
Filomat 38:12 (2024), 4241–4251
https://doi.org/10.2298/FIL2412241Z

Published by Faculty of Sciences and Mathematics,
University of Niš, Serbia
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Abstract. Let Xn be a chain with n elements (n ∈ N), and letOPn be the monoid of all orientation-preserving
transformations of Xn. Given a non-empty subset Y of Xn, we denote by OPn(Y) the subsemigroup of OPn

of all full orientation-preserving transformations with range contained in Y. We also denote by OPY

the semigroup of all singular orientation-preserving transformations of Y. In this article, we consider
the subsemigroup FOPn(Y) = {α ∈ OPn(Y) | im(α) = Yα} of OPn(Y): We characterize the connections
between the maximal (regular) subsemibands of the coreC(FOPn(Y)) ofFOPn(Y) and the maximal (regular)
subsemibands of OPY. Moreover, we compute the rank of the semigroup FOPn(Y) and characterize the
structure of the idempotent generating sets of the semigroup C(FOPn(Y)). We also determine the maximal
subsemibands as well as the maximal regular subsemibans of the semigroup C(FOPn(Y)).

1. Introduction and preliminaries

Let Xn be a chain with n elements, say Xn = {1 < 2 < · · · < n}. We denote by Tn the monoid of all full
transformations on Xn. We say that a transformation α ∈ Tn is order-preserving if x ≤ y implies xα ≤ yα,
for all x, y ∈ Xn. Denote by On the submonoid of Tn of all full order-preserving transformations of Xn.
Let c = (c1, c2, . . . , ct) be a sequence of t (t ≥ 0) elements from the chain Xn. We say that c is cyclic if there
exists no more than one index i ∈ {1, . . . , t} such that ci > ci+1, where ct+1 denotes c1. We say that α ∈ Tn is
orientation-preserving if the sequence of its image (1α, 2α, . . . ,nα) is cyclic. Denote by OPn the submonoid of
Tn of all full orientation-preserving transformations of Xn.

The notion of an orientation-preserving transformation was introduced by McAlister in [3] and, inde-
pendently, by Catarino and Higgins in [3]. Several properties of the monoid OPn have been investigated in
these two articles. A presentation for the monoidOPn, in terms of 2n− 1 generators, was given by Catarino
in [2]. Another presentation for OPn, in terms of 2 (its rank) generators, was found by Arthur and Rus̆kuc
[1]. The congruences of the monoid OPn was completely described by Fernandes et al. in [5].

Let Y be a non-empty subset of Xn, we denote by OPn(Y) the subsemigroup {α ∈ OPn | im(α) ⊆ Y}
of OPn of all elements with range (image) restricted to Y. We also denote by OPY the monoid of all full
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orientation-preserving transformations of Y, by CY the cycle group on Y and by OPY the subsemigroup
OPY\CY of OPY of all singular orientation-preserving transformations.

In the abstract theory of semigroups, idempotents are extremely important in the structure theory of
semigroups, both finite and infinite. They help classify different types of semigroups, identify subgroups,
determine left or right ideals, and describe the general structure of a given semigroup. In 2016, Fernandes
et al.[6] consider the subsemigroup of OPn(Y) defined by

FOPn(Y) = {α ∈ OPn(Y) | im(α) = Yα}.

Notice that, if Y = Xn, thenFOPn(Y) = OPn. They computed the rank ofOPn(Y) and showed thatFOPn(Y)
is the largest regular subsemigroup ofOPn(Y). However, the results about algebraic and maximal properties
of the semigroupFOPn(Y) are very few. In view of the above work, we can consider the coreC(FOPn(Y)) of
the semigroupFOPn(Y). The main aim of this paper is to study the semigroupC(FOPn(Y)), the structure of
the idempotent generating sets of the semigroupC(FOPn(Y)) are characterized and complete classifications
of maximal subsemigroups as well as the maximal regular subsemibans of the semigroup C(FOPn(Y)) are
obtained.

This paper is organized as follows. We characterize the connections between the maximal (regular) sub-
semibands of the core C(FOPn(Y)) of the semigroup FOPn(Y) and the maximal (regular) subsemibands
of OPY in Sec.2. In Sec.3, we compute the rank of the semigroup FOPn(Y). In Sec.4, we characterize the
structure of the idempotent generating sets of the core C(FOPn(Y)) of the semigroup FOPn(Y). As appli-
cations, we compute the number of distinct minimal (idempotent) generating sets of C(FOPn(Y)). In Sec.5,
we determine the maximal subsemibands as well as the maximal regular subsemibands of C(FOPn(Y)).

Remark 1 In this paper, it will always be from context when additions are taken modulo n (or modulo t
where t is the number of elements of any sequence).

Let S be a semigroup. Given a subset U of a semigroup S and α ∈ S, we denote by E(U) the set of
idempotents of S belonging to U and by Lα, Rα and Hα the L -class, R-class and H -class of α, respectively.
For general background on Semigroup Theory, we refer the reader to Howie’s book [8].

2. Preliminary results

In this section, we present several structural properties of the core C(FOPn(Y)) of the semigroup
FOPn(Y).

Let Y be a non-empty subset of Xn with |Y| = r. Throughout this paper we always assume that
Y = {y1 < y2 < · · · < yr}.

