dA ) = Df e ﬁm(z).

The Berezin symbol of a function in L* := L* (ID, dA) often plays the same important role in the theory of
Bergman spaces as the harmonic extension of a function in L* (JD) does in the theory of Hardy spaces (see,
Engli$ [6] and Zhu [19]).

The space of all bounded harmonic functions on ID will be denoted by h* := h* (D).



R. Tapdigoglu, M. Garayev / Filomat 38:11 (2024), 3929-3936 3931

2. On the solution of Riccati equations via the Berezin symbol

In this section, we study solvability of the Riccati operator equation (1) on the set . of operators of the
form T, + K, where T,, : L2 — L2 is the Toeplitz operator and K is a compact operator on L2. Notice that the
solvability of equation (1) in concrete operator classes is one of the important problems in operator theory.
For example, Adamjan, Langer and Tretter [1] prove a criterion for existence of unitary solutions of some
Riccati operator equations. In [1], these authors used the Cayley transform to prove the existence of an
accretive solution of a Riccati equation. Karaev [10] firstly applied Berezin symbols technique in solvability
of equation (1) in the set of Toeplitz operators on the Hardy space H2. In the sequel, the similar results are
obtained in [4, 8, 9, 11, 13, 16, 17, 21, 22]. Our results in this section improves some results in [4, 10, 12, 15].
Namely, we prove the following theorem.

Theorem 2.1. Let B = T}, C = T, be Toeplitz operators on L2, where u,v € H® are nonconstant functions, and
ADe8B (L%) be two operators in equation (1). Let T € F. be an operator, i.e., T = Ty, + K for some ¢ € h™ (D) and
compact operator K on L2.

(i) If T is a solution of the Riccati equation (1), then the function

AN (W) + (@A) = v ()@ () - D)
has nontangential limit 0 almost everywhere in dID.

(ii) Suppose that the nonzero nontangential limits Zm (&) := lim)seop g(/\) and Dy (&) := lim)eeop D (A)
exist for almost all & € JD and verify

(#©@ - v @) +44, (O Dy () =0 o)

for almost all & € ID. If T, + K is a solution of (1), then

. 5nt(é) %
(&) ==i| =
(P Z(Ant(é))

for almost all & € ID.
Proof. (i) If T = T,, + K satisfyes the equation (1), then we have that
((Ty + K)A(Ty + K) + (T, + K) T, = T, (T, + K) = D) (A) =0,
or equivalently
{T,AT, + T, T, - T,T, = D +|(T, + K) AK + KA(T, + K) + KT, - T,K]|} (1) =0
for all A € D. Hence
((TpAT, + TyT, = T, D)k kua) + % (1) = 0
for all A € D, where

% := [(Ty + K) AK + KA(T, + K) + KT, - T,X|



R. Tapdigoglu, M. Garayev / Filomat 38:11 (2024), 3929-3936 3932
is the compact operator on L2. Since ip (A) = @ (A) = ¢ (A) by Englis result [5], we have :
0 = (TpAT ki kna) + (TpTikna kia) = (ToTokna kna) = (Dka, kna) + K (A)
= <AT</)’I€/\,11/ Ta’k\/\,a> +u(A) <T(p’k\/\,a/’k\/\,a> —v(A) <T(p’k\/\,ar’l€)\,a> ~DW) + %G (M)
(since T;/k\A,u = WM for any i € H”)
= (A((T, = P WV)kra + PN kia), Tkna) + (1 (A) = v (1)) Ty (1) = D (A) + K (A)
(A (Tw—(p(A)EA,u) , T:k\A,u> +p) <A/k\/\,ur Tkna = @ (Dkna + W/\,ﬂ)
—v(1) @A) =D () + % (A)
(A(Ty-pwkia), Tokna) + @ (A) (Akia, T
for all A € ID, and hence
AN (W) + (@)= v () e (1) - D Q)
=- <A (T<p—q3(/\)7<\/\,a) , Ta’la,a> @A) <Ak2\ ar kA a> % (M) 4)

+(u(

ki) + (@ D A + (1) - (1) @ (1) = D (1) + % (1)

for all A € ID. It follows from Axler and Zheng result [3] that the functions HT(p_(p(Aﬁc\A,ﬂ and T /\)kA”
have nontangential limits 0 at almost all point of JD. Then, by using Cauchy-Schwarz inequality, we have

from equality (4) that

Z(/\) ((P (/\))2 + (m —vin (/\) the) ) ()\) — 5 (/\)‘ < IAll ||T¢|| HT({)—(P(/\JC\/\,H
[l 10|

as A — & € dD for almost all £ € JID; here we used the fact that L? is a standard reproducing kernel Hilbert

space and K; is compact, and hence 7?; (A) = 0as A — & € dD. This proves (i).
(ii) If T = T, + K is a solution of the Riccati equation (1), then as in (i), we have that

