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On A. V. Anisimov’s problem for finding a polynomial algorithm
checking inclusion of context-free languages in group languages

Krasimir Yordzheva

aTrakia University, Stara Zagora, Bulgaria

Abstract. The work investigates the problem of whether a context-free language is a subset of a group
language. A. V. Anisimov has shown that the problem of determining the unambiguity of finite automata
is a special case of this problem. Then the question of finding polynomial algorithm verifying the inclusion
of context-free languages in group languages naturally arises. The article focuses on this open problem.
For the purpose, the paper describes an unconventional method of description of context-free languages,
namely a representation with the help of a finite digraph whose arcs are labelled with a specially defined
monoid U. Also, we define a semiring SU whose elements are the set 2U of all subsets of U and with
operations - product and union of the elements of 2U . The described algorithm executes no more than O(n3)
operations in SU .

1. Introduction

The work is a continuation and significant improvement of the results obtained in the publication [22].
Let G be a group with the identity e and with the set of generators

Σ = X ∪ X′ = {x1, x2, ..., xm} ∪
{
x′1, x

′

2, ..., x
′

m

}
, X ∩ X′ = ∅ (1)

and the set of defining relations Θ such that{
xix′i = x′i xi = e | i = 1, 2, . . . ,m

}
⊆ Θ. (2)

Definition 1.1. If
L(G) = {ω ∈ Σ∗ | ω ≡ e (mod G)} ⊆ Σ∗,

then L(G) we will call a group language representing G, where Σ∗ is a free monoid over Σ and e is the identity in G.

A. V. Anisimov introduces the concept of group language in [2]. In just cited article, Anisimov proved
that L(G) is regular if and only if the group G is finite (See also [4, Theorem 5.17]).
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A somewhat different definition of the concept of group language is given in [12], namely a regular
language whose syntactic monoid is a finite group. In our work, we will stick to the first definition given
by A.V. Anisimov.

In [3] A. V. Anisimov has showed that the problem of determining the unambiguity of finite automata is
a special case of the problem of determining whether a context-free language is a subset of a group language.
Then the problem of finding polynomial algorithms verifying the inclusion of context-free languages in
group languages naturally arises. This problem is solved in its particular cases for regular and linear
languages (which are special cases of context-free languages) in [22], where it is shown that the inclusion
of a regular or a linear language in a group language can be decided in polynomial time.

In [3] A. V. Anisimov gives an algorithm to check whether the inclusion L ⊆ L(G) is true. Unfortunately,
this algorithm is not polynomial.

The aim of the present work is to describe a polynomial algorithm that solves the problem formulated
by A. V. Anisimov for an arbitrary context-free language.

2. Preliminaries

Let Σ be a finite and non-empty set, which we will call alphabet. The elements of this set we will call
letters. We will call a word over the alphabetΣ each finite string of letters fromΣ. A word that does not contain
any letter is called an empty word, which we will mark with ε. Σ∗ denotes the free monoid with the identity
ε, i.e. the set of all words over Σ, including empty set with operation concatenation. Σ+ = Σ∗ \ {ε}. The term
length of a word refers to the number of letters in it. The length of the word α will be expressed by |α|. By
definition |ε| = 0. Each subset L ⊆ Σ∗ is called formal language (or only language) over alphabet Σ.

According to [14] a context-free grammar Γwe will call the triple Γ = ⟨N ,Σ,Π⟩, whereN , Σ are finite sets
of nonterminals and terminals, respectively, N ∩ Σ = ∅ and Π is a finite subset of the Cartesian product
N × (N ∪ Σ)∗, whose elements are called productions or rules. The elements ofΠ are denoted A→ ω, where
A ∈ N , ω ∈ (N ∪ Σ)∗. The notation A⇒ ω indicates that there exists a sequence A→ α1A1β1, A1 → α2A2β2,
. . . , At−2 → αt−1At−1βt−1, At−1 → γ, where Ai ∈ N and αi, βi ∈ (N ∪ Σ)∗ for every i = 1, 2, . . . t−1, γ ∈ (N ∪ Σ)∗

