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Available at: http://www.pmf.ni.ac.rs/filomat

Hermitian elements and solutions of related equations in a ring with
involution

Mengge Guana, Anqi Lia, Junchao Weia

aCollege of mathematical science, Yangzhou University, Yangzhou, Jiangsu 225002, P. R. China

Abstract. In this paper, we mainly give some new equivalence portrayals of Hermitian elements in a
ring with involution. Firstly, we discuss some properties of Hermitian elements by means of Moore-
Penrose inverses, invertible elements and EP elements. Next, the Hermitian element is deconstructed
by constructing equations on the ring so that it has a solution on a specific set. Finally, we characterize
Hermitian elements by constructing the group inverses and MP inverses.

1. Introduction

Let R be a ring and a ∈ R. If there exists b ∈ R such that

aba = a, bab = a, ab = ba,

then a is called a group invertible element of R and b is called a group inverse of a [4, 8, 9], and it is unique,
usually we write it by a#. We write R# to denote the set of all group invertible elements of R.

If a map ∗ : R→ R satisfies

(a∗)∗ = a, (a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗ for a, b ∈ R,

then R is said to be an involution ring or a ∗−ring.
Let R be a ∗-ring and a ∈ R. If there exists b ∈ R such that

a = aba, b = bab, (ab)∗ = ab, (ba)∗ = ba,

then a is called a Moore Penrose invertible element, and b is called the Moore Penrese inverse of a [3, 6], and
it is unique, usually we record it as a+. Let R+ denote the set of all Moore Penrese invertible elements of R.

If a ∈ R#
∩ R+ and a# = a+, then a is called an EP element. On the studies of EP, the readers can refer to

[2, 3, 5, 7, 10–14].
If a ∈ R and a = a∗, then a is called Hermitian element. We write RHer to denote the set of all Hermitian

elements of R. Clearly, if a ∈ R+ is Hermitian, then a# = a+. [11].
The research hotspots of Hermitian elements are mainly matrix directions, and this paper gives some

new portrayals of Hermitian elements from the perspective of ring theory. In [11], many characterizations
of Hermitian elements are given. Motivated by these references, this paper mainly study the ways to
characterize Hermitian elements.
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2. Some characterizations of Hermitian elements

Lemma 2.1. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a∗a+a# = a#aa+.

Proof. “⇒ ” Assume that a ∈ RHer. Then a = a∗ and a# = a+. It follows that

a∗a+a# = aa+a# = a# = a#aa+.

“⇐ ” Since a∗a+a# = a#aa+, a∗a+a = (a∗a+a#)a2 = (a#aa+)a2 = a.
Then, multiplying a∗a+a = a by a+ from the right, we have

a∗a+ = aa+.

Hence a ∈ RHer by [11, Theorem 1.4.1].

Theorem 2.2. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if aa+a+a# = (a+)∗a+.

Proof. “⇒ ” Since a ∈ RHer, a∗a+a# = a#aa+ by Lemma 2.1. Multiplying the equality on the left by (a+)∗, one
has

aa+a+a# = (a+)∗a#aa+.
Noting that (a+)∗a#a = (a+)∗. Then aa+a+a# = (a+)∗a+.

“⇐ ” From the equality aa+a+a# = (a+)∗a+,we obtain

a∗a+a# = a∗(aa+a+a#) = a∗(a+)∗a+ = a+.

Hence a ∈ RHer by [11, Theorem 1.4.2].

Noting that aa+(a+)∗ = (a+)∗. Then Theorem 2.2 leads to the following corollary.

Corollary 2.3. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a+a+a# = a+(a+)∗a+.

Multiplying the equality of Corollary 2.3 on the left by (a#a)∗a, one has a+a# = (a#)∗a+, then we have:

Corollary 2.4. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a+a# = (a#)∗a+.

Proof. “⇒ ” Since a ∈ RHer, a∗ = a and a+ = a#. This infers

(a#)∗a+ = (a∗)#a+ = a#a+ = a+a#.

“⇐ ” From the condition a+a# = (a#)∗a+, one yields

a+a# = ((a#)∗a+)aa+ = a+a#aa+.