If α ∈ Tn, we will write

α =

(
A1 . . . Am
a1 . . . am

)
to indicate that Xn = A1 ∪ · · · ∪ Am, im(α) = {a1, . . . , am} and Aiα = ai for each i ∈ {1, . . . ,m}. As usual, we
denote the kernel of α ∈ Tn by

ker(α) = {(x, y) ∈ Xn × Xn | xα = yα}.

We will sometimes write ker(α) = (A1| . . . |Am) to indicate that ker(α) has equivalence classes A1, . . . ,Am, and
this notation will always imply that Ai are pairwise disjoint and non-empty.

Green’s relations on FOPn(Y) are characterized by

αL β if and only if im(α) = im(β),

αRβ if and only if ker(α) = ker(β),
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αJ β if and only if | im(α)| = | im(β)|.

Regarding Green’s relation H , if α is an element of FOPn(Y) of rank k, for 1 ≤ k ≤ r, then the H-class in
FOPn(Y) of α is a cycle group of order k (see [6, Theorem 2.2]). Notice that the J-class Jr has exactly one
L-class. Thus each R-class in Jr is anH-class.

From the above fact, we know that the semigroup FOPn(Y) has r J-classes, namely J1, . . . , Jr, where
Jk = {α ∈ FOPn(Y) | | im(α)| = k}. For 1 ≤ k ≤ r, let

Qn(k) = {α ∈ FOPn(Y) | | im(α)| ≤ k}.

Then the sets Qn(k) are the two-sided ideals of FOPn(Y) and Qn(k) = J1 ∪ J1 · · · ∪ Jk.

Lemma 2.1. Let α ∈ FOPn(Y). Then there exists λα ∈ E(Jr) such that α = λαα = λα(α|Y).

Proof. Suppose that ker(α) = (A1| . . . |Ak). Put

ε =

(
A1 . . . Ak

minA1 . . . minAk

)
.

Then ε2 = ε and α = εα. By refining adequately the kernel of εwe can get an idempotent λα of rank r which
is R-above ε, that is, satisfies λαε = ε. Then

λαα = λα(εα) = (λαε)α = εα = α.

Thus clearly α = λαα = λα(α|Y).

Let λ ∈ E(Jr) and α ∈ OPY. Notice that im(λ) = dom(α) = Y. Then clearly λα ∈ FOPn(X,Y). Thus
E(Jr)OPY ⊆ FOPn(Y). From Lemma 2.1, we easily obtain the following result:

Lemma 2.2. FOPn(Y) = E(Jr)OPY.

For 1 ≤ k ≤ r, let
Ir(k) = {α ∈ OPY | | im(α)| ≤ k}.

Then the sets Ir(k) are the two-sided ideals of OPY. Clearly Ir(r) = OPY and Ir(r − 1) = OPY.

Notice that Qn(r) = FOPn(Y) = E(Jr)Ir(r) (by Lemma 2.2). In fact, we have the following lemma:

Lemma 2.3. Let 1 ≤ k ≤ r − 1. Then Qn(k) = E(Jr)Ir(k).

Proof. Let α ∈ Qn(k) be arbitrary. Then, by Lemma 2.1, there exists λα ∈ E(Jr) such that α = λα(α|Y). Notice
that | im(α|Y)| = | im(α)| ≤ k and α|Y ∈ OPY. Then α = λα(α|Y) ∈ E(Jr)Ir(k). Thus Qn(k) ⊆ E(Jr)Ir(k).

Conversely, let λ ∈ E(Jr) and γ ∈ Ir(k) be arbitrary. Then | im(λγ)| = | im(γ)| ≤ k and λγ ∈ E(Jr)Ir(k) ⊆
E(Jr)OPY = FOPn(Y) (by Lemma 2.2). Thus λγ ∈ Qn(k). Hence E(Jr)Ir(k) ⊆ Qn(k).

Recall that a right identity of a semigroup S is an element u ∈ S such that x = xu for all x ∈ S. It is obvious
that the elements of E(Jr) are right identities of FOPn(Y).

Lemma 2.4. Let 1 ≤ k ≤ r − 1. Then Qn(k) = ⟨E(Jk)⟩.

Proof. Let α ∈ Qn(k) be arbitrary. Then, by Lemma 2.1, there exist λ ∈ E(Jr) and β ∈ Ir(k) such that α = λβ.
Notice that α ∈ OPY and | im(α)| ≤ k. Since k ≤ r − 1, then, by [12, Lemma 2.3], there exist idempotents
ε1, ε2, . . . , εm ∈ OPY each of which has rank k such that β = ε1ε2 . . . εm. Notice that the elements of E(Jr)
are right identities. It follows that (λεi)2 = (λεi)(λεi) = λ(εi)2 = λεi and so α = λβ = λε1ε2 . . . εm =
(λε1)(λε2) . . . (λεm) ∈ ⟨E(Jk)⟩.
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Recall that the subsemigroup ⟨E(S)⟩ of a semigroup S is called the core of S, and S is said to be a semiband
if T equals its own core. We denote by C(S) the core of S.

Lemma 2.5. Let n ≥ 3. Then E(Jr) is a left zero subsemigroup of FOPn(Y) and

C(FOPn(Y)) = E(Jr) ∪ Qn(r − 1).

Proof. Let λ, µ ∈ E(Jr) be arbitrary. Then λ|Y = µ|Y = 1Y and im(λ) = im(µ) = Y. Then λµ = λ1Y = λ. Then
E(Jr) is a left zero subsemigroup of FOPn(Y). Notice that Qn(r − 1) = ⟨E(Qn(r − 1))⟩ (by Lemma 2.4). It
follows that

E(Jr) ∪ Qn(r − 1) = ⟨E(Jr) ∪ Qn(r − 1)⟩ = ⟨E(Jr) ∪ E(Qn(r − 1))⟩ = ⟨E(FOPn(Y))⟩.

