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Abstract. This paper introduces the structure-preserving numerical methods for the two dimensional non-
linear fractional wave equation. By using the variational principle with fractional Laplace, the equation is
transformed into a Hamiltonian system with symplectic and multi-symplectic structure, and they show the
corresponding conservation laws. Then a numerical method is proposed with the Fourier pseudospectral
method in space and midpoint method in time. It is proved that the proposed numerical method preserves
the corresponding conservation laws in the discrete sense. Furthermore, one investigates energy errors
of fully discrete schemes, and discusses convergence of the proposed schemes which are second-order
accuracy in time and spectral accuracy in space. Finally, the validity and accuracy of the theoretical results
are verified by several numerical examples.

1. Introduction

The nonlinear wave equation is an important class of mathematical models in some scientific fields like
acoustics, electromagnetism and fluid mechanics, etc. As we all know, one key feature of the nonlinear wave
equation is that it can be written as a Hamiltonian system. The Hamiltonian system can describe all real
physical processes with negligible dissipation. In fact, the exact solution of nonlinear Hamiltonian system
can not be obtained generally. Considering the need of scientific calculation and computer simulation, it is
necessary to construct an effective numerical method to simulate the behavior of the solution of Hamiltonian
system by computer. In the current researches of numerical methods, it is generally required that the basic
characteristics of the original problem should be preserved as much as possible after discretization [8],
that is, the discretization should be carried out in the unified framework of the original problem as much
as possible. So for some partial differential equations (PDEs) which can be transformed into Hamiltonian
system, it is very important to design a numerical method which can satisfy the symplecticity of the original
system, because it has conspicuous ability to preserve the geometric properties of phase space for a long
time [9, 11, 20] and has good numerical stability. In general, symplectic and multi-symplectic structure
are important approaches to the structure-preserving schemes for solving nonlinear Hamiltonian PDEs
[18, 32, 33]. For classical nonlinear wave equation, a lot of symplectic and multi-symplectic methods have
been constructed [2, 13, 23, 24, 28].
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In recent years, the development of fractional caculus has opened new perspectives in sciences and
engineering [12, 15, 17, 25]. In particular, the nonlinear fractional equation has attracted extensive attention
of scholars, such as fractional Schrödinger equations, fractional wave equations and so on. As a variety
of wave phenomena in nature, including long wave and short wave, such as sound wave, light wave and
water wave, can be described by the corresponding wave equation, the specific form of wave function and
its corresponding energy can be obtained, so as to understand the wave propagation and some properties.
Therefore, nonlinear fractional wave equation becomes an important equation in physics. It describes the
law of micro object moving at high speed, which deepens the understanding of micro world and provides
a theoretical basis for dealing with the problem of atomic structure systematically and quantitatively. In
this paper, we consider the following nonlinear fractional wave equation

∂ttu + (−∆)
α
2 u + G′(u) = 0, t ∈ [0,T],

u(x, 0) = u0(x), x ∈ Ω,
ut(x, 0) = u1(x),

(1)

where x = (x, y), Ω = [a, b] × [a, b], 1/2 < α < 1, G : R → R is a nonlinear and smooth function, (1) is
prescribed with either homogeneous Dirichlet (inhomogeneous Dirichlet) or periodic boundary conditions.
For other boundary conditions, it is difficult to determine whether the equation still has symplectic and
multi-symplectic structures. In this paper, we mainly consider the case of periodic boundary. The fractional
derivative (−∆)

α
2 are defined as a pseudo-differential operator with its symbol in the Fourier space. For the

bounded interval Ωwith periodic boundary conditions, it can be defined by Fourier series [1]

−(−∆)
α
2 u(x, t) = −

∑
l1,l2∈Z

|ξ2
l1
+ ξ2

l2
|
α
2 ûleiξl1 (x−a)+iξl2 (y−a),

where ξli =
2liπ
b−a , and ûl is Fourier coefficient and is given by

ûl =
1

(b − a)2

∫
Ω

u(x, t)e−iξl1 (x−a)−iξl2 (y−a)dx.

In general, it notices that geometric structures for nonlinear Hamiltonian PDEs have had the devel-
opment of numerical methods, which systematically incorporate qualitative features of the underlying
problem into their structure. Various invariant-preserving numerical methods have been developed for
computing classical nonlinear wave equation, including the finite difference method [6, 14, 16], spectral or
collocation method [3–5], finite element method [22, 26], etc.

For the study of fractional differential equation with geometric structures, it is also important to de-
velop structure-preserving numerical methods. In [29], authors give variational principle of the fractional
Laplacian and show that the fractional Schrödinger equation can be reformulated as a Hamiltonian sys-
tem with a symplectic structure. Then using Fourier pseudospectral method in space, it is proved that
the discrete fractional Hamiltonian system satisfy the corresponding symplectic or other conservation
laws in the discrete sense. Xiao and Wang [31] give a fourth-order central difference method in space
for fractional Schrödinger equation, and the semi-discretization system is shown to be a finite dimension
Hamiltonian system. Moreover, they apply midpoint method in the temporal for the Hamiltonian system
to preserve some properties. Furthermore, Fei et al. [7] give the convergence order and error estimate of
the multi-symplectic Hamiltonian system of fractional Schrödinger equation. Recently, Wang [27] gives
the symplectic-preserving Fourier spectral scheme for space fractional KGS equations. However, there are
few studies on symplectic and multi-symplectic for nonlinear fractional wave equations. And we notice
that the analysis of convergence is almost absent for multi-symplectic methods. Based on the above main
motivation, we consider the symplectic and multi-symplectic Hamiltonian structure of two dimensional
nonlinear fractional wave equations and the convergence of numerical methods. The main contributions
reside in the following aspects.

• It gives symplectic and multi-symplectic structure for the two dimensional nonlinear fractional wave
equation, and a numerical method is proposed with the Fourierpseudospectral method in space and
midpoint method in time.



L. Wu et al. / Filomat 38:12 (2024), 4187–4207 4189

• Some numerical theoretical analysis are given, including discrete conservation laws, energy errors
and convergence.

• There is almost no convergence analysis of the multi-symplectic method, so the convergence analysis
of the multi-symplectic method is given in this paper.

• Several numerical examples illustrate the efficiency and accuracy of the numerical scheme.

The present paper is organized as follows. In section 2, one gives symplectic and multi-symplectic
Hamiltonian formulations and their conservation laws for the two dimensional nonlinear fractional wave
equation. Section 3 shows that Fourier pseudospectral method in the spatial and given the conservation
law of the corresponding semi-discrete scheme. Then the fully discrete symplectic and multi-symplectic
schemes are obtained by using the midpoint method in the temporal, and it is presented error estimates of
energy. Finally, conservation laws of the fully discrete schemes are strictly proved. Section 4 is devoted to
a rigorous convergence analysis for the multi-symplectic Fourier pseudospectral scheme. In section 5, the
validity and accuracy of the theoretical results are verified by some numerical examples. In the end, we
close this paper of concluding remarks.