Aw () (@ ) + (1 (&) = v () @ (6) = Dt () = 0

for almost all £ € T, which can be written as

At (€) [cp &)+ L= ]2 _(w@-v (&) + 444 (6) Dt (6)
; Zgnt (é) 4;")‘ (E) :

Now, by using condition (3) of the theorem, from this we obtain
v (&) —u()
ZAnt (5)

or equivalently,

+‘% (/\)‘ -0

(&)=

Bnt (5)
Ant (5)
which gives that

(&) =-

nt (5)

for almost all £ € JID. This proves (ii). The theorem is proven. [
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In the next result, we use the Berezin symbols technique to study solutions of “Toeplitz corona equation”

Q).

Theorem 2.2. Let ¢; € L® (D) (i = 1,2, ..., n) be functions such that the nontangential limits ;¢ (&) (i = 1,2, ..., n)
exist almost everywhere in dD and @; () € L® (D), i=1,2,...,n. Let K € B (Lﬁ) be a compact operator. If there
exist Y, Y2, ..., Py € h*™ (D) satisfying

Tq,1 Ty, +..+Ty Ty, =1+K, (5)

then
1

max{”z,b,-”hm 11<i< n}'

ES%an(‘(Pl,nt (5)| +.t )(Pn,nt (5)|) 2

Proof. Let Ty, (i = L_n) satisfy equation (2). Then, we have from (5) that
1=T, Ty (A) + .+ T, Ty, (1) =K (1)
for all A € D, or equivalently

1= (Tp, Tykna kna) + o+ (Tp, Ty Kna kna) — K (1)
= (TyKnas T kna) + o+ Ty kna T Kna) — Ki (A)
(

+ <T¢17%k)\,a, T@k/\,a> + ...+ <T41rl;;nk}\'“’ T@k)w> - 7(1 (A)
=9, V@1 ) + o+, V) @A) + (T, g kna T kaa) + o+ Ty, 5 Kaw T Kaa) = % (A)
= l,[}l (/\) 51 (/\) + ...+ l,bn (/\) 5}1 (/\) + <T¢1_¢1(A)/k\)\,a, Tajc\/\/ﬂ> + ...+ <Tl/,”_¢n(/\)/k\/\,a, Tan/k\A,u> - (]?1 (/\) .

Hence

1<, W||@r )| + . + |9, W] @n W] + |75, |
+ |7?1 ()L)|

lTw1—¢1<A>kA,a

+ ..+ HT@“ “T%flp,,(/\)’ig/\,a

< [l |82 O + o+ [l [0 O + o1y [T 0K
% (A)|.

+

toot H(Pn”L‘X’(]D) ‘|T¢r1*¢n(/\)’i€/\,a

Since @; ¢ (£) exists for almost all £ € JD and foralli =1, ..., n, K (A) > 0as A —» dJdDand ”Tl/,l,_Lp,.(Aﬁc\A,ﬂ
as A — & € dD nontangentially for almost all £ € dID, we deduce that

-0

ol 1@ O] + o+ [l [ [P (] 2 1
for almost all & € JID. Thus

1
max{”¢"”m(u3) ti= 1'_”}/

essé]gnf(‘al,m (5)| + .t )an,nt (§)|) 2

as desired. The theorem is proved. [
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3. Characterization of compact truncated operators via the Berezin symbol

Let H = H(Q) be a reproducing kernel Hilbert space on some set () with the reproducing kernel
Kun € H, thatis (f, Kun), = f(A)forall f € Hand A € Q. Ky := Kpn/ K

reproducing kernel for H (of course, we suppose that for any A € Q, there exists fy € H such that f) (1) # 0).
The Berezin symbol of operator A € B (H ((2)) is the complex-valued bounded function

- is the normalized

A = (AT 0, K ), A€ Q,
since |Z ()\)| < ||A|l for all A € Q by Cauchy-Schwarz inequality. In the sequel, we will use the notation
AM()) = <A7?M,A/(]?M,/\>/

where Ky = PpyKp, is the reproducing kernel of the (closed) subspace M ¢ H and %M,A = is the