Thus C(FOPn(Y)) = E(Jr) ∪ Qn(r − 1).

Notice that OPY = OPY\CY. Let S be a subsemigroup of OPY. We define

S∆ = E(Jr)S1Y .

Notice that the elements of E(Jr) are right identities of FOPn(X,Y). In fact, it is obvious that αλ = α, for
α ∈ OPY, λ ∈ E(Jr). Then S∆ is a semigroup. Now, we define a mapping ϕ : S∆ −→ S1Y by the rule that, for
any λα ∈ S∆ with λ ∈ E(Jr) and α ∈ S1Y ,

(λα)ϕ = α.

Notice again that the elements of E(Jr) are right identities. The following lemma is immediate by the
definition of the mapping ϕ:

Lemma 2.6. Let S be a subsemigroup of OPY. Then the map ϕ is an epimorphism.

Let λ ∈ E(Jr) and α ∈ OPY. Notice that λ|Y = 1Y. Then clearly (λα)|Y = α. With this fact, we can prove
the following result:

Lemma 2.7. Let S and T be subsemigroups of OPY. Then S∆ = T∆ if and only if S = T.

Proof. If S = T, then clearly S∆ = T∆. Conversely, suppose that S∆ = T∆, i.e., E(Jr)S1Y = E(Jr)T1Y . Let α ∈ S
be arbitrary, and let λ ∈ E(Jr). Then λα ∈ E(Jr)S1Y = E(Jr)T1Y . Thus there exist µ ∈ E(Jr) and β ∈ T1Y such that
λα = µβ. It follows that α = (λα)|Y = (µβ)|Y = β ∈ T1Y . Since α ∈ S ⊆ OPY, we have α , 1Y and so α = β ∈ T.
Thus S ⊆ T. Similarly, we can prove that T ⊆ S. Hence S = T.

Notice also that the elements of E(Jr) are right identities. This observation allows us to easily deduce
the following properties:

Lemma 2.8. Let S be a subsemigroup of OPY. Then

(1) S is regular if and only if S∆ is regular.
(2) S is a semiband if and only if S∆ is a semiband.

(3) S = OPY if and only if S∆ = C(FOPn(Y)).

Proof. (1) Suppose that S∆ is regular. Then, by Lemma 2.6, S1Y is regular and so S is regular. Conversely,
suppose that S is regular. Let α ∈ S∆ be arbitrary. Then there exist λ ∈ E(Jr) and β ∈ S1Y such that α = λβ.
Then λ|Y = 1Y, and there exists β∗ ∈ S1Y such that β = ββ∗β. Notice that the elements of E(Jr) are right
identities. Let α∗ = λβ∗. Then α∗ ∈ E(Jr)S1Y = S∆ and αα∗α = (λβ)(λβ∗)(λβ) = λ(ββ∗β) = λβ = α. Thus S∆ is
regular.
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(2) Suppose that S∆ is a semiband. Then, by Lemma 2.6, S1Y is a semiband and so S is a semiband.
Conversely, suppose that S is a semiband. Then S = ⟨E(S)⟩ and so S∆ = E(Jr)⟨E(S)⟩1Y . Let α ∈ S∆ be arbitrary.
Then there exist λ ∈ E(Jr) and ε1, . . . , εm ∈ E(S)1Y such that α = λε1 . . . εm. Notice that the elements of E(Jr)
are right identities. Since (λεi)2 = (λεi)(λεi) = λεiεi = λεi, we have λεi ∈ E(S∆), for 1 ≤ i ≤ m. Then
α = λε1 . . . εm = (λε1)(λε2) . . . (λεm) ∈ ⟨E(S∆)⟩. Thus S∆ is a semiband.

(3) Suppose that S = OPY. Then, by Lemmas 2.3 and 2.5, S∆ = E(Jr)OP
1Y

Y = E(Jr) ∪ E(Jr)Ir(r − 1) =
E(Jr) ∪ Qn(r − 1) = C(FOPn(Y)). Conversely, suppose that S∆ = C(FOPn(Y)). Then, by Lemmas 2.3 and

2.5, S∆ = C(FOPn(Y)) = E(Jr) ∪ Qn(r − 1) = E(Jr) ∪ E(Jr)Ir(r − 1) = E(Jr)OP
1Y

Y = OP
∆

Y. Thus, by Lemma 2.7,
S = OPY.

Lemma 2.9. Let S be a subsemigroup of C(FOPn(Y)). Let MS = {α|Y | α ∈ S}\{1Y}. If E(Jr) ⊆ S, then S =M∆
S .

Proof. Let α ∈ S be arbitrary. Then, by Lemma 2.1, there exists λα ∈ E(Jr) such that α = λα(α|Y). Then
α = λα(α|Y) ∈ E(Jr)M1Y

S = M∆
S . Thus S ⊆ M∆

S . Conversely, let α ∈ M∆
S = E(Jr)M1Y

S be arbitrary. Then there
exist ε ∈ E(Jr) and β ∈ S such that α = ε(β|Y) (notice that, if β ∈ E(Jr) ⊆ S, then β|Y = 1Y). By Lemma 2.1,
there exists λβ ∈ E(Jr) such that β = λβ(β|Y). Notice that the elements of E(Jr) are right identities. Then
α = ε(β|Y) = ελβ(β|Y) = ε[λβ(β|Y)] = εβ. It follows from E(Jr) ⊆ S that α = εβ ∈ S. Then M∆

S ⊆ S.