2. Symplectic and multi-symplectic Hamiltonian formulations and conservation laws

This section gives symplectic and multi-symplectic Hamiltonian formulations and their conservation
laws for the nonlinear fractional wave equation. A lemma first is given with respect to the fractional
Laplacian.

Lemma 2.1. [30] Letting u be a periodic function, then it holds

−(−∆)
α
2 u = L2u := L(Lu), (2)

whereLu =
∑

l1,l2∈Z i
(
ξl1
ξl2

)
|ξ2

l1
+ ξ2

l2
|
α−2

4 ûleiξl1 (x−a)+iξl2 (y−a). In particular, when α = 2, the operator L reduces to the

gradient operator.

For writing convenience, defined L := (Lx Ly)T, so −(−∆)
α
2 = L2

x +L
2
y.

2.1. Symplectic Hamiltonian formulation
The nonlinear fractional wave equation (1) has a symplectic structure, when α = 2 is a well-known

classical Hamiltonian structure. Introducing v = ut, a pair of equations can be rewrite (1) as{
ut = v,
vt = −(−∆)

α
2 u − G′(u). (3)

By the fractional variational calculus formula [29], one obtains that system (3) is an infinite-dimensional
Hamiltonian system

d
dt

(
u
v

)
= JδH, J =

(
0 1
−1 0

)
, (4)

where the Hamiltonian functional H is

H =
∫
Ω

(1
2

(v2 + ((−∆)
α
4 u)2) + G(u)

)
dx,

which is invariant with respect to time. The Hamiltonian system (4) satisfies the symplectic conservation
law

d
dt

∫
Ω

(du ∧ dv)dx = 0, (5)

where ∧ denotes the wedge product.
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2.2. Multi-symplectic Hamiltonian formulation
The nonlinear fractional wave equation can also be formulated as a multi-symplectic Hamiltonian

system which possesses a local multi-symplectic conservation law. Denoting v = ut, w1 = Lxu, w2 = Lyu
and one rewrites (1)

−vt +Lxw1 +Lyw2 = G′(u),
ut = v,
−Lxu = −w1,
−Lyu = −w2.

(6)

The system (6) can be rewritten as the multi-symplectic Hamiltonian system

Mzt + K1(Lxz) + K2(Lyz) = ∇zS(z), (7)

where z = (u, v,w1,w2)T, M, K are the skew-symmetry matrices

M =


0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , K1 =


0 0 1 0
0 0 0 0
−1 0 0 0
0 0 0 0

 , K2 =


0 0 0 1
0 0 0 0
0 0 0 0
−1 0 0 0

 ,
and the Hamiltonian function

S(z) =
1
2

(v2
− w2) + G(u).

Theorem 2.2. The system (7) satisfies the multi-symplectic conservation law

∂tω + κx = 0, (8)

where

ω =
1
2

dz ∧Mdz, κx = dz ∧ K1Lxdz + dz ∧ K2Lydz.

Proof. Taking differential on both sides of (7) to get

Mdzt + K1d(Lxz) + K2d(Lyz) = Szzdz.

It is obtained by the wedge product of the above formula and dz

dz ∧Mdzt + dz ∧ K1d(Lxz) + dz ∧ K2d(Lyz) = dz ∧ Szzdz.

Because Szz is symmetric, dz ∧ Szzdz = 0,

dz ∧Mdzt + dz ∧ K1d(Lxz) + dz ∧ K2d(Lyz) = 0.

Since M, K1 and K2 are skew-symmetric matrices, it has

dzt ∧Mdz + d(Lxz) ∧ K1dz + d(Lyz) ∧ K2dz = 0.

So

∂tω +
1
2

(Lxdz ∧ K1dz + dz ∧ K1Lxdz +Lydz ∧ K2dz + dz ∧ K2Lydz) = 0.

K1 and K2 are skew-symmetric matrices, Lxdz ∧ K1dz = dz ∧ K1Lxdz, Lydz ∧ K2dz = dz ∧ K2Lydz, so

∂tω + dz ∧ K1Lxdz + dz ∧ K2Lydz = 0.

Thus the proof is completed.
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Integrating (8) over Ω and using the periodic boundary conditions, one has

0 =
∫
Ω

(∂tω + κx)dx =
∫
Ω

∂tωdx =
d
dt

∫
Ω

(du ∧ dv)dx,

which is just the symplectic conservation law (5).

Theorem 2.3. The system (7) satisfies the local energy conservation law

∂tE + Fx = 0,

where

E = S(z) −
1
2

(
zTK1(Lxz) + zTK2(Lyz)

)
, Fx =

1
2

(
(Lxz)TK1zt + zTK1(Lxz)t + (Lyz)TK2zt + zTK2(Lyz)t

)
.

Proof. Noting that

∂tE = zT
t ∇zS(z) −

1
2

zT
t K1(Lxz) −

1
2

zTK1(Lxz)t −
1
2

zT
t K2(Lyz) −

1
2

zTK2(Lyz)t

= zT
t Mzt + zT

t K1(Lxz) + zT
t K2(Lyz) −

1
2

zT
t K1(Lxz) −

1
2

zTK1(Lxz)t −
1
2

zT
t K2(Lyz) −

1
2

zTK2(Lyz)t

=
1
2

zT
t K1(Lxz) −

1
2

zTK1(Lxz)t +
1
2

zT
t K2(Lyz) −

1
2

zTK2(Lyz)t.

Similarly,

Fx = −
1
2

zT
t K1(Lxz) +

1
2

zTK1(Lxz)t −
1
2

zT
t K2(Lyz) +

1
2

zTK2(Lyz)t.

So ∂tE + Fx = 0.

Theorem 2.4. The system (7) satisfies the local momentum conservation law in each of the sub-direction

∂tIx +LxVx +LyṼxy = 0,

∂tIy +LyVy +LxṼyx = 0,

where

Ix =
1
2

zTM(Lxz), Vx = S(z) −
1
2

(
zTMzt + zTK2(Lyz)

)
, Ṽxy =

1
2

zTK2(Lxz),

Iy =
1
2

zTM(Lyz), Vy = S(z) −
1
2

(
zTMzt + zTK1(Lxz)

)
, Ṽyx =

1
2

zTK1(Lyz).

Proof. We only prove the local momentum conservation law in the x-axis direction, and the y-axis can be
obtained in the same way. It is obtained by multiplying system (7) left by (Lxz)T

(Lxz)TMzt + (Lxz)TK1(Lxz) + (Lxz)TK2(Lyz) = (Lxz)T
∇zS(z).

Since K1 is skew-symmetric matrix

(Lxz)TMzt + (Lxz)TK2(Lyz) = (Lz)T
∇zS(z).