K
[
normalized reproducing kernel of the subspace M. Let E be a closed subspace of the standard reproducing
kernel Hilbert space H = H (Q), and let A € B(H) be an operator. We consider the truncated operator

T : E* — E* defined by
T = PEJ.A|EJ',

where Pg: : H — E* is the orthogonal projection onto the orthogonal complement E*+ := HOE of the
subspace E. In this section, we study compactness property of operator T in terms of Berezin symbols.
Before stating our result, note that the closed subspace of the standard reproducing kernel Hilbert space, in
general, is not standard (see, [16] and [14]). By this reason, we can not use directly Nordgren-Rosenthal’s
characterization [16] of compact operators on the subspace E*. However, we prove in that situation the
following theorem, which essentially improves a result in [15, Theorem 7].

Theorem 3.1. Let A : H — H be a bounded linear operator on the standard (in the sense of Nordgren and Rosenthal)
reproducing kernel Hilbert space H = H (Q2), and let E C H be a closed subspace. Let

T := PELA | EJ'
be a truncated operator on E*+. Then, T is compact if and only if

—_ ~— UEt
. i = _
Ali%b (Pu_1 e (AYUITU ()\)) 0

for all unitary operators U : H — H.

Proof. We set B := TPg.. Obviously B € 8 (H). Then, we have for every unitary operator U : H — H that
U'BU = U7 TPe.U = (U7'TU) (U P U) = U TUP ..

Since Ki-1pe ) = Py-1p2 Ky 2, A € Q, we have from the last equality that

UTBU (A) = (U™ BUKy0, Kipr) = (U TUP 15 Ko r, Ko )

= ”«% (U TUPy g Kipi 0, Kipa 1)
H,A H
= ;2 <u_1TU(Ku-1EL,A/Pu—lEﬂ(V-{,A +(I- Pu-lEJ-)q('H,A>
17rall¢
= m [(u_lTuq(u—lgx,A, (]<u—1EJ_,/\> + <U_1TU7(U-1E¢,,\, (I - Pu—lE;) (]((H//\>:| .
ANH
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It is easy to see that
(U TUK s 1, (= Pyage) Kpgp) = 0.
In fact, by using that
Ku-1e: 0 = Punpr Ky p = (u—lpEi U) Kypand U =1,
we have
(UM TUK s 1, (= Pyage) K ) = (TU (U PesU) Kipg 0, U = U (U PeaU) Kip )
= (TP UKy 0, (U = Pe: L) K )
(TPe- UKy 0, (I - Pee) UKy 1) = 0,

since TPe: UKy 5 € E* and (I — Pgr) UKy ) = PEUKy, € E. Thus, we have

U/:TB/U (/\) = ;2 u_lTUWuflEL,A,q(uflEL,/\
%]
ANH
= ﬁ ||7(u—1EL,A |2 <U_1TU‘]/€U715L,A, %uflEL/A>
HA |
LT P
| [%riallye |
hence
U-TBU (M) = M U‘lTUu 'E 1)
| [l |

for all A € Q). On the other hand,

ol = el = (Pu Fona Puss Fos
H
= <PU—1EL7(7¥,A/(](W/A> (since PIZ,I*lEL = Pyaps = Pipag))
= %5l (e o, Ko )
= ”7((]-{,/\ (ZHFLI-lEl (/\)/
and hence
Kieonlly || =
M} = Pyg: (A) forall A € Q.
”(K(H,A H
So, we have that
UTBU (1) = Pyop. WP UTTU T (1) ©

for all unitary operators U € 8(H) and all A € Q. It is not difficult to verify that B is compact on H if and
only if T is compact on E*+. Hence, according to above mentioned result of Nordgren and Rosenthal and
formula (6), we deduce that T is compact in E* if and only if

-1

—~ —~ E+
1 1 -1 =
lim | Pyop. UTTU (1) =0

for every unitary operator U on H. The proof of theorem is finished. [
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The function 6 € H® is called inner if |6 (z)] < 1 for all z in ID and ‘6 (e”)| = 1 for almost all ¢ in the
segment [0, 21). The model subspace Ky associated by the function 0 is defined by

Ko = (6H?)" = H*©0H?;

we note that since Ty (the analytic Toeplitz operator) is an isometry in H?, the subspace OH? and Ky are
closed in H>.

If we put in Theorem 3.1, H = H? (D) and E = 6H?, where 6 is an inner function, then we get Theorem
7 in [15].
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