We shall say that a proper subsemigroup S of C(FOPn(Y)) is maximal (regular) subsemiband if S is a
(regular) subsemiband, and any (regular) subsemiband of C(FOPn(Y)) properly containing S must be
C(FOPn(Y)). Using Lemmas 2.7, 2.8 and 2.9, we can prove the following result:

Theorem 2.10. Let S be a subsemigroup of OPY. Then S is a maximal (regular) subsemiband of OPY if and only if
S∆ is a maximal (regular) subsemiband of C(FOPn(Y)).

Proof. Suppose that S is a maximal (regular) subsemiband of OPY. Then, by Lemma 2.8, S∆ is a (regular)
subsemiband of C(FOPn(Y)). Suppose that S∆ is not a maximal (regular) subsemiband of C(FOPn(Y)).
Then there exists a maximal (regular) subsemiband T of C(FOPn(Y)) such that S∆ ⊂ T ⊂ C(FOPn(Y)).
Notice that E(Jr) ⊆ E(Jr)S1Y = S∆ ⊂ T. Put MT = {α|Y | α ∈ T}\{1Y}. Then, by Lemma 2.9, T = M∆

T . Notice
that T is a (regular) semiband. Thus, by Lemma 2.8, MT is a (regular) semiband of OPY. Let α ∈ S ⊆ OPY
be arbitrary, and let λ ∈ E(Jr). Clearly α , 1Y. Then λα ∈ E(Jr)S1Y = S∆ ⊂ T. Thus α = (λα)|Y ∈ MT. Thus
S ⊆ MT. By the maximality of S, we have MT = OPY or S = MT. If MT = OPY, then, by Lemma 2.8,

T =M∆
T = OP

∆

Y = C(FOPn(Y)), a contradiction. If S =MT, then S∆ =M∆
T = T, a contradiction.

Conversely, suppose that S∆ is a maximal (regular) subsemiband of C(FOPn(Y)). Then, by Lemma 2.8,
S is a (regular) subsemiband of OPY. Suppose that S is not a maximal (regular) subsemiband of OPY. Then
there exists a maximal (regular) subsemiband M ofOPY such that S ⊂M ⊂ OPY. Notice that M∆ = E(Jr)M1Y .
Then, by Lemma 2.8, M∆ is a (regular) subsemiband of C(FOPn(Y)). Clearly S∆ ⊆ M∆. By the maximality
of S, we have M∆ = C(FOPn(Y)) or S∆ = M∆. If M∆ = C(FOPn(Y)), then, by Lemma 2.8, M = OPY, a
contradiction. If S∆ =M∆, then, by Lemma 2.7, M = S, a contradiction.

3. Rank of the semigroup FOPn(Y)

In this section, we compute the rank of the semigroup FOPn(Y).
We denote by [i, k] the set {i, i + 1, . . . , k − 1, k} for i, k ∈ Xn. A subset C of Xn is said to be convex if C has

the form [i, i+ t], for some i, k ∈ Xn and 0 ≤ t ≤ n−1. We shall refer to an equivalence π on Xn as convex if its
classes are convex subsets of Xn, and we shall say that π is of weight k if |X/π| = k. An convex equivalence
π on Xn is Y-convex if each class of π contains at least one element of Y.

It is known that every kernel ker(α) of α ∈ FOPn(Y)(⊆ OPn) is convex (see [3]). Let α ∈ Jr. Considering
the kernel classes of α, we obtain a type of partitions of the domain Xn of α into convex subsets:
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dom(α) = Xn = ∪
r
i=1Pi with α =

(
P1
a1

∣∣∣∣∣ · · ·· · ·
∣∣∣∣∣ Pr

ar

)
, and Pi ∩ Y , ∅, for 1 ≤ i ≤ r.

Notice that P1, . . . ,Pr are precisely the kernel classes of α. We can associate to α a Y-convex relation of
weight r (with classes P1, . . . ,Pr). Therefore the number of R-classes of FOPn(Y) of rank r is equal to the
number of Y-convex equivalences of weight r on Xn.

Notice that Y = {y1 < y2 < · · · < yr}. Put

mi = |{x ∈ Xn | yi < x < yi+1}|, 1 ≤ i ≤ r − 1, and mr = |{x ∈ Xn | x < y1} ∪ {x ∈ Xn | x > yr}|.

Then mi + 1 = yi+1 − yi, for 1 ≤ i ≤ r− 1, and mr = n− (yr − y1 + 1). We denote by pr the number of Y-convex
equivalences of weight r on Xn. Then clearly

pr = (m1 + 1)(m2 + 1) . . . (mr−1 + 1)(mr + 1) =
∏

r−1
i=1 (yi+1 − yi)[n − (yr − y1)].

Thus the number of R-classes of FOPn(Y) of rank r is pr. Notice also that eachH-class in Jr is a cycle group
of order r (see [6, Theorem 2.2]) and each R-class in Jr is an H-class. Then the J-class Jr is a union of pr
groups, each of which is a cycle group of order r.

As usual, the rank of a semigroup S is defined by rank S = min{|A| | A ⊆ S, ⟨A⟩ = S}. If S is generated by
its set E of idempotents, then the idempotent rank of S is defined by idrank S = min{|A| | A ⊆ E, ⟨A⟩ = S}.
Clearly, rank S ≤ idrank S.