It notices that

∂tI =
1
2

(
zT

t M(Lz) + zTM(Lz)t

)
,
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so

∂tIx +LxVx +LyṼxy =
1
2

(
zT

t M(Lxz) + zTM(Lxz)t

)
+ (Lxz)T

∇zS(z) −
1
2

(
(Lxz)TMzt + zTM(Lxz)t

)
−

1
2

(
(Lxz)TK2(Lyz) + zTK2(LxLyz)

)
+

1
2

(
(Lyz)TK2(Lxz) + zTk2(LxLyz)

)
= (Lz)T

∇zS(z) − (Lxz)TMzt + (Lxz)TK2(Lyz) = 0.

Remark 2.5. When α = 2, the above conservation laws will reduce to the standard local conservation laws in [19]
for the classical wave equation.

3. Structure-preserving numerical methods

In this section, we present structure-preserving numerical methods. First of all, the spatial discretization
is give. Since fractional Laplace and L operator are defined by symbols in the Fourier space, they can
naturally be approximated by the Fourier pseudospectral method [21]. Firstly, the numerical solution is
constructed by interpolating trigonometric polynomials of the solution at collocation points. Second, the
fractional derivative is approximated in frequency space.

For the convenience of narration, some notations are introduced. Similarly, for two given positive
even integer Nx, Ny, one considers the set of points xl = a + (b − a)l/Nx, l = 0, 1, · · · ,Nx − 1 and ym =
a + (b − a)m/Ny, m = 0, 1, · · · ,Ny − 1 are referred as space collocation points. So

INu(x, y) =

Nx
2∑

l1=− Nx
2

Ny
2∑

l2=−
Ny
2

ũl1l2 eiξl1(x−a)+iξl2(y−a),

with

ũl1l2 =
1

NxNycl1 cl2

Nx−1∑
l=0

Ny−1∑
m=0

u(xl, ym)e−iξl1(xl−a)−iξl2(ym−a),

where ξ = 2π/(b − a), cl1 = 1 when |l1| < Nx/2, cl1 = 2 when |l1| = Nx/2 and cl2 = 1 when |l2| < Ny/2, cl2 = 2
when |l2| = Ny/2. So INu(xl, ym) = u(xl, ym) for l = 0, 1, · · · ,Nx−1, m = 0, 1, · · · ,Ny−1. Then −(−∆)

α
2 INu(x, y),

LxINu(x, y) and LyINu(x, y) can be defined by Fourier series

−(−∆)
α
2 INu(x j, yk, ) = −

Nx
2∑

l1=− Nx
2

Ny
2∑

l2=−
Ny
2

((ξl1)2 + (ξl2)2)
α
2 ũl1l2 eiξl1(x j−a)+iξl2(yk−c) = (Dα2 u) jk, (9)

LxINu(x j, yk) = i

Nx
2∑

l1=− Nx
2

Ny
2∑

l2=−
Ny
2

ξl1((ξl1)2 + (ξl2)2)
α−2

4 ũl1l2 eiξl1(x j−a)+iξl2(yk−c) = (1xDαu) jk. (10)

LyINu(x j, yk) = i

Nx
2∑

l1=− Nx
2

Ny
2∑

l2=−
Ny
2

ξl2((ξl1)2 + (ξl2)2)
α−2

4 ũl1l2 eiξl1(x j−a)+iξl2(yk−c) = (1yDαu) jk, (11)

where u = (u00,u01, · · · ,u0Ny−1, · · · ,uNx−1Ny−1)T. According to (9) and (10), Dα2 , 1xDα and 1yDα are N × N
matrices, and whose elements are refferred to in Ref.[30]. Let li = −li, i = 1, 2, it is easy to know Dα2 is a
symmetric matrix and 1xDα and 1yDα are skew-symmetric matrices.
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3.1. Symplectic discretization method

Using the matrix Dα2 , a semi-discrete system is obtained by the Fourier pseudospectral discretization in
space for the system (3){

d
dt ulm = vlm,
d
dt vlm − (Dα2 u)lm + G′(ulm) = 0,

(12)

where l = 0, · · · ,N − 1, u = (u00,u01, · · · ,u0Ny−1, · · · ,uNx−1Ny−1)T. So the semi-discrete system (12) is a finite
dimensional Hamiltonian system{

du
dt = ∇vHh,
dv
dt = −∇uHh,

(13)

with the Hamiltonian function

Hh(u,v) =
1
2

(
vTv − uTDα2 u

)
+

Nx−1∑
l=0

Ny−1∑
m=0

G(ulm).

In addition, the Hamiltonian system (13) is the symplectic Fourier pseudospectral discretization of the
nonlinear fractional wave equation and satisfies the semi-discrete symplectic conservation law

d
dt

Nx−1∑
l=0

Ny−1∑
m=0

(dulm ∧ dvlm) = 0.

It is worthy of note that (13) is a semi-discrete Hamiltonian system, one can adopt implicit midpoint
method to (13). un+1

lm −un
lm

τ = vn+ 1
2

lm ,
vn+1

lm −vn
lm

τ − (Dα2 un+ 1
2 )lm + G′(un+ 1

2
lm ) = 0,

(14)

where n = 1, 2, · · · ,Nt, τ = T/Nt, un+ 1
2

lm = (un
lm + un+1

lm )/2, vn+ 1
2

lm = (vn
lm + vn+1

lm )/2. So the system (13) is integrated
with a symplectic integrator, the scheme (14) satisfies the full-discrete symplectic conservation law∑Nx−1

l=0

∑Ny−1
m=0

(
dun+1

lm ∧ dvn+1
lm − dun

lm ∧ dvn
lm

)
τ

= 0, (15)

or equivalently,

Nx−1∑
l=0

Ny−1∑
m=0

(dun+1
lm ∧ dvn+1

lm ) =
Nx−1∑
l=0

Ny−1∑
m=0

(dun
lm ∧ dvn

lm).

So the scheme (14) preserves symplectic conservation laws in the fully discrete sense. However, it can
not preserve the global and local energy conservation laws in general. Therefore, it is essential to analyze
the error in energy conservation law for the fully discrete scheme (14).

Denoting h = 2π/(b − a) and letting (u,v) be the solution of the symplectic Fourier pseudospectral

method, and Hn+ 1
2

h as follows

Hn+ 1
2

h (u,v) =
h2

2

(
(vn+ 1

2 )Tvn+ 1
2 − (un+ 1

2 )TDα2 un+ 1
2

)
+ h2

Nx−1∑
l=0

Ny−1∑
m=0

G(un+ 1
2

lm ),
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and equivalent to

Hn+ 1
2

h (u,v) =
h2

2

(
(vn+ 1

2 ,vn+ 1
2 )h − (un+ 1

2 ,Dα2 un+ 1
2 )h

)
+ h2(G(un+ 1

2 ), 1)h, (16)

where (·, ·)h is the l2 discrete inner product and 1 = (1, 1, · · · , 1)T. And then as will be shown in the following
theorem.