and ω = α1α2 · · ·αt−1γβt−1βt−2 · · · β1. This sequence is called a derivation with length t.
Let Γ = ⟨N ,Σ,Π⟩ be a context-free grammar an let A ∈ N . Then the set L(Γ,A) = {α ∈ Σ∗ | A⇒ α} is the

context–free language generated by the grammar Γwith the starting symbol A.
Throughout this article, we will assume that every nonterminal symbol A ∈ N is essential, i.e. L(Γ,A) , ∅

for every A ∈ N .
It is well known [6, 19, 20] that any context-free language can be generated by some grammar in Chomsky

normal form, i.e. a grammar in which all the productions have the form A→ BC or A→ a, where A,B,C ∈ N
are nonterminals and a ∈ Σ is a terminal.

Let M be a finitely generated monoid with the set of generators Σ, the set of defining relations Ψ, unit
element e and with decidable word problem. Then the set of words

L(M) =
{
ω = ai1 ai2 . . . aik ∈ Σ

∗
∣∣∣ ω = e is satisfied in M

}
(3)

we will call a monoidal language, which specifies the monoid M. The monoid M is specified by a context-free
language, if the relevant monoidal language L(M) is context-free. The monoid M in this case is called a
context-free monoid.

In the case, that the monoid M has the set of generators (1) and the set of defining relations

Ψ =
{
xix′i = e | i = 1, 2, . . . ,n

}
, (4)

then L(M) is called restricted Dyck language on the 2n letters from Σ, which we will denote byD2n. In this case,
xi is called an opening bracket and x′i is the corresponding closing bracket.

For more information on automata and language theory we refer the reader to [1, 8, 13]. For the
mathematical foundations and algebraic approach of formal language theory we refer to [14, 18]. For the
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connections between formal language theory and group theory we recommend the source [4]. A list of
problems related to the discussed in this paper topics is given in [9].

Let L be a context-free language and let p and q be the constants of the pumping lemma (xuwvy-theorem)
for L (see [8, Lemma 3.1.1], [13, Theorem 7.18], or [19, Theorem 5.3] ). We define the sets:

Ω1 =
{
ω ∈ L

∣∣∣ |ω| ≤ p
}
;

Ω2 =
{
uwvw′ | |uwv| ≤ q, uv , ε, ∃A ∈ N : A⇒ uAv,A⇒ w

}
;

W1 = Ω1 ∪Ω2.

The following theorem is proved in [3]:

Theorem 2.1. (A. V. Anisimov [3]) Let L be a context-free language and let G be a group with the set of generators
(1), and the set of defining relationsΘ satisfying the condition (2). Then L ⊆ L(G) if and only if W1 = Ω1∪Ω2 ⊆ L(G).

□

Theorem 2.1 gives an algorithm to check whether the inclusion L ⊆ L(G) is true. Unfortunately, this
algorithm is not polynomial. The works [22] modify Anisimov’s algorithm so that it works polynomially
in special cases when L is a regular or a linear language.

Recall that a directed graph (or digraph for short) D is a pair D = ⟨V,R⟩ where V is a nonempty set, and R
is a multiset of ordered pairs of elements from V. The elements of V are the vertices (or nodes) of the digraph
D, the elements of R are its arcs (or oriented edges). An arc whose beginning coincides with its end is called a
loop. A walk of length t in a digraph D = ⟨V,R⟩ is a sequence ρ1ρ2 . . . ρt of arcs ρi, such that ρi ∈ R, i = 1, 2, . . . t
and the end of ρi coincides with the begin of ρi+1, i = 1, 2, . . . t − 1. A walk whose beginning coincides with
its end is called a cycle.

For more details on graph theory see [7, 10] for example.
The widespread use of graph theory in different areas of science and technology is well known. For

example, graph theory is a good tool for the modelling of computing devices and computational processes
and in some non-traditional areas, such as social science or modelling some processes in education and
other humanitarian activities [11, 15, 16]. So, many of graph algorithms have been developed [21].