Let α, β ∈ Jr be arbitrary. Then im(α) = im(β) = Y. Thus clearly im(αβ) = im(β) and so αβ ∈ Jr. Hence
Jr is a semigroup. Now, notice that, if α is an element of FOPn(Y) of rank r and β and γ are two elements
of FOPn(Y) such that α = βγ, then ker(α) = ker(β) and im(α) = im(γ). Then any generating set of the
semigroup Jr contains at least one element of rank r from each R-classes of FOPn(Y) of rank r. Thus
rank Jr ≥ pr.

Lemma 3.1. Let 2 ≤ r ≤ n. Then rank Jr =
∏r−1

i=1 (yi+1 − yi)[n − (yr − y1)].

Proof. Notice that the J-class Jr is a union of pr groups, each of which is a cycle group of order r. We can
suppose that

Jr =
⋃

pr

i=1Hi =
⋃

pr

i=1⟨λi⟩,

where Hi is a cycle group of order r and λi is a generator of cyclic group Hi, for 1 ≤ i ≤ r. Let G =
{λ1, λ2, . . . , λpr }. Then Jr =

⋃pr

i=1 Hi ⊆ ⟨G⟩. Notice that G ⊆ Jr. Then ⟨G⟩ ⊆ ⟨Jr⟩ = Jr. Thus Jr = ⟨G⟩. Since the
set G has cardinality pr, which equals the number of R-classes of FOPn(Y) of rank r, it follows immediately
that rank Jr = pr =

∏r−1
i=1 (yi+1 − yi)[n − (yr − y1)].

Since Jr is a subsemigroup of FOPn(Y), then any element of Qn(r − 1) cannot be generated by elements
of Jr. And it is clear that if α ∈ Jr and α = βγ, then β, γ ∈ Jr. Then rankFOPn(Y) ≥ rank Jr + 1.

Theorem 3.2. Let 2 ≤ r ≤ n. Then

rankFOPn(Y) =
∏

r−1
i=1 (yi+1 − yi)[n − (yr − y1)] + 1.

Proof. Put

1 =

(
y1 . . . yr−1 yr
y2 . . . yr y1

)
and ϵ =

(
y1 y2 . . . yr
y2 y2 . . . yr

)
.

Then OPY = ⟨ϵ, 1⟩ (see [4, Proposition 1.3] and CY = ⟨1⟩. Now, take λ ∈ E(Jr) and let η = λϵ. Notice that the
elements of E(Jr) are right identities and E(Jr)1 ⊆ Jr and αλ = α, for α ∈ OPY, λ ∈ E(Jr). It follows that

E(Jr)⟨ϵ, 1⟩ = ⟨E(Jr)ϵ,E(Jr)1⟩ ⊆ ⟨E(Jr)ϵ, Jr⟩
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and
E(Jr)ϵ = E(Jr)λϵ = E(Jr)η ⊆ Jrη ⊆ ⟨Jr ∪ {η}⟩.

Then, by Lemma 2.2,

FOPn(Y) = E(Jr)OPY = E(Jr)⟨ϵ, 1⟩ = ⟨E(Jr)ϵ,E(Jr)1⟩ ⊆ ⟨Jr ∪ {η}⟩.

Thus FOPn(Y) = ⟨Jr ∪ {η}⟩. Let A be a generating set of Jr with |A| = rank Jr. Then FOPn(Y) = ⟨A∪ {η}⟩ and
so rankFOPn(Y) ≤ |A| + 1 = rank Jr + 1. Since rankFOPn(Y) ≥ rank Jr + 1, it follows that rankFOPn(Y) =
rank Jr + 1. Thus, by Lemma 3.1, rankFOPn(Y) = pr + 1 =

∏r−1
i=1 (yi+1 − yi)[n − (yr − y1)] + 1.

4. The idempotent-generated sets of C(FOPn(Y))

In this section, we characterize the structure of the idempotent generating sets of the core C(FOPn(Y))
of FOPn(Y). As applications, we compute the number of distinct minimal idempotent generating sets of
C(FOPn(Y)).

Notice that OPY = OPY\CY. For 1 ≤ i ≤ r, let

τi =

(
y1 . . . yi−1 yi yi+1 yi+2 . . . yr
y1 . . . yi−1 yi+1 yi+1 yi+2 . . . yr

)
and

ςi =

(
y1 . . . yi−1 yi yi+1 yi+2 . . . yr
y1 . . . yi−1 yi yi yi+2 . . . yr

)
.

Then τi and ςi are idempotents in OPY of rank r − 1. Notice that τr =

(
y1 . . . yr−1 yr
y1 . . . yr−1 y1

)
and ςr =(

y2 . . . yr y1
y2 . . . yr yr

)
. We denoted by EOPY

r−1 the set of all idempotents in OPY of rank r − 1. For 1 ≤ i ≤ r, let

E(OPY ,+)
r−1 = {τi | 1 ≤ i ≤ r} and E(OPY ,−)

n−1 = {ςi | 1 ≤ i ≤ r}.

Then EOPY
r−1 = E(OPY ,+)

r−1 ∪ E(OPY ,−)
r−1 . Recall that Zhao, Xu and Yang [13, Theorem 2.1] proved the following

lemma:

Lemma 4.1. Let G be subset of E(OPY). Then

⟨G⟩ = OPY i f and only i f E(OPY ,+)
r−1 ⊆ G or E(OPY ,−)

r−1 ⊆ G.