Theorem 3.1. The discrete global energy of the scheme (14) satisfies

|Hn+1
h −H0

h | ≤ Cτ2.

Proof. The scheme (14) is equivalent to the following one by eliminating the value

un+1
l − 2un + un−1

l

τ2 −
1
2

Dα2 (un+ 1
2 + un− 1

2 )l +
1
2

(
G′(un+ 1

2
l ) + G′(un− 1

2
l )

)
= 0. (17)

Then taking the discrete inner products of above the equation with 2(un+ 1
2

lm − un− 1
2

lm ) and (16), one obtains

|Hn+ 1
2

h −Hn− 1
2

h |

=

∣∣∣∣∣∣h2

2

(
G′(un+ 1

2 ) + G′(un− 1
2 ),un+ 1

2 − un− 1
2

)
h
+ h2(G(un+ 1

2 ) − G(un− 1
2 ), 1)h

∣∣∣∣∣∣
= h2

∣∣∣∣∣∣∣∣
Nx−1∑
l=0

Ny−1∑
m=0


∫ u

n+ 1
2

lm

u
n− 1

2
lm

G′(u)du −
1
2

(
G′(un+ 1

2
lm ) + G′(un− 1

2
lm )

)
(un+ 1

2
lm − un− 1

2
lm )


∣∣∣∣∣∣∣∣

≤ h2

∣∣∣∣∣∣∣∣
Nx−1∑
l=0

Ny−1∑
m=0

(
G′′(ζ)(un+ 1

2
lm − un− 1

2
lm )2

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣Ch2
Nx−1∑
l=0

Ny−1∑
m=0

τ2

∣∣∣∣∣∣∣∣ ≤ C(b − a)2τ2.

Therefore, |Hn+1
h −H0

h | ≤ τ
∑n

j=0 |H
j+1
h −H j

h| ≤ Cτ2.

Remark 3.2. It is worth mentioning that the symplectic scheme (14) is separable Hamiltonian system, and takes
Hh(u,v) = Ah(u) + Bh(v), Ah(u) = − 1

2 uTDα2 u +
∑Nx−1

l=0

∑Ny−1
m=0 G(ulm), Bh(v) = 1

2 vTv, then system (13) has the
following s-stage symplectic integrators{

u(i+1) = u(i) + τci
∂Bh
∂v (v(i)),

v(i+1) = v(i)
− τdi

∂Ah
∂u (u(i+1)),

(18)

where i = 1, 2, · · · , s, u(1) = un, u(s) = un+1, v(1) = vn, v(s) = vn+1 and ci, di are constants which are determined by
the order of the system (18). They satisfy the full-discrete symplectic conservation law (15) and have discrete global
energy errors as well.

3.2. Multi-symplectic discretization method
Now applying the Fourier pseudospectral method to the multi-symplectic system (6), one obtains

−
dvlm
dt + (1xDαw1)lm + (1yDαw2)lm = G′(ulm),

dulm
dt = vlm,
−(1xDαu)lm = −w1lm ,
−(1yDαu)lm = −w2lm ,

(19)
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where l = 0, · · · ,Nx − 1, m = 0, · · · ,Ny − 1. The system (19) satisfies the following semi-discrete multi-
symplectic conservation laws

d
dt
ωlm + dzlm ∧ K1Lhxdzlm + dzlm ∧ K2Lhydzlm = 0, 0 ≤ l ≤ Nx − 1, 0 ≤ m ≤ Ny − 1, (20)

with zlm = (ulm, vlm,wlm)T, where

ωlm =
1
2

dzlm ∧Mdzlm, Lhxdzlm =

Nx−1∑
j=0

Ny−1∑
k=0

(1xDα)l jkmdz jk, Lhydzlm =

Nx−1∑
j=0

Ny−1∑
k=0

(1yDα)l jkmdz jk.

Owing to 1xDα and 1yDα are skew-symmetric matrices, one can sum (20) over l, m and obtain

d
dt

Nx−1∑
l=0

Ny−1∑
m=0

ωlm =

Nx−1∑
l=0

Ny−1∑
m=0

(dulm ∧ dvlm) = 0,

which implies the semi-discrete global symplectic conservation law. Thus it is natural to adopt symplectic
integrators to integrate the system (19). The implicit midpoint scheme is chosen

−
vn+1

lm −vn
lm

τ + (1xDαwn+ 1
2

1 )lm + (1yDαwn+ 1
2

2 )lm = G′(un+ 1
2

lm ),
un+1

lm −un
lm

τ = vn+ 1
2

lm ,

−(1xDαun+ 1
2 )lm = −wn+ 1

2
1lm
,

−(1yDαun+ 1
2 )lm = −wn+ 1

2
2lm
,

(21)

where w = (w1, · · · ,wN−1)T.

Theorem 3.3. The scheme (21) has following full-discrete multi-symplectic conservation laws

ωn+1
lm − ω

n
lm

τ
+ dzn+ 1

2
lm ∧ K1Lhxdzn+ 1

2
lm + dzn+ 1

2
lm ∧ K2Lhydzn+ 1

2
lm = 0, 0 ≤ l ≤ Nx − 1, 0 ≤ m ≤ Ny − 1,

where

ωn
lm =

1
2

dzn
lm ∧Mdzn

lm, Lhxdzn+ 1
2

lm =

Nx−1∑
j=0

Ny−1∑
k=0

(1xDα)l jkmdz jk, Lhydzn+ 1
2

lm =

Nx−1∑
j=0

Ny−1∑
k=0

(1yDα)l jkmdz jk.

Proof. Firstly the scheme (21) is rewritten into the compact form

M
zn+1

lm − zn
lm

τ
+ K1

Nx−1∑
j=0

Ny−1∑
k=0

(1xDα)l jkmz jk + K2

Nx−1∑
j=0

Ny−1∑
k=0

(1yDα)l jkmz jk = ∇zS(zn+ 1
2

lm ),

and the variational equation associated with (21)

M
dzn+1

lm − dzn
lm

τ
+ K1

Nx−1∑
j=0

Ny−1∑
k=0

(1xDα)l jkmdz jk + K2

Nx−1∑
j=0

Ny−1∑
k=0

(1yDα)l jkmdz jk = Szz(zn+ 1
2

lm )dzn+ 1
2

lm . (22)

In fact,

dzn+ 1
2

lm ∧ Szz(zn+ 1
2

lm )dzn+ 1
2

lm = 0,

so taking the wedge product of (22) with dzn+ 1
2

lm

ωn+1
lm − ω

n
lm

τ
+ dzn+ 1

2
lm ∧ K1Lhxdzn+ 1

2
lm + dzn+ 1

2
lm ∧ K2Lhydzn+ 1

2
lm = 0,

which means the multi-symplectic conservation law.
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So the method is referred to as a multi-symplectic Fourier pseudospectral method. What’s more, for the
discrete momentum, as will be shown in the following theorem.