A transition diagram is a 4-tuple H = ⟨V,R,S, l⟩, where ⟨V,R⟩ is a directed graph with the set of vertices
V and the multiset of arcs R; S is a semigroup whose elements will be called labels and l is a mapping from
R to S, which we will call labeling mapping.

If π = p1 p2 · · · pk is a walk in H, pi ∈ R, i = 1, 2, . . . k such that the end of pi coincides with the begin of
pi+1, i = 1, 2, . . . k − 1, then

l(p1 p2 · · · pk) = l(p1)l(p2) . . . l(pk).

If P is a set of walks in H, then

l(P) =
⋃
π∈P

l(π) = {ω ∈ S | ∃π ∈ P : l(π) = ω}.

3. A graph representation of context-free languages

A classic example of the representation of context-free languages using finite digraphs is the transition
diagram of pushdown automaton - recognizer of the corresponding context-free language. The paper [23]
describes a qualitatively new recognizer of context-free languages, based on some operations from graph
theory. In the present article, we continue the work started in the mentioned above paper by improving the
model and making it more user-friendly by adding new features and new useful tools.

Definition 3.1. Let Σ andN be finite sets, Σ∩N = ∅ and let Σ∗ be the free monoid over Σ with the identity ε, where
ε is the empty word. We define the set

N
′ = {A′ | A ∈ N} , N ′ ∩N = ∅.
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We define the monoid T with the set of generatorsN ∪N ′ ∪ {e}, the identity e and the set of defining relations

AA′ = e, Xe = eX = X, A ∈ N , A′ ∈ N ′, X ∈ N ∪N ′. (5)

Let
U = Σ∗ × T = {⟨α,ω⟩ | α ∈ Σ∗, ω ∈ T} .

InU we define the operation

⟨α1, ω1⟩ ◦ ⟨α2, ω2⟩ = ⟨α1α2, ω1ω2⟩, (6)

where α1, α2 ∈ Σ
∗,ω1, ω2 ∈ T. It is easy to see thatU with the operation defined above is a monoid with unity element

1U = ⟨ε, e⟩. (7)

Obviously if ω ∈ T, then

ω = e⇐⇒ ω ∈ D2n,

where n = |N| and D2n is restricted Dyck language on the 2n letters fromN ∪N ′.

Definition 3.2. Let Γ = ⟨N ,Σ,Π⟩ be a grammar in Chomsky normal form. Let U be the monoid defined by
Definition 3.1. We construct the transition diagram

HΓ = ⟨V,R,U, l⟩

with the set of vertices
V = N ∪ {Z}, Z < N

and the multiset of arcs
R ⊆
{−→
AB | A,B ∈ V

}
.

We label the arcs of HΓ using the function

l : R→ {⟨a, e⟩ | a ∈ Σ} ∪ {⟨ε,Y⟩ | Y ∈ N ∪N ′} ⊂ U.

Each arc in HΓ satisfies one of the following conditions:

(a) For every production A→ a ∈ Π, where A ∈ N and a ∈ Σ ∪ {ε}, there is an arc
−−→
AZ ∈ R labeled

l(
−−→
AZ) = ⟨a, e⟩;

(b) For every production A → BC ∈ Π, where A,B,C ∈ N , there are arcs
−→
AB ∈ R and

−→
ZC ∈ R with labels

respectively

l(
−→
AB) = ⟨ε,C⟩ and l(

−→
ZC) = ⟨ε,C′⟩;

(c) There are no other arcs in HΓ except described in conditions (a) and (b).

Theorem 3.3. Let Γ = ⟨N ,Σ,Π⟩ be a grammar in Chomsky normal form and let HΓ be the transition diagram
obtained according to Definition 3.2. Let A ∈ N , α ∈ Σ∗. Then α ∈ L(Γ,A) if an only if there is a walk π with begin
vertex A, end vertex Z (Z < N) and having label l(π) = ⟨α,ω⟩ = ⟨α, e⟩, where e is the identity of monoid T defined
in Definition 3.1, equation (5), i.e. ω ∈ D2n, where D2n is restricted Dyck language on the 2n letters from N ∪N ′,
n = |N| = |N ′|.
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Proof. Necessity. Let A ∈ N and let α ∈ L(Γ,A). Then there is a derivation A⇒ α. Let the length of this
derivation be equal to t ≥ 1. We will prove the necessity by induction on t.