For α ∈ OPY, we define
∆α = {β ∈ FOPn(Y) | β|Y = α}.

Notice that if β ∈ ∆α, then im(β) = im(α).

Now, it is easy to prove the main result of this section:

Theorem 4.2. Let E be an idempotent set of C(FOPn(Y)). Then E is an idempotent generating set of C(FOPn(Y))

if and only if E(Jr) ⊆ E and E ∩ ∆ε , ∅, for all ε ∈ E(OPY ,+)
r−1 or E ∩ ∆ε , ∅, for all ε ∈ E(OPY ,−)

r−1 .

Proof. Notice that OPY = Ir(r − 1). By Lemmas 2.3 and 2.5, we have

C(FOPn(Y)) = E(Jr) ∪ E(Jr)OPY = E(Jr)(OPY)1Y .
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Let E be an idempotent generating set of C(FOPn(Y)). Let λ ∈ E(Jr) be arbitrary. Then there exist
ε1, . . . , εm ∈ E such that λ = ε1 . . . εm. Notice that the elements of E(Jr) are right identities. Then

ε1 = ε1λ = ε
2
1ε2 . . . εm = ε1 . . . εm = λ

and so λ = ε1 ∈ E. Thus E(Jr) ⊆ E. Suppose that there exist σ ∈ E(OPY ,+)
r−1 and ρ ∈ E(OPY ,−)

r−1 such that E∩∆σ = ∅

and E ∩ ∆ρ = ∅. Notice that EOPY
r−1 = E(OPY ,+)

r−1 ∪ E(OPY ,−)
r−1 and C(FOPn(Y)) = E(Jr) ∪ Qn(r − 1). Let δ ∈ EOPY

r−1 be
arbitrary. Take δ̂ ∈ ∆δ ⊆ Qn(r − 1) ⊆ C(FOPn(Y)). Since E is an idempotent generating set of C(FOPn(Y)),
there exist ε1, ε2, · · · , εm ∈ E such that δ̂ = ε1ε2 · · · εm. Since | im(δ̂)| = | im(δ)| = r− 1, we have | im(ε j)| ≥ r− 1,
for 1 ≤ j ≤ m (otherwise | im(δ̂)| = | im(ε1ε2 · · · · εm)| ≤ r − 2, a contradiction). Notice again that E ∩ ∆σ = ∅

and E ∩ ∆ρ = ∅. If | im(ε j)| = r − 1, then ε j|Y ∈ EOPY
r−1 \{σ, ρ}; if | im(ε j)| = r, then ε j|Y = 1Y. Thus

δ = δ̂|Y = ε1|Yε2|Y · · · εm|Y ∈ ⟨EOPY
r−1 \{σ, ρ} ∪ {1Y}⟩ = ⟨EOPY

r−1 \{σ, ρ}⟩ ∪ {1Y}.

It follows from δ ∈ EOPY
r−1 that δ ∈ ⟨EOPY

r−1 \{σ, ρ}⟩. Hence EOPY
r−1 ⊆ ⟨E

OPY
r−1 \{σ, ρ}⟩. By Lemma 4.1, we have

⟨EOPY
r−1 \{σ, ρ}⟩ = ⟨E

OPY
r−1 ⟩ = OPY. Then EOPY

r−1 \{σ, ρ} is an idempotent-generating set of OPY, a contradition (by
Lemma 4.1 again).

Conversely, notice that E(Jr) ⊆ E ⊆ ⟨E⟩ and each α ∈ Qn(r − 1) has the form α = λβ with λ ∈ E(Jr) and

β ∈ OPY, where β = ε1ε2 . . . εm with ε1, . . . , εm ∈ E(OPY ,+)
r−1 or ε1, . . . , εm ∈ E(OPY ,−)

r−1 (by Lemmas 2.3 and 4.1).
Since λ ∈ E(Jr) ⊆ E, and there exist ε̂i ∈ ∆εi ∩ E, for 1 ≤ i ≤ m, we have

α = λβ = λε1ε2 . . . εm = λ(ε̂1|Y)(ε̂2|Y) . . . (ε̂m|Y) = λε̂1ε̂2 . . . ε̂m ∈ ⟨E⟩.

Then Qn(r − 1) ⊆ ⟨E⟩. Thus C(FOPn(Y)) = E(Jr) ∪ Qn(r − 1) = ⟨E⟩.

Let E be an idempotent generating set of C(FOPn(Y)). Then, by Theorem 4.2, E is a minimal idempotent
generating set of C(FOPn(Y)) if and only if E(Jr) ⊆ E and E be the subset having exactly one element from

each ∆ε, for all ε ∈ E(OPY ,+)
r−1 or ε ∈ E(OPY ,−)

r−1 . Notice that
∏
ε∈E(OPY ,+)

r−1

|∆ε| =
∏
ε∈E(OPY ,−)

r−1

|∆ε|. Thus, we immediately

deduce:

Corollary 4.3. Let E be a minimal idempotent generating set of C(FOPn(Y)). Then the number of distinct sets E is∏
ε∈E(OPY ,+)

r−1

|∆ε| + 1.

5. The subsemigroups of C(FOPn(Y))

In this section, we determine the maximal subsemibands as well as the maximal regular subsemibands
of C(FOPn(Y)).