Theorem 3.4. The scheme (21) satisfies full-discrete local momentum conservation law in each of the sub-direction

δtIn
xlm
+ (LhxVn+ 1

2
x )lm + (Lhy

˜
Vn+ 1

2
xy )lm = 0,

δtIn
ylm
+ (LhyVn+ 1

2
y )lm + (Lhx

˜
Vn+ 1

2
yx )lm = 0,

where

δtIn
xlm
=

In+1
xlm
− In

xlm

τ
, δtIn

ylm
=

In+1
ylm
− In

ylm

τ
, In

xlm
=

1
2

(zn
lm)TM(1xDαzn)lm, In

ylm
=

1
2

(zn
lm)TM(1yDαzn)lm,

(LhxVn+ 1
2

x )lm = (1xDαzn+ 1
2 )T

lm∇zS(zn+ 1
2

lm ) −
1
2

(
(1xDαzn+ 1

2 )T
lmMδtzn

lm + (zn+ 1
2

lm )TMδt(1xDαzn)lm

)
−

1
2

(
(1xDαzn+ 1

2 )T
lmK2(1yDαzn+ 1

2 )lm + (zn+ 1
2

lm )TK2δt(1xDα1yDαzn)lm

)
,

(LhyVn+ 1
2

y )lm = (1yDαzn+ 1
2 )T

lm∇zS(zn+ 1
2

lm ) −
1
2

(
(1yDαzn+ 1

2 )T
lmMδtzn

lm + (zn+ 1
2

lm )TMδt(1yDαzn)lm

)
−

1
2

(
(1yDαzn+ 1

2 )T
lmK1(1yDαzn+ 1

2 )lm + (zn+ 1
2

lm )TK1δt(1yDα1xDαzn)lm

)
,

(Lhy
˜
Vn+ 1

2
xy )lm =

1
2

(
(1yDαzn+ 1

2 )T
lmK2δt(1xDαzn)lm + (zn+ 1

2
lm )TK2δt(1yDα1xDαzn)lm

)
,

(Lhx
˜
Vn+ 1

2
yx )lm =

1
2

(
(1xDαzn+ 1

2 )T
lmK1δt(1xDαzn)lm + (zn+ 1

2
lm )TK2δt(1yDα1xDαzn)lm

)
.

Proof. Only prove the local momentum conservation law in the x-axis direction. One first rewrites the
scheme (21) into the compact form

Mδtzn
lm + K1(1xDαzn+ 1

2 )lm + K2(1yDαzn+ 1
2 )lm = ∇zS(zn+ 1

2
lm ), (23)

(23) is left multiplied by (Dα1 zn+ 1
2 )T

l and K1 is the skew-symmetric matrix, so

(1xDαzn+ 1
2 )T

lmMδtzn
lm + (1xDαzn+ 1

2 )T
lmK2(1yDαzn+ 1

2 )lm = (Dα1 zn+ 1
2 )T

lm∇zS(zn+ 1
2

lm ).

It is remarkable that

(1xDαzn+ 1
2 )T

lmMδtzn
lm

=
1
2

(1xDαzn+ 1
2 )T

lmMδtzn
lm +

1
2

(1xDαzn+ 1
2 )T

lmMδtzn
lm

=
1
2

(1xDαzn+ 1
2 )T

lmMδtzn
lm −

1
2
δt

(
(zn

lm)TM(1xDαzn)lm

)
+

1
2

(zn+ 1
2

lm )TMδt(1xDαzn)lm

=
1
2

(1xDαzn+ 1
2 )T

lmMδtzn
lm +

1
2

(zn+ 1
2

lm )TMδt(1xDαzn)lm − δtIn
lm,

one has
1
2

(1xDαzn+ 1
2 )T

lmMδtzn
lm+

1
2

(zn+ 1
2

lm )TMδt(1xDαzn)lm−δtIn
lm++(1xDαzn+ 1

2 )T
lmK2(1yDαzn+ 1

2 )lm = (1xDαzn+ 1
2 )T

lm∇zS(zn+ 1
2

lm ),

which implies

δtIn
xlm
+ (LhxVn+ 1

2
x )lm + (Lhy

˜
Vn+ 1

2
xy )lm = 0,

the discrete momentum conservation law is obtained.
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Same as the symplectic scheme, the multi-symplectic system preserves discrete multi-symplectic con-
servation law, on the contrary, it does not preserve energy conservation law in general.

Theorem 3.5. The discrete global energy of the scheme (21) satisfies

|En
h − E0

h| ≤ Cτ2, (24)

where En
h = h2 ∑Nx−1

l=0

∑Ny−1
m=0 En

lm, En
lm = S(zn

lm) − 1
2 (zn

lm)TK1(1xDαzn)lm −
1
2 (zn

lm)TK2(1yDαzn)lm.

Proof. Firstly the multi-symplectic scheme (21) is rewritten as the following form

Mδtzn
lm + K1(1xDαzn+ 1

2 )lm + K2(1yDαzn+ 1
2 )lm = ∇zS(zn+ 1

2
lm ).

The following equation is obtained by left multiplication (δtzn)T of the above equation

(δtzn
lm)TK1(1xDαzn+ 1

2 )lm + (δtzn
lm)TK2(1yDαzn+ 1

2 )lm = (δtzn
lm)T
∇zS(zn+ 1

2
lm ).

It is worth noting that

(δtzn
lm)TK1(1xDαzn+ 1

2 )lm + (δtzn
lm)TK2(1yDαzn+ 1

2 )lm

=
1
2

(
(δtzn

lm)TK1(1xDαzn+ 1
2 )lm + (δtzn

lm)TK2(1yDαzn+ 1
2 )lm

)
+

1
2

(
(δtzn

lm)TK1(1xDαzn+ 1
2 )lm + (δtzn

lm)TK2(1yDαzn+ 1
2 )lm

)
=

1
2

(
(δtzn

lm)TK1(1xDαzn+ 1
2 )lm + (δtzn

lm)TK2(1yDαzn+ 1
2 )lm

)
−

1
2

(
(zn+ 1

2
lm )TK1δt(1xDαzn)lm + (zn+ 1

2
lm )TK2δt(1yDαzn)lm

)
−

1
2

(
(1xDαzn+ 1

2 )T
lmK1δtzn

lm + (1yDαzn+ 1
2 )T

lmK2δtzn
lm

)
=

1
2

(
(δtzn

lm)TK1(1xDαzn+ 1
2 )lm + (δtzn

lm)TK2(1yDαzn+ 1
2 )lm

)
− (Fn+ 1

2
x )lm.

So one has

δtS(zn
lm) − (δtzn

lm)T
∇zS(zn+ 1

2
lm ) = δt

(
S(zn

lm) −
1
2

(zn
lm)TK1(1xDαzn)lm −

1
2

(zn
lm)TK2(1yDαzn)lm

)
+ (Fn+ 1

2
x )lm.