Hence a ∈ REP, this gives

a# = a#a#a = a+a#a = (a#)∗a+a = (a+)∗a+a = (a+)∗ = (a#)∗.

Thus a ∈ RHer.

Noting that a+a(a#)∗ = (a#)∗ and a# = aa+a#. Then Corollary 2.4 infers the following corollary.

Corollary 2.5. Let a ∈ R#
∩ R+. Then the followings are equivalent:

(1) a ∈ RHer;
(2) a# = a(a#)∗a+;
(3) a+ = a(a#)∗a+.

Proof. (1)⇔ (2) It follows from Corollary 2.4.
(2)⇒ (3) Since a# = a(a#)∗a+, we have

aa+ = aa#aa+ = a2(a#)∗a+aa+ = a2(a#)∗a+ = aa#.

Hence a ∈ REP, this implies a+ = a# = a(a#)∗a+.
(3)⇒ (2) Suppose that a+ = a(a#)∗a+. Then we have

a+a = a((a#)∗a+a) = a#a(a(a#)∗a+a) = a#aa+a = a#a.

Hence a ∈ REP. Then a# = a+ = a(a#)∗a+.
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3. Construct Moore-Penrose inverses to characterize Hermitian elements

Lemma 2.1 inspires us to give the following lemma.

Lemma 3.1. Let a ∈ R#
∩ R+. Then

(1) (a∗a+a#)+ = a+a3(a#)∗a+a;
(2) (a#aa+)+ = a2a+.

Proof. It is routine.

Theorem 3.2. Let a ∈ R#
∩ R+. Then the followings are equivalent:

(1) a ∈ RHer;
(2) a+a3(a#)∗a+a = a2a+;
(3) (a∗a+a#)+ = a(a#)∗a∗;
(4) (a#aa+)+ = a∗aa#.

Proof. (1)⇔ (2) It follows from Lemma 2.1 and Lemma 3.1.
(1)⇒ (3) Assume that a ∈ RHer. Then a = a∗, a+ = a# and

(a∗a+a#)+ = (aa+a#)+ = (a#)+ = (a+)+ = a = aa#a = a(a#a)∗ = a(a#)∗a∗.

(3)⇒ (1) From the assumption, we have

a(a#)∗a∗ = (a∗a+a#)+ = a+a3(a#)∗a+a = a+a(a+a3(a#)∗a+a) = a+a2(a#)∗a∗.

Multiplying the equality on the right by a+, one has aa+ = a+a2a+. Hence a ∈ REP, this leads to

a = a(a#)∗a∗ = a+a3(a#)∗a+a = a2(a#)∗

and
aa∗ = a2(a#)∗a∗ = a2.

Thus a ∈ RHer by [11, Theorem 1.4.1].
(1)⇒ (4) Suppose that a ∈ RHer. Then a = a∗ and a+ = a#. By Lemma 3.1, we have (a#aa+)+ = a2a+ = a∗aa#.
(4)⇒ (1) From the assumption and Lemma 3.1, we get

a2a+ = a∗aa# = (a∗aa#)a+a = a2a+a+a.

It follows that aa+ = a#(a2a+) = a#(a2a+a+a) = aa+a+a. Hence a ∈ REP. This induces a = a2a+ = a∗aa# = a∗aa+ =
a∗. Thus a ∈ RHer.

Lemma 3.3. Let a ∈ R#
∩ R+. Then

(1) (a(a#)∗a)+ = a+a∗a+;
(2) (a(a#)∗a)# = a#aa+a∗a+aa#;
(3) (a∗aa#)+ = a+a(a+)∗.

Proof. It is routine.

Theorem 3.4. Let a ∈ R#
∩ R+. Then the followings are equivalent:

(1) a ∈ RHer;
(2) a∗a+a# = a+a∗a+;
(3) a∗a+a# = a#aa+a∗a+aa#;
(4) a#aa+ = a+a(a+)∗.