Let t = 1. Since Γ is a grammar in Chomsky normal form, then α = a, where a ∈ Σ ∪ {ε}, and A → a
is a production from Γ. According to condition (a) in Definition 3.2, in HΓ there is an arc

−−→
AZ with label

l(
−−→
AZ) = ⟨a, e⟩ = ⟨α, e⟩. Therefore, when t = 1 the necessity is fulfilled.

Suppose that for all A ∈ N and for all α ∈ L(Γ,A) for which there is a derivation A⇒ α with length not
greater than t, in HΓ there is a walk with the start vertex A, the final vertex Z and having label ⟨α,ω⟩ = ⟨α, e⟩,
where ω ∈ D2n.

Let A ⇒ α is a derivation in Γ which length is equal to t + 1 and let A → BC, A,B,C ∈ N be the first
production in this derivation. Then in Γ there exist derivations B⇒ α1 and C⇒ α2 with lengths not greater
than t, where α1, α2 ∈ Σ

∗ and α1α2 = α. By the inductive assumption, in HΓ there are:
i) a walk π1 with the start vertex B, final vertex Z, labeled l(π1) = ⟨α1, e⟩ and
ii) a walk π2 with start vertex C, final vertex Z and labeled l(π2) = ⟨α2, e⟩.
According to Definition 3.2, condition (b), in HΓ there are arcs

−→
AB and

−→
ZC with labels l(

−→
AB) = ⟨ε,C⟩ and

l(
−→
ZC) = ⟨ε,C′⟩ respectively. Then the walk π =

−→
ABπ1

−→
ZCπ2 has start vertex A, final vertex Z and label:

l(π) = l(
−→
AB) ◦ l(π1) ◦ l(

−→
ZC) ◦ l(π2) = ⟨ε,C⟩ ◦ ⟨α1, e⟩ ◦ ⟨ε,C′⟩ ◦ ⟨α2, e⟩ = ⟨εα1εα2,CeC′e⟩ = ⟨α1α2,CC′⟩ = ⟨α, e⟩.

This proves the necessity.
Sufficiency. Let A ∈ N and let in HΓ there is a walk π with start vertex A ∈ N , final vertex Z < N an

label l(π) = ⟨α,ω⟩ = ⟨α, e⟩, where α ∈ Σ∗, ω ∈ D2n. We will prove the sufficiency by induction on the length
|α| of the word α.

If |α| = 0 or |α| = 1, then α = a for some a ∈ Σ ∪ {ε}. Hence π =
−−→
AZ (see Definition 3.2) and π is an arc

with label l(π) = ⟨a, e⟩. Then according to Definition 3.2, condition (a), in Γ there is a production A→ a, i.e.
α = a ∈ L(Γ,A).

Let t is a positive integer, such that for every vertex A ∈ N and every walk π in HΓ with start vertex A,
final vertex Z and label l(π) = ⟨α,ω⟩ = ⟨α, e⟩, α ∈ Σ∗, ω ∈ D2n, from |α| ≤ t follows α ∈ L(Γ,A).

Let α ∈ Σ+, where |α| = t + 1 ≥ 2 and let π be a walk in HΓ with start vertex A ∈ N , final vertex Z
and label l(π) = ⟨α,ω⟩ = ⟨α, e⟩, where ω ∈ D2n, and therefore there is not A′ ∈ N ′ such that A′ is the first
letter of ω. Since |α| ≥ 2, there exists a vertex B ∈ N (i.e. B , Z), such that the first arc of π is

−→
AB and let

l(
−→
AB) = ⟨ε,C⟩, where C ∈ N . But l(π) = ⟨α, e⟩. Therefore, in order for the letter C to disappear from the label

of π, it follows that in HΓ there exist an arc
−→
ZC with the label ⟨ε,C′⟩ and walks π1 and π2, where π1 has start

vertex B, final vertex Z and π2 has start vertex C, final vertex Z, such that the path π is represented in the
form π =

−→
ABπ1

−→
ZCπ2 (see Figure 1).