As in [10], let k ∈ {0, 1, 2, · · · ,n − 1}, define a total order ≤k on Xn by

k + 1 ≤k k + 2 ≤k · · · ≤k n ≤k 1 ≤k · · · ≤k k.

We also use k ≥ to denote ≤k. Notice that Y = {y1 < y2 < · · · < yr}. We denote by OY the subsemigroup of
T (Y) of all order-preserving transformations of Y. Let OY = O(Y)\{1Y}. For 1 ≤ k ≤ r, let

O
k
Y = {a

−k f ak : f ∈ OY},
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where a = (y1y2 . . . yr) is the fixed generator of cyclic group CY. For 1 ≤ i, j ≤ r, let

Mr,(yi,y j) = ⟨E
OPY
r−1 \{τi, ς j−1}⟩.

The following lemma was proved by Zhao, Xu and Yang [13, Lemma 2.2]:

Lemma 5.1. Let 1 ≤ i ≤ r. Then O
i
Y =Mr,(yi,yi+1).

For 1 ≤ i, j, k ≤ r, let

Sk
r, j = {α ∈ O

k
Y | (∀x ∈ Y) x yk ≥ y j =⇒ xα yk ≥ y j}, j , k + 1 (mod(r)),

Tk
r, j = { α ∈ O

k
Y | (∀x ∈ Y) x ≤yk y j =⇒ xα ≤yk y j}, j , k (mod(r)).

Sk
j = {α ∈ C(FOPn(Y)) | (∀x ∈ Xn) x yk ≥ y j =⇒ xα yk ≥ y j and α|Y ∈ O

k
Y}, j , k + 1 (mod(r)),

Tk
j = {α ∈ C(FOPn(Y)) | (∀x ∈ Xn) x ≤yk y j =⇒ xα ≤yk y j and α|Y ∈ O

k
Y}, j , k (mod(r)).

Lemma 5.2. Let 1 ≤ j, k ≤ r. Then Sk
j = E(Jr)Sk

r, j and Tk
j = E(Jr)Tk

r, j.

Proof. Let α ∈ Sk
j be arbitrary. Then α|Y ∈ O

k
Y and (∀ x ∈ Y ⊆ Xn) x yk ≥ y j =⇒ xα yk ≥ y j. Thus α|Y ∈ Sk

r, j. By

Lemma 2.1, there exists λα ∈ E(Jr) such that α = λα(α|Y). Then α = λα(α|Y) ∈ E(Jr)Sk
r, j. Thus Sk

j ⊆ E(Jr)Sk
r, j.

Conversely, let λ ∈ E(Jr) and α ∈ Sk
r, j be arbitrary. Clearly λα ∈ FOPn(Y). Since α ∈ Sk

r, j and λ|Y = 1Y, we
have

(λα)|Y = α ∈ Sk
r, j ⊆ O

k
Y

and
x yk ≥ y j =⇒ xλα = xα yk ≥ y j (∀x ∈ Y).

Then λα ∈ Sk
j . Thus E(Jr)Sk

r, j ⊆ Sk
j . Hence Sk

j = E(Jr)Sk
r, j. Similarly, we can prove that Tk

j = E(Jr)Tk
r, j.

Lemma 5.3. Let 1 ≤ i ≤ r. Then

E(Jr)Mr,(yi,yi+1) = {α ∈ C(FOPn(Y)) | α|Y ∈ O
i
Y}.

Proof. Let S = {α ∈ C(FOPn(Y)) | α|Y ∈ O
i
Y}. Let α ∈ S be arbitrary. Then, Lemma 5.1, α|Y ∈ O

i
Y = Mr,(yi,yi+1).

By Lemma 2.1, there exists λα ∈ E(Jr) such that α = λα(α|Y). Then α = λα(α|Y) ∈ E(Jr)Mr,(yi,yi+1). Thus
S ⊆ E(Jr)Mr,(yi,yi+1). Conversely, let λ ∈ E(Jr) and α ∈Mr,(yi,yi+1) be arbitrary. Clearly λα ∈ FOPn(Y). Then, by

Lemma 5.1, (λα)|Y = α ∈Mr,(yi,yi+1) = O
i
Y and so λα ∈ S. Thus E(Jr)Mr,(yi,yi+1) ⊆ S.

Recall that Zhao [10, Lemma 3.2 and Theorem 2.7] proved:

Lemma 5.4. Each maximal subsemiband S of OPY must be one of the following forms:
(A) S = Ir(r − 2) ∪Mr,(yi,yi+1), 1 ≤ i ≤ r.

(B) S = Ir(r − 2) ∪ Si
r, j ∪ T j−1

r,i , j , i + 1 (mod(r)), 1 ≤ i ≤ r.

Now, it is easy to prove the following result:
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Theorem 5.5. Each maximal subsemiband S of C(FOPn(Y)) must be one of the following forms:
(A) S = C(FOPn(Y))\{ε}, ε ∈ E(Jr).

(B) S = Qn(r − 2) ∪ E(Jr) ∪ {α ∈ Jr−1 | α|Y ∈ O
i
Y}, 1 ≤ i ≤ r.

(C) S = Qn(r − 2) ∪ E(Jr) ∪ Si
j ∪ T j−1

i , j , i + 1 (mod(r)), 1 ≤ i ≤ r.