Proof. It is an immediate result of Theorem 3.2 and Lemma 3.3.
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4. Using EP elements to characterize Hermitian elements

Theorem 4.1. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a ∈ REP and a∗aa#

∈ RHer.

Proof. “⇒ ” Suppose that a ∈ RHer. Then, certainly, a ∈ REP and a∗ = a. This gives

a∗aa# = a2a# = a ∈ RHer.

“⇐ ” Since a∗aa#
∈ RHer, a∗aa# = (a∗aa#)∗ = a∗(a#)∗a.Multiplying the equality on the left by (a+)∗, one gets

aa# = aa+(a#)∗a.

Noting that a ∈ REP. Then aa+(a#)∗ = (a#)∗. It follows aa# = (a#)∗a.
Hence

a# = aa#a# = (a#)∗aa# = (a#)∗aa+ = (a#)∗.

Thus a ∈ RHer.

It is well known that a ∈ RHer if and only if a+ ∈ RHer. From Lemma 3.3 and Theorem 4.1, we have the
following corollary.

Corollary 4.2. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a ∈ REP and a+a(a+)∗ ∈ RHer.

Noting that a ∈ RHer if and only if a∗ ∈ RHer. Then Theorem 4.1 implies the following corollary.

Corollary 4.3. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a ∈ REP and (aa#)∗a ∈ RHer.

Theorem 4.4. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a ∈ REP and aa+(a#)∗ ∈ RHer.

Proof. “⇒ ” Since a ∈ RHer, a∗ = a and (a#)∗ = a# = a+. It follows that

aa+(a#)∗ = aa+a# = a# = a#aa+ = (aa+(a#)∗)∗.

Hence aa+(a#)∗ ∈ RHer.
“⇐ ” Suppose that aa+(a#)∗ ∈ RHer and a ∈ REP. Then

(a#)∗ = aa+(a#)∗ = a#aa+ = a#.

Hence a ∈ RHer.

Noting that (aa+(a#)∗)+ = aa+a∗. Then Theorem 4.4 induces the following corollary.

Corollary 4.5. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a ∈ REP and aa+a∗ ∈ RHer.

5. Using invertible elements to characterize Hermitian elements

It is well known that if a ∈ R#, then a + 1 − aa#
∈ R−1 and (a + 1 − aa#)−1 = a# + 1 − aa#. This implies us to

give the following lemma by Lemma 3.3.

Lemma 5.1. Let a ∈ R#
∩ R+. Then a∗aa# + 1 − a+a ∈ R−1 and (a∗aa# + 1 − a+a)−1 = a+a(a+)∗ + 1 − a+a.

From Lemma 5.1 and Theorem 3.4, we have the following theorem.

Theorem 5.2. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if (a∗aa# + 1 − a+a)−1 = a#aa+ + 1 − a+a.

Theorem 5.3. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if aa∗aa#a+ + 1 − aa+ ∈ R−1 and (aa∗aa#a+ + 1 − aa+)−1 =

a# + 1 − aa+.
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Proof. “⇒ ” Assume that a ∈ RHer. Then by Theorem 5.2, we have

(a∗aa# + 1 − a+a)−1 = a#aa+ + 1 − a+a.

Since
a∗aa# + 1 − a+a = 1 − a+(a − aa∗aa#),

and
(1 − a+(a − aa∗aa#))−1 = a#aa+ + 1 − a+a,

it follows that

(1 − (a − aa∗aa#)a+)−1 = 1 + (a − aa∗aa#)(1 − a+(a − aa∗aa#))−1a+

= 1 + (a − aa∗aa#)(a#aa+ + 1 − a+a)a+

= 1 + (a − aa∗aa#)(a#aa+a+)

= aa+a+ + 1 − aa∗aa#a+a+.

That is
(aa∗aa#a+ + 1 − aa+)−1 = aa+a+ + 1 − aa∗aa#a+a+.

Since a∗ = a and a# = a+, one has aa+a+ = aa#a# = a# and aa∗aa#a+a+ = a3a#a#a+ = aa+. Hence, (aa∗aa#a+ + 1 −
aa+)−1 = a# + 1 − aa+.