Figure 1:

Let
l(π1) = ⟨α1, ω1⟩, l(π2) = ⟨α2, ω2⟩,

where α1, α2 ∈ Σ
∗ and ω1, ω1 ∈ (N ∪N ′)∗. Then we get:

l(π) = l(
−→
ABπ1

−→
ZCπ2) = l(

−→
AB) ◦ l(π1) ◦ l(

−→
ZC) ◦ l(π2) =

= ⟨ε,C⟩ ◦ ⟨α1, ω1⟩ ◦ ⟨ε,C′⟩ ◦ ⟨α2, ω2⟩ =
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= ⟨α1α2,Cω1C′ω2⟩.

Without loss of generality, we can assume that the vertex C is not contained inside the walk π2 and
therefore C′ < ω2. From l(π) = ⟨α,ω⟩ we obtain α1α2 = α and ω = Cω1C′ω2 ∈ D2n. As ω ∈ D2n and C′ < ω2,
thenω1 is enclosed by the pair of opening bracket C and corresponding closing bracket C′. Then it is easy to
see that ω1 = e and therefore ω2 = e. Since |α1| ≥ 1, |α2| ≥ 1 and |α1|+ |α2| = |α|, we have |α1| < |α| = t+ 1 and
|α2| < |α| = t + 1, i.e. |α1| ≤ t and α2 ≤ t. By the inductive hypothesis, α1 ∈ L(Γ,B) and α2 ∈ L(Γ,C), i.e. in Γ
there exist derivations B⇒ α1 and C⇒ α2. Therefore in Γ there is a derivation A→ BC⇒ α1C⇒ α1α2 = α.
This proves the sufficiency.

□

Example 3.4. Consider the context-free grammar in Chomsky normal form Γ = ⟨{S,A,B,C,D}, {a, b}, {S →
SS, S→ AB, S→ BA, S→ AD, S→ BC, C→ SA, D→ SB, A→ a, B→ b}⟩. It is easy to prove that L(Γ,S) is
the language of all words in {a, b}∗ \ {ε} in which the number of letters ”a” is equal to the number of letters
”b”. The corresponding graph HΓ is shown in Figure 2.

Figure 2:

From Theorem 3.3 follows the next theorem formulated and proved by Chomsky and Schützenberger
in [5].

Theorem 3.5. [5] (See also [14, Theorem 5.14] or [17, Theorem 11.9]) A language L ⊆ Σ∗ is context-free if
and only if there are a positive integer n, a regular language L1 over the alphabet T = N ∪ N ′, |N| = n and
N
′ = {A′ | A ∈ N} and homomorphism h : T∗ → Σ∗ such that L = h(D2n ∩ L1), where D2n is the restricted Dyck

language on the 2n letters from the set T.
□

4. Inclusion of context-free languages in group languages

LetN ,N ′, X, X′ and Σ be finite sets, where

N = {A1,A2, . . . ,An}, N
′ = {A′1,A

′

2, . . . ,A
′

n}, N ∩N
′ = ∅,

X = {x1, x2, ..., xm} , X′ =
{
x′1, x

′

2, ..., x
′

m

}
, X ∩ X′ = ∅

and
Σ = X ∪ X′.

Let
a ∈ N ∪N ′ ∪ X ∪ X′.
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Then by definition, we put:
(a′)′ = a.

If
α = y1, y2, . . . , yl ∈ (X ∪ X′)∗ and ω = a1a2 . . . ak ∈ (N ∪N ′)∗

then by definition
α′ = y′l y

′

l−1 . . . y
′

2y′1 and ω′ = a′ka′k−1 . . . a
′

2a′1.