From the definition of Hamiltonian function S(z) and Taylor expansion formula, one has

δtS(zn
lm) − (δtzn

lm)T
∇zS(zn+ 1

2 ) =
un+1

lm − un
lm

τ
G′(un+ 1

2
lm ) −

1
τ

(
G(un+1

lm ) − G(un
lm)

)
=

1
τ

(
(G′(un+ 1

2
lm ) − G′(un

lm))(un+1
lm − un

lm) +O(τ2)
)

=
1
τ

(
G′′(un

lm)(un+1
lm − un

lm)2 +O(τ2)
)
≤ Cτ2.

Denoting the residual

(Rn+ 1
2

E )lm = δtEn
lm + (Fn+ 1

2
x )lm, (25)

one obtains

|(Rn+ 1
2

E )lm| ≤ Cτ2.

And then multiplying (25) with h, summing up for 0 ≤ l ≤ Nx − 1, 0 ≤ m ≤ Ny − 1,

h2
Nx−1∑
l=0

Ny−1∑
m=0

(Rn+ 1
2

E )lm = h2
Nx−1∑
l=0

Ny−1∑
m=0

(δtEn
lm + (Fn+ 1

2
x )lm).
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Since Dα1 is the skew-symmetry, it holds that
∑Nx−1

l=0

∑Ny−1
m=0 (Fn+ 1

2
x )lm = 0,

En
h = E0

h + h2τ
Nx−1∑
l=0

Ny−1∑
m=0

Nt−1∑
j=0

(R j+ 1
2

E )l.

Therefore, |En
h − E0

h| ≤ Cτ2.

4. Convergence of the scheme

This section presents some basic properties of the Fourier pseudospectral approximation and then
rigorously prove convergence for the multi-symplectic Fourier pseudospectral method, accordingly, the
convergence analysis of symplectic Fourier pseudospectral method can also be obtained.

For simplicity, one considers Ω = (0, 2π) × (0, 2π). Let Hr(Ω) be Sobolev space with the norm ∥ · ∥r and
semi-norm | · |r, where r ≥ 0, and Hr

p(Ω) be the subspace of Hr(Ω) consisting of functions being 2π−periodic
with derivatives of order up to r − 1, where the norm and semi-norm as follows.

∥u∥2r =
∑
j,k∈Z

(1 + j2 + k2)r
|ũ jk|

2, |u|2r =
∑
j,k∈Z

( j2 + k2)r
|ũ jk|

2.

Denote the interpolation space J ′′N as

J
′′

N =

u|u(x) =
Nx/2∑

l1=−Nx/2

Ny/2∑
l2=−Ny/2

ũl1l2 eil1x+il2 y : ũN/2,l2 = ũ−N/2,l2 , ũl1,−N/2 = ũl1,N/2

 ,
and JN as

JN =

u|u(x) =
Nx/2∑

l1=−Nx/2

Ny/2∑
l2=−Ny/2

ũl1l2 eil1x+il2 y

 .
It is clear that J ′′N ⊆ JN. Define the orthogonal projection PN : L2(Ω)→ JN by

(PNu − u, ϕ) = 0, ∀ϕ ∈ JN.

Meanwhile, there is a error estimation as follows.

Lemma 4.1. ([21]) For any u ∈ Hr
p(Ω) with 0 ≤ σ ≤ r, one has

∥PNu − u∥σ ≤ Nµ−s
∥v∥r, ∥PNu∥σ ≤ C∥u∥σ.

For Φ,Ψ ∈ JN, one defines the following discrete l2 inner product and norm:

(Φ,Ψ)h =
(2π)2

NxNy

Nx−1∑
l=0

Ny−1∑
m=0

ΦlmΨlm, ∥Φ∥2h = (Φ,Φ)h.

Lemma 4.2. ([10]) For any u ∈ J ′′N , ∥u∥ ≤ ∥u∥h ≤ 2∥u∥ holds.

Lemma 4.3. (Gronwall inequality [34]) Assume that the nonnegative sequences wn satisfies the following inequality

wn
− wn−1

≤ Aτwn + Bτwn−1 + Ciτ,

where A, B and Ci (i = 1, 2, · · · ,Nt) are nonnegative numbers. Then

max
1≤n≤Nt

wn
≤

w0 + τ
Nt∑
i=1

Ci

 e2(A+B)T

holds, where τ is sufficiently small such that (A + B)τ ≤ (Nt − 1)/(2Nt).
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For the convenience of writing, some marks are given. Let z = (u, v,w)T be the exact solution
of the multi-symplectic system (6) and zn = (un,vn,wn)T be numerical approximations of the multi-
symplectic scheme (21), where un = (un

00, · · · ,u
n
0Ny−1, · · · ,u

n
Nx−1Ny−1), vn = (vn

00, · · · , v
n
0Ny−1, · · · , v

n
Nx−1Ny−1),

wn = (wn
00, · · · ,w

n
0Ny−1, · · · ,w

n
Nx−1Ny−1). And denote Un

lm = u(xl, ym, tn), Vn
lm = v(xl, ym, tn), Wn

lm = w(xl, ym, tn).
Then as will be shown in the following convergence analysis.

Theorem 4.4. Suppose u, v ∈ C3(0,T; Hr
p(Ω)), r > 1, and G′′ ∈ L∞(Ω). Then there exists a positive constant C,

for the scheme (21),

∥un
−Un

∥h + ∥vn
− Vn

∥h ≤ C(τ2 +N−r).

Proof. Denote z∗l = (u∗l , v
∗

l ,w
∗

l )
T, where u∗ = PN−2u, v∗ = PN−2v, w∗ = PN−2w. The projection of (6) is written

as

M∂tz∗ + K1Lxz∗ + K2Lyz∗ = PN−2(∇zS(z)),

so one has

M∂tz∗n+
1
2 + K1Lxz∗n+

1
2 + K2Lyz∗n+

1
2 = PN−2(∇zS(z))n+ 1

2 .

Define

ηn =Mδtz∗n + K1Lxz∗n+
1
2 + K2Lyz∗n+

1
2 − PN−2(∇zS(z))n+ 1

2 .

Since z∗ ∈ J ′′N , Lhxz∗n+
1
2 = 1xDαz∗n+

1
2 ,Lhyz∗n+

1
2 = 1yDαz∗n+

1
2 , one obtains

ηn =Mδtz∗n −M∂tz∗n+
1
2 ,

that is

ηn
1lm = δtv∗nlm − ∂tv

∗n+ 1
2

lm ,

ηn
2lm = δtu∗nlm − ∂tu

∗n+ 1
2

lm ,

where ηn
lm = (ηn

1lm, η
n
2lm)T. Using Taylor expansion, it has

|ηn
1lm| =

∣∣∣∣(δtv∗nlm − ∂tv
∗n+ 1

2
lm

)∣∣∣∣ = 1
τ

∣∣∣∣(v∗n+1
l − v∗nlm − τ∂tv

∗n+ 1
2

lm

)∣∣∣∣ ≤ Cτ2,

|ηn
2lm| =

∣∣∣∣(δtu∗nlm − ∂tu
∗n+ 1

2
lm

)∣∣∣∣ = 1
τ

∣∣∣∣(u∗n+1
lm − u∗nlm − τ∂tu

∗n+ 1
2

lm

)∣∣∣∣ ≤ Cτ2.