“⇐ ” From the assumption, we get

1 = (aa∗aa#a+ + 1 − aa+)(a# + 1 − aa+)

= aa∗a#a# + 1 − aa+.

This gives aa∗a#a# = aa+. So

a+ = a+aa+ = a+aa∗a#a# = a∗a#a# = (a∗a#a#)a+a = a+a+a.

Hence a ∈ REP and a+ = a∗a#a# = a∗a+a#. By [11, Theorem 1.4.2], a ∈ RHer.

Noting that (aa∗aa#a+ + 1− aa+)−1 = a(a+)∗a+ + 1− aa+. Then Theorem 5.3 leads to the following corollary.

Corollary 5.4. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a# = a(a+)∗a+.

Corollary 5.5. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a#a# = (a+)∗a+.

Proof. It is an immediate result of Corollary 5.4.

Noting that (aa∗)+ = (a+)∗a+. Then Corollary 5.5 implies the following corollary.

Corollary 5.6. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a#a# = (aa∗)+.

Since (a#a#)+ = a+a4a+, we have the following corollary by Corollary 5.6.

Corollary 5.7. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a+a4a+ = aa∗.

Theorem 5.8. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a+a∗a∗a+a = a∗.
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Proof. =⇒ Since a ∈ RHer, a+a4a+ = aa∗ by Corollary 5.7. Applying the involution on the equality, one has

aa+a∗a∗a+a = aa∗.

Multiplying the last equality on the left by a+, one yields a+a∗a∗a+a = a∗.
⇐= Assume that a+a∗a∗a+a = a∗.Multiplying the equality on the right by (a#)∗, one obtains

a+a∗ = (aa#)∗,

this gives
a+ = a+a∗(a#)∗ = (aa#)∗(a#)∗ = (a#)∗.

Hence
a∗ = a+a∗a∗a+a = a+a∗a∗(a#)∗a = a+a∗a = (aa#)∗a.

Applying the involution on the last equality, we have

a = a∗aa#.

Thus a ∈ RHer by [11, Theorem 1.4.2].

Corollary 5.9. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a+a3(a+)∗a# = aa+.

Proof. =⇒ Since a ∈ RHer, a+a4a+ = aa∗ by Corollary 5.7. Multiplying the equality on the right by (a+)∗a+, one
has

a+a3(a+)∗a+ = aa+.

Noting that a ∈ REP, Then one yields a+a3(a+)∗a# = aa+.
⇐= Assume that a+a3(a+)∗a# = aa+.Multiplying the equality on the right by a2, one obtains

a+a3(a+)∗a = a2.

Applying the involution on the last equality, one has

a∗a∗ = a∗a+a∗a∗a+a.

This gives
a∗ = (a#)∗a∗a∗ = (a#)∗a∗a+a∗a∗a+a = a+a∗a∗a+a.

Thus a ∈ RHer by Theorem 5.8.

6. Characterizing Hermitian elements by the solution of univariate equations in a given set

Observing Lemma 2.1, we can establish the following equation:

a∗xa# = a#ax. (1)

Theorem 6.1. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if Eq.(6.1) has at least one solution in ρa =

{a, a#, a+, a∗, (a+)∗, (a#)∗, (a+)#, (a#)+}.

Proof. “⇒ ” If a ∈ RHer, then x = a+ is a solution by Lemma 2.1.
“ ⇐ ” (1) If x = a is a solution, then a∗aa# = a#aa = a. Multiplying the equality by a from the right side,

we have
a∗a = a2.

Hence a ∈ RHer by [11, Theorem 1.4.1];
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(2) If x = a# is a solution, then a∗a#a# = a#aa# = a#. Multiplying the equality by a from the right side, we
have

a∗a# = a#a.

Hence a ∈ RHer by [11, Theorem 1.4.2];
(3) If x = a+ is a solution, then a∗a+a# = a#aa+, it follows from Lemma 2.1 that a ∈ RHer;
(4) If x = a∗ is a solution, then a∗a∗a# = a#aa∗. Multiplying the equality on the left by (a+)∗, one yields

(a2a+)∗a# = aa+.