LetU be the monoid obtained according to Definition 3.1 and let

u = ⟨α,ω⟩ ∈ U.

Then by definition
u′ = ⟨α′, ω′⟩.

Let
Γ = ⟨N ,Σ,Π⟩

be a grammar in Chomsky normal form. We construct the transition diagram

HΓ = ⟨V,R,U, l⟩

obtained according to Definition 3.2.
We will assume that every nonterminal symbol in Γ is essential and therefore every vertex in HΓ is

essential.
Let G ⊆ Σ∗ = (X ∪ X′)∗ be a group with decidable word problem, the set of generators Σ = X ∪ X′,

identity ε (the empty word) and the set of defining relations Θ such that{
xix′i = x′i xi = ε | i = 1, 2, . . . ,m

}
⊆ Θ.

The next theorem is a direct consequence of Theorem 3.3 and Theorem 3.5:

Theorem 4.1. With the above notation let Ai ∈ N , i = 1, 2, . . . ,n. Then the word α ∈ L(Γ,Ai) and α ∈ L(G) if an
only if there is a walk π in the transition diagram HΓ with begin vertex Ai, end vertex Z (Z < N) and having label
l(π) = ⟨α,ω⟩ = 1U , i.e. α = ε in the group G and ω ∈ D2n, where D2n is restricted Dyck language on the 2n letters
fromN ∪N ′, n = |N| = |N ′|.

□

We consider the semiring
SU =

(
2U ,∪, ·, ∅, {1U}

)
,

where 2U is the set of all subsets of U. Operations in SU are respectively the union ∪ of sets and if
M1,M2 ∈ 2U then by definition M1 ·M2 =M1M2 = {u ◦ v ∈ U | u ∈M1, v ∈M2} (see equation (6)), the zero is
the empty set ∅ and the identity is the set {1U} that contains only the identity 1U = ⟨ε, e⟩ of the monoidU
(according to equation (7)).

In HΓ, by definition, we put

An+1 = Z, i.e. V = {A1,A2, . . . ,An,An+1} = N ∪ {An+1} .

We consider the following sets of walks in HΓ:

Pi j – the set of all walks π ∈ HΓ with the initial vertex Ai ∈ V and the final vertex A j ∈ V, 1 ≤ i, j ≤ n + 1;

P̂i j – the set of all walks π ∈ HΓ with the initial vertex Ai ∈ V, the final vertex A j ∈ V, 1 ≤ i, j ≤ n + 1, and in
which all vertices are distinct, except possibly Ai = A j. P̂i j ⊆ Pi j;
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PiZ – the set of all walks π ∈ HΓ with the initial vertex Ai ∈ V and the final vertex Z = An+1, 1 ≤ i ≤ n + 1.
PiZ ⊆ Pi j;

P̂iZ – the set of all walks π ∈ HΓ with the initial vertex Ai ∈ V, the final vertex Z = An+1, 1 ≤ i ≤ n + 1, and
in which all vertices are distinct, except possibly the initial and final vertices. P̂iZ ⊆ PiZ as well as
P̂iZ ⊆ P̂i j;

Oi – the set of all walks π ∈ HΓ with the initial vertex and the final vertex Ai ∈ V, 1 ≤ i ≤ n+1, and in which
all vertices are distinct, except initial and final vertices which are Ai. Oi = P̂ii.

Obviously

L = L(Γ,Ai) ⊆ L(G)⇐⇒ l(PiZ) = {1U} = {⟨ε, e⟩}, i = 1, 2, . . .n. (8)

We consider the next elements of the semiring SU :

Ω3 =
{
l(π)

∣∣∣∣ π ∈ P̂1Z

}
= l
(
P̂1Z

)
;

Ω4 =
{
w′vw

∣∣∣∣ ∃ j ∈ {1, 2, . . . ,n + 1} : ∃π1 ∈ P1 j, v ∈ l(O j), w ∈ l(P̂ jZ)
}
;

W2 = Ω3 ∪Ω4 ∈ SU .