Therefore,

|ηn
lm| ≤ Cτ2. (26)

Define en
lm = z∗nlm − zn

lm = (en
ulm, e

n
vlm, e

n
wlm)T. Subtracting (21) from (26) yields the following error equation

en+1
v −en

v
τ −1x Dαen+ 1

2
w1
−1y Dαen+ 1

2
w2
= Fn+ 1

2 + ηn
1 ,

en+1
u −en

u
τ = en+ 1

2
v + ηn

2 ,

−1xDαen+ 1
2

u = −en+ 1
2

w1
,

−1yDαen+ 1
2

u = −en+ 1
2

w2
,

(27)

where Fn+ 1
2 = (PN−2G′(u))n+ 1

2 − G′(un+ 1
2 ). Denoting

Fn+ 1
2

1lm = (PN−2G′(u))n+ 1
2

lm − G′(u)n+ 1
2

lm , Fn+ 1
2

2lm = G′(u)n+ 1
2

lm − G′(Un+ 1
2

lm ),
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Fn+ 1
2

3lm = G′(Un+ 1
2

lm ) − G′(u∗n+
1
2

lm ), Fn+ 1
2

4lm = G′(u∗n+
1
2

lm ) − G′(un+ 1
2

lm ),

one has Fn+ 1
2

lm = Fn+ 1
2

1lm + Fn+ 1
2

2lm + Fn+ 1
2

3lm + Fn+ 1
2

4lm .
According to Lemma 4.1 and 4.3, one has

∥Fn+ 1
2

1 ∥h = ∥(PN−2G′(u))n+ 1
2 − G′(u)n+ 1

2 ∥h ≤ CN−r. (28)

Use Taylor expansion with an integral remainder term at t = n + 1
2

|Fn+ 1
2

2lm | =
∣∣∣∣G′(u)n+ 1

2
lm − G′(Un+ 1

2
lm )

∣∣∣∣ = 1
2

∣∣∣∣G′(u)n+1
lm + G′(u)n

lm − G′(Un+ 1
2

lm )
∣∣∣∣ ≤ Cτ2. (29)

Because of G′′ ∈ L∞(Ω), the differential mean value theorem and Lemma 4.1 are used

|Fn+ 1
2

3lm | =
∣∣∣∣G′(Un+ 1

2
lm ) − G′(u∗n+

1
2

lm )
∣∣∣∣ ≤ |G′′(ζ)| ∣∣∣∣Un+ 1

2
lm − u∗n+

1
2

lm

∣∣∣∣ ≤ CN−r. (30)

Similarly,

|Fn+ 1
2

4lm | =
∣∣∣∣G′(u∗n+ 1

2
lm ) − G′(un+ 1

2
lm )

∣∣∣∣ ≤ |G′′(ζ)| ∣∣∣∣u∗n+ 1
2

lm − un+ 1
2

lm

∣∣∣∣ ≤ C|en+ 1
2

ulm |. (31)

Computing the discrete inner product of (27) with (en+ 1
2

v , en+ 1
2

u , en+ 1
2

w1
, en+ 1

2
w2

)T, one has

∥en+1
v ∥

2
h − ∥e

n
v∥

2
h

2τ
+
∥en+1

u ∥
2
h − ∥e

n
u∥

2
h

2τ
= (1xDαen+ 1

2
u ,1x Dαen+ 1

2
v )h + (1yDαen+ 1

2
u ,1y Dαen+ 1

2
v )h + (en+ 1

2
v , en+ 1

2
u )h

− (Fn+ 1
2 , en+ 1

2
v )h + (ηn

1 , e
n+ 1

2
v )h + (ηn

2 , e
n+ 1

2
u )h.

(32)

The following inequalities use from Cauchy-Schwartz inequality

(ηn
1 , e

n+ 1
2

v )h ≤
1
2
∥ηn

1∥
2
h +

1
8
∥en+1

v + en
v∥

2
h ≤

1
2
∥ηn

1∥
2
h +

1
4

(
∥en+1

v ∥
2
h + ∥e

n
v∥

2
h

)
,

(ηn
2 , e

n+ 1
2

u )h ≤
1
2
∥ηn

2∥
2
h +

1
8
∥en+1

u + en
u∥

2
h ≤

1
2
∥ηn

2∥
2
h +

1
4

(
∥en+1

u ∥
2
h + ∥e

n
u∥

2
h

)
,

(Fn+ 1
2

1 + Fn+ 1
2

2 + Fn+ 1
2

3 , en+ 1
2

v )h ≤
1
2

(
∥Fn+ 1

2
1 ∥

2
h + ∥F

n+ 1
2

2 ∥
2
h + ∥F
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2
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2
h

)
+

1
4

(
∥en+1
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2
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2
h

)
,

(Fn+ 1
2

4 , en+ 1
2

v )h ≤ C
(
∥en
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2
h + ∥e

n+1
u ∥

2
h + ∥e

n
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2
h + ∥e
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2
h
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,
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(
∥en
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2
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n
v∥

2
h + ∥e

n+1
v ∥

2
h

)
,

(1xDαen+ 1
2

u ,1x Dαen+ 1
2

v )h ≤ C∥en+ 1
2

u ∥h∥e
n+ 1

2
v ∥h ≤ C

(
∥en

u∥
2
h + ∥e

n+1
u ∥

2
h + ∥e
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v∥

2
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2
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(1yDαen+ 1
2
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2
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2
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2
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2
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2
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)
,

where the Plancherel theorem has been used to derived the last inequality. Then substituting (26), (28), (29),
(30) and (31) into (32) yields

∥en+1
v ∥

2
h − ∥e

n
v∥

2
h

2τ
+
∥en+1
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2τ
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2
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+ C(τ4 +N−2r).
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Denoting wn = ∥en+1
u ∥

2
h + ∥e

n+1
v ∥

2
h and using Lemma 4.3, for a sufficiently small τ,

∥en
v∥

2
h + ∥e

n
u∥

2
h ≤

(
∥e0

v∥
2
h + ∥e

0
u∥

2
h + CT(τ4 +N−2r)

)
.

Noting that

∥e0
v∥h = ∥v

∗0
− V0

∥h ≤ CN−r,

∥e0
u∥h = ∥u

∗0
−U0

∥h ≤ CN−r,

thus,

∥en
v∥h + ∥e

n
u∥h ≤ C(τ2 +N−r). (33)

Then using Lemma 4.1 and (33), we have

∥un
−Un

∥h + ∥vn
− Vn

∥h ≤ ∥Un
− u∗n∥h + ∥u∗n − un

∥h + ∥Vn
− v∗n∥h + ∥v∗n − vn

∥h

≤ C(τ2 +N−r).