Proof. Notice that E(Jr) is a zero subsemigroup of FOPn(Y) (by Lemma 2.5). It is obvious that, for ε ∈
E(Jr), C(FOPn(Y))\{ε} is a maximal subsemiband of C(FOPn(Y)). Let S be a maximal subsemiband of
C(FOPn(Y)). If E(Jr)\S , ∅, then S = C(FOPn(Y))\{ε}, for some ε ∈ Jr. Let MS = {α|Y | α ∈ S}\{1Y}. If
E(Jr) ⊆ S, then, by Lemma 2.9, S = M∆

S = E(Jr)M1Y
S . Thus, by the maximality of S and Theorem 2.10, MS is a

maximal subsemiband of OPY. Hence, by Lemmas 2.3, 5.2, 5.3, 5.4 and Theorem 2.10, S must be one of the
following forms:

S = E(Jr)[Ir(r − 2) ∪Mr,(yi,yi+1)]1Y

= Q(r − 2) ∪ E(Jr) ∪ E(Jr)Mr,(yi,yi+1)

= Qn(r − 2) ∪ E(Jr) ∪ {α ∈ C(FOPn(Y)) | α|Y ∈ O
i
Y}

= Qn(r − 2) ∪ E(Jr) ∪ {α ∈ Jr−1 | α|Y ∈ O
i
Y}

or

S = E(Jr)[Ir(r − 2) ∪ (Si
r, j ∪ T j−1

r,i )]1Y

= Q(r − 2) ∪ E(Jr) ∪ E(Jr)(Si
r, j ∪ T j−1

r,i )

= Qn(r − 2) ∪ E(Jr) ∪ Si
j ∪ T j−1

i .

The following lemma was proved by Zhao [11, Lemma 2.4].

Lemma 5.6. Let 1 ≤ i ≤ r. Then Mr,(yi,yi) = {α ∈ OPY | yiα = yi}.

With above lemma, we can prove the following lemma:

Lemma 5.7. Let 1 ≤ i ≤ r. Then

E(Jr)Mr,(yi,yi) = {α ∈ C(FOPn(Y)) | yiα = yi}.

Proof. Let S = {α ∈ C(FOPn(Y)) | yiα = yi}. Let α ∈ S be arbitrary. Then, Lemma 5.6, α|Y ∈ {α ∈ OPY | yiα =
yi} = Mr,(yi,yi). By Lemma 2.1, there exists λα ∈ E(Jr) such that α = λα(α|Y). Then α = λα(α|Y) ∈ E(Jr)Mr,(yi,yi).
Thus S ⊆ E(Jr)Mr,(yi,yi). Conversely, let λ ∈ E(Jr) and α ∈ Mr,(yi,yi) be arbitrary. Then, by Lemma 5.6, yiα = yi
and so

yi(λα) = (yiλ)α = yiα = yi.

Thus λα ∈ S. Hence E(Jr)Mr,(yi,yi) ⊆ S.

Recall again that Zhao [11, Lemmas 2.4, 2.12 and Theorem 2.2] proved:

Lemma 5.8. Each maximal regular subsemiband S of OPY must be one of the following forms:
(A) S = Ir(r − 2) ∪Mr,(yi,yi+1), 1 ≤ i ≤ r.
(B) S = Ir(r − 2) ∪Mr,(yi,yi), 1 ≤ i ≤ r.

Finally, we can prove the following theorem:
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Theorem 5.9. Each maximal regular subsemiband S of C(FOPn(Y)) must be one of the following forms:
(A) S = C(FOPn(Y))\{ε}, ε ∈ E(Jr).

(B) S = Qn(r − 2) ∪ E(Jr) ∪ {α ∈ Jr−1 | α|Y ∈ O
i
Y}, 1 ≤ i ≤ r.

(C) S = Qn(r − 2) ∪ E(Jr) ∪ {α ∈ Jr−1 | yiα = yi}, 1 ≤ i ≤ r.

Proof. Notice that E(Jr) is a zero subsemigroup of FOPn(Y) (by Lemma 2.5). It is obvious that, for ε ∈ E(Jr),
C(FOPn(Y))\{ε} is a maximal regular subsemiband ofC(FOPn(Y)). Let S be a maximal regular subsemiband
of C(FOPn(Y)). If E(Jr)\S , ∅, then S = C(FOPn(Y))\{ε}, for some ε ∈ E(Jr). Let MS = {α|Y | α ∈ S}\{1Y}. If
E(Jr) ⊆ S, then, by Lemma 2.9, S = M∆

S = E(Jr)M1Y
S . Thus, by the maximality of S and Theorem 2.10, MS is

a maximal regular subsemiband of OPY. Hence, by Lemmas 2.3, 5.3, 5.7, 5.8 and Theorem 2.10, S must be
one of the following forms:

S = E(Jr)[Ir(r − 2) ∪Mr,(yi,yi+1)]1Y

= Q(r − 2) ∪ E(Jr) ∪ E(Jr)Mr,(yi,yi+1)

= Qn(r − 2) ∪ E(Jr) ∪ {α ∈ C(FOPn(Y)) | α|Y ∈ O
i
Y}

= Qn(r − 2) ∪ E(Jr) ∪ {α ∈ Jr−1 | α|Y ∈ O
i
Y}

or

S = E(Jr)[Ir(r − 2) ∪Mr,(yi,yi)]
1Y

= Q(r − 2) ∪ E(Jr) ∪ E(Jr)Mr,(yi,yi)

= Qn(r − 2) ∪ E(Jr) ∪ {α ∈ C(FOPn(Y)) | yiα = yi}

= Qn(r − 2) ∪ E(Jr) ∪ {α ∈ Jr−1 | yiα = yi}.
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