We define the sets of walksK k
i j in HΓ, where i, j ∈ {1, 2, ...,n + 1}, k ∈ {0, 1, 2, ...,n + 1} n = |N| as follows:

K
0
i j =

{ {
ρ | ρ = ⟨Ai,A j⟩ is an arc in R

}
if j , i{

ρ | ρ = ⟨Ai,Ai⟩ is a loop in R
}

if j = i

and
K

k
i j = K

k−1
i j ∪K

k−1
ik K

k−1
kj .

By definition K k
i j consists only of walks with the initial vertex Ai ∈ V the final vertex A j ∈ V, and may

not pass through a vertex As when s ≥ k, or that passes along a walk π1 from Ai to Ak, then passes along a
walk π2 from Ak to A j. None of these walks π1 or π2 passes along an interior vertex As where s ≥ k. So, for
all k ∈ {0, 1, . . . ,n + 1} none of the walks π ∈ K k

i j passes along an interior vertex As where s ≥ k + 1.

Proposition 4.2. The setsK k
i j are finite.

Proof. By induction, it is easy to see that if π ∈ K k
i j, i, j = 1, 2, . . . ,n + 1, k = 0, 1, . . . ,n + 1 then the length of

π is less than or equal to 2k, i.e every path π ∈ K k
i j has a finite length. Therefore the setsK k

i j are finite.
□

We consider the following elements of the semiring SU :

Ω5 =
{
l(π) | π ∈ Kn+1

1,n+1

}
= l
(
K

n+1
1,n+1

)
;

Ω6 =
{
w′vw

∣∣∣∣ ∃ j ∈ {1, 2, . . . ,n + 1} : ∃π1 ∈ K
n+1
1 j , v ∈ l

(
K

n+1
j j

)
, w ∈

(
K

n+1
j,n+1

)}
;

W3 = Ω5 ∪Ω6 ∈ SU .

It is not difficult to see that

Ω3 ⊆ Ω5 ⊆ l(P1Z) and Ω4 ⊆ Ω6. (9)

Therefore

W2 ⊆W3 (10)

As in K k
i j is possible existence of a walk containing a cycle or a loop, then in the general case Ω3 ,

Ω5 and Ω4 , Ω6.
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Theorem 4.3. Let Γ = ⟨N ,Σ,Π⟩ be a grammar in Chomsky normal form, and let L = L(Γ,A1), where N =
{A1,A2, . . . ,An}, Σ = X∪X′ = {x1, x2, ..., xn}∪

{
x′1, x

′

2, ..., x
′
n

}
, X∩X′ = ∅. Let G be a group with the set of generators

Σ, and the set of defining relations Θ satisfying the condition (2).
Then with the above notations and definitions, the following conditions are equivalent:
(i) L ⊆ L(G) ;
(ii) W1 = Ω1 ∪Ω2 = {ε} ;
(iii) W2 = Ω3 ∪Ω4 = {1U} = {⟨ε, e⟩} ;
(iv) W3 = Ω5 ∪Ω6 = {1U} = {⟨ε, e⟩} .

Proof. The equivalence of conditions (i) and (ii) was proved by A.V. Anisimov in [3] (Theorem 2.1).
Condition (i)⇒ (iv) follows from the equations (8) and (9).
Condition (iv)⇒ (iii) follows from the equation (10).
To prove the theorem, it remains to prove the condition (iii)⇒ (i).
Let W2 = Ω3 ∪Ω4 = {1U} = {⟨ε, e⟩} and let α ∈ L. Then there is a walk π ∈ P1Z such that l(π) = ⟨α, e⟩ ∈ U.
If π does not contain cycles and loops, then l(π) ∈ l(P̂1Z) = Ω3 = {1U} = {⟨ε, e⟩} and therefore α = ε in G,

i.e. α ∈ L(G).
If π contains a cycle or a loop then there is A j ∈ V such that π can be expressed as π = π1π2π3,