Therefore, the theorem is confirmed.

Similarly, for the symplectic Fourier pseudospectral scheme (14), a similar convergence theorem can
also be obtained.

Theorem 4.5. Suppose u, v ∈ C3(0,T; Hr
p(Ω)), r > 1, and G′′ ∈ L∞(Ω). Then there exists a positive constant C,

for the scheme (14),

∥un
−Un

∥h + ∥vn
− Vn

∥h ≤ C(τ2 +N−r).

5. Numerical experiments

In this section, several numerical experiments are given to verify the theoretical results. It notices that
the symplectic Fourier pseudospectral (SFP) method and multi-symplectic Fourier pseudospectral (MSFP)
method are fully implicit, hence we need to solve them by iterative algorithm with iterative tolerance 10−13.
First of all, the convergence order formula is given by

order =
log(error1/error2)

log(2)
,

where error j, j = 1, 2 denote the discrete norm ∥ · ∥h errors.

Example 5.1. Considering semi-linear fractional wave equation with periodic boundary conditions
∂ttu(x, y, t) + a2(−△)

α
2 u(x, y, t) = bu3(x, y, t) − au(x, y, t),

u(x, y, 0) =
√

2a
b sech(λx)sech(λy),

ut(x, y, 0) = cλ
√

2a
b sech(λx)tanh(λx)sech(λy)tanh(λy),

−20 ≤ x ≤ 20, −20 ≤ y ≤ 20, 0 ≤ t ≤ T,

where λ =
√

a/(a2 − c2) and a, b, a2
− c2 > 0. And we consider the parameters a = 0.3, b = 1, c = 0.25.
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We choose that the numerical exact solution is obtained by N := Nx = Ny = 512, τ = 0.001. Convergence
orders are also verified in time and space for SFP method and MSFP method. Figure 1 and 2 plot temporal
and spatial errors in the log scale at the time T = 0.5, respectively. It can be found that convergence orders
are of the second-order in time and spatial convergence is spectral accuracy. Furthermore, the energy errors
of the SFP method is plotted in Figure 3 when τ = 0.01, N = 256. It shows that the global energy errors are
O(τ2). And then the momentum and its error are plotted in Figure 4. It is found that the momentum is also
equal to machine error, approximately zero. It indicates that momentum conservation laws hold. So, they
preserve full discrete conservation properties well. Figure 5 and 6 display that the numerical solution and
contours use τ = 0.01, N = 256 for T = 2, with different α. It can be easily seen that the figure on x and y
axes decay rapidly. Since two large amount of energy is concentrated in the center of the peak, it has two
prominent central wave crest. And the central wave crest becomes thicker and slower with the decrease
of α. From the contour map, the distance between two peaks increases with the increase of α and peaks
values become smaller. Therefore for the difference of α, it also has a certain influence on the solution.

-1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

log
10

( )

-7

-6

-5

-4

-3

-2

lo
g

1
0
(e

rr
o

r)

=1.4

=1.6

=1.8

slope=2

-1.9 -1.8 -1.7 -1.6 -1.5 -1.4 -1.3 -1.2 -1.1 -1

log
10

( )

-7

-6

-5

-4

-3

-2

lo
g

1
0
(e

rr
o

r)

=1.4

=1.6

=1.8

slope=2

Figure 1: Temporal errors of SFP (left) and MSFP (right) for Example 5.1 with different α at T = 0.5.
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Figure 2: Spatial errors of SFP (left) and MSFP (right) for Example 5.1 with different α at T = 0.5.

Example 5.2. Consider the following two-dimensional fractional sine-Gordon equation
∂ttu(x, y, t) + (−△)

α
2 u(x, y, t) + sin u(x, y, t) = 0,

ut(x, y, 0) = 4
√

1+c2
sech

(
x

√

1+c2

)
sech

(
y

√

1+c2

)
,

u(x, y, 0) = 0,
−20 ≤ x ≤ 20, −20 ≤ y ≤ 20, 0 ≤ t ≤ T,

with periodic boundary conditions and c = 0.5.
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Figure 3: Energy errors of MSFP (left) and SFP (right) for Example 5.1 with different αwhen τ = 0.01, N = 256.
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Figure 4: Momentum and momentum errors for Example 5.1 with different αwhen τ = 0.01, N = 256.
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Figure 5: Numerical solution and contours for Example 5.1 with α = 1.4 at T = 2.
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Figure 6: Numerical solution and contours for Example 5.1 with α = 1.8 at T = 2.

We choose that the numerical exact solution is obtained by N := Nx = Ny = 512, τ = 0.001. First,
convergence orders are also verified in time and space. Figure 7 plots temporal and spatial errors in the log
scale at the time T = 0.5, respectively. We found that convergence orders are of the second-order in time
and spatial convergence is spectral accuracy. Furthermore, the energy errors is plotted in Figure 8 when
τ = 0.01, N = 256. It also shows that their global energy errors are oscillatory and bounded, and satisfy
O(τ2). And then the momentum and its error are plotted in Figure 9. It is also found that the momentum is
also equal to machine error. So, they preserve full discrete conservation properties well. Figure 10 displays
that the numerical solution use τ = 0.01, N = 256 for T = 2, with different α. It can be easily seen that the
figure on x and y axes are symmetrical and decay rapidly. Since a large amount of energy is concentrated
in the center of the peak, it has a prominent central wave crest. And the central wave crest becomes thicker
and slower with the increase of α. Therefore for the difference of α, it also has a certain influence on the
solution.
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Figure 7: Temporal errors (left) and spatial errors (right) for Example 5.2 with different α at T = 0.5.
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Figure 8: Energy errors of MSFP (left) and SFP (right) for Example 5.2 with different αwhen τ = 0.01, N = 256.
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Figure 9: Momentum and momentum errors for Example 5.2 with different αwhen τ = 0.01, N = 256.
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(a) α = 1.1 (b) α = 1.3

(c) α = 1.7 (d) α = 1.9

Figure 10: Numerical solutions for Example 5.2 with different α at T = 2.

6. Conclusions

This paper investigates structure-preserving numerical methods for the two dimensional nonlinear
fractional wave equation and discusses their convergence. According to using the variational principle
with fractional Laplace, the equations can be transformed into the Hamiltonian system. Then it is proposed
a structure-preserving method with the Fourier pseudospectral method in space and midpoint method in
time, and proved the discrete systems satisfy the corresponding conservation laws. Furthermore, one gives
a rigorous the energy error analysis of discrete symplectic and multi-symplectic systems. The convergence
is discussed in the discrete l2 norm, and the convergence order is O(τ2 + N−r). In the end, some examples
are given to illustrate the efficiency and accuracy of theoretical results.
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