where π1 ∈ P1 j, π2 ∈ O j, π3 ∈ P̂ jZ and (l(π3))′l(π2)l(π3) ∈ Ω4 = {1U}. Therefore, l(π2)l(π3) = l(π3) and
l(π1π2π3) = l(π1π3). Since π2 ∈ O j, then the length of π2 is greater than 1. Consequently, in HΓ there is a
walk with length less than the length of π, whose label is equal to l(π) = ⟨α, e⟩ in the semiring U. This
process of reduction may proceed a finite number of times as the length of π is finite. At the end of this
process we obtain a walk in HΓ with the initial vertex A1 and the final vertex AZ = An+1 without cycles and
without loops with label equal to ⟨α, e⟩ ∈ U. But l(P̂1Z) = Ω3 = {1U} = {⟨ε, e⟩}. Hence α = ε in the group G
and therefore L ⊆ L(G).

□
Let M1,M2 ∈ 2U . In the semiring SU we define the next binary operation:

M1 ⋆M2 = {w′vw | v ∈M1,w ∈M2} (11)

The following algorithm is based on the equivalence (i) and (iv) of Theorem 4.3. For convenience, 1k
i j,

i, j, k ∈ {1, 2, . . . ,n + 1}will mean l(K k
i j). Here, k in 1k

i j is a superscript and does not mean an exponent.

Algorithm 4.4. Verifies the inclusion L ⊆ L(G) for a regular language L, and a group language L(G), where G is a
group with decidable word problem.

Input: 10
i j = l(K0

i j), i, j = 1, 2, ...,n + 1
Output: Boolean variable T, which receives the value True if L ⊆ L(G), and the value False, otherwise.

The algorithm will stop immediately after the value of T := False.
Begin
1. T := True;
2. For 1 ≤ k ≤ n + 1 Do
3. For 1 ≤ i, j ≤ n + 1 Do
4. 1k

i j := 1k−1
i j ∪ 1

k−1
ik 1

k−1
kj ;

5. End Do;
6. End Do;
7. If 1n+1

1 n+1 , ∅ and 1n+1
1 n+1 , {⟨ε, e⟩} Then

8. Begin T := False; Halt; End;
9. For 1 ≤ j ≤ n + 1 Do
10. If 1n+1

1 j , ∅ and 1n+1
j j , ∅ and 1n+1

j n+1 , ∅ Then
11. If 1n+1

j j ⋆ 1
n+1
j n+1 , {⟨ε, e⟩} Then

12. Begin T := False; Halt; End;
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13. End Do;
End.

Theorem 4.5. Algorithm 4.4 checks the inclusion L ⊆ L(G), where L is a context-free language generated by a
grammar in Chomsky normal form with n nonterminals, L(G) is a group language, which specifies the group G with
decidable word problem. Algorithm 4.4 executes at most O(n3) operations ∪ and ·, and at most O(n2) operations ⋆ in
the semiring SU , where the binary operation ⋆ is defined using the equation (11).

Proof. According to Theorem 4.3 and considering axioms of the semiring SU , then in rows 8 and 12 of
Algorithm 4.4, the boolean variable T gets the value False if and only if L is not included in L(G). Otherwise,
T gets the value True. Hence the algorithm correctly checks whether the inclusion L ⊆ L(G) is true.

It is easy to see that line 4 executes no more than (n + 1)3 times. During each iteration, the operations
∪ and · perform in the semiring SU once each of them. Lines 10 and 11 is executed at most (n + 1)2 times
each. Therefore, Algorithm 4.4 performs no more than O(n3) operations ∪ and ·, and no more than O(n2)
operations ⋆ in the semiring SU . The theorem is proved. □

Corollary 4.6. If the operations ∪, · and ⋆ in the semiring SU can be done in a polynomial time, then Algorithm 4.4
is polynomial. □

Remark 4.7. According to Proposition 4.2 the sets l(K k
i j) ∈ SU are finite and hence they can be coded using a Boolean

vector of finite length. In this case, to evaluate algorithm 4.4 more accurately, it is convenient to use bitwise operations
[24, 25].
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