Now,
aa# = (aa+)aa# = (a2a+)∗a#aa# = (a2a+)∗a# = aa+.

Hence a ∈ REP and a# = a+.
Therefore

a∗a∗a# = a#aa∗ = a+aa∗ = a∗.

Thus a ∈ RHer by [11, Theorem 1.4.2];
(5) If x = (a+)∗ is a solution, then a∗(a+)∗a# = a#a(a+)∗ = (a+)∗. Multiplying the equality on the right by a,

one gets
a+a = (a+)∗a.

Now,
a#a = a#aa+a = a#a(a+)∗a = (a+)∗a = a+a.

Then a ∈ REP and a+ = a∗(a+)∗a# = (a+)∗. Hence a ∈ RHer.
(6) If x = (a#)∗ is a solution, then a∗(a#)∗a# = a#a(a#)∗. Multiplying the equality on the left by a2a+, one

yields
aa# = a(a#)∗.

Therefore
aa+ = aa#aa+ = a(a#)∗aa+ = a(a#)∗ = aa#.

Then a ∈ REP and a+ = a#,we have (a#)∗ = (a+)∗. Thus a ∈ RHer by (5).
(7) If x = (a+)# = (aa#)∗a(aa#)∗ is a solution, then a∗(aa#)∗a(aa#)∗a# = a#a(aa#)∗a(aa#)∗. Multiplying the

equality on the left by a+a, one obtains

a∗a(aa#)∗a# = (aa#)∗a(aa#)∗.

It follows that
a#a(aa#)∗a(aa#)∗ = (aa#)∗a(aa#)∗.

Multiplying the equality on the right by a+, one gets

(a#a)(aa#)∗ = (aa#)∗.

Hence aa# is Hermitian, this infers a ∈ REP by [11, Theorem 1.1.3]. Thus x = (a+)# = (a#)# = a, one obtains
a ∈ RHer by (1).

(8) If x = (a#)+ = a+a3a+ is a solution, then a∗a+a3a+a# = a#aa+a3a+.
e.g.,

a∗a+a = a2a+.

Multiplying the equality on the left by (a#)∗, one has

a+a = (a#)∗a2a+ = ((a#)∗a2a+)(aa#)∗ = a+a(aa#)∗ = (aa#)∗.

It follows that aa+ = aa#. Hence a ∈ REP, this infers x = (a#)+ = (a+)+ = a.
Thus a ∈ RHer by (1).
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Since a ∈ RHer if and only if a∗ ∈ RHer. Replacing a in Eq.(6.1) by a∗ , one gets

ax(a#)∗ = (a#)∗a∗x. (2)

Corollary 6.2. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if Eq.(6.2) has at least one solution in ρa.

Now we construct the following equation

(a+)∗xa = (aa#)∗x. (3)

Theorem 6.3. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if Eq.(6.3) has at least one solution in ρa.

Proof. “⇒ ” If a ∈ RHer, then a = a∗. It is easy to check that x = a∗ is a solution.
“⇐ ” (1) If x = a, then (a+)∗aa = (aa#)∗a.Multiplying the equality on the left by aa#, we have

(a+)∗aa = (aa#)(aa#)∗a.

It follows that
(aa#)∗a = (aa#)(aa#)∗a.

Again multiplying the last equality by a+ from the right side, we get

(aa#)∗ = (aa#)(aa#)∗.

This gives aa# is Hermitian. Then a ∈ REP, one has

(a#)∗a2 = (a+)∗aa = (aa#)∗a = (aa+)∗a = a.

Applying the involution to the above equality, we obtain a∗a∗a# = a∗. Thus a ∈ RHer by [11, Theorem 1.4.2];
(2) If x = a#, then (a+)∗a#a = (aa#)∗a#.Multiplying the equality by a2 from the right side, one gets

(a+)∗a2 = (aa#)∗a.

Then a ∈ RHer by (1);
(3) If x = a+, then (a+)∗a+a = (aa#)∗a+. Therefore (a+)∗ = a+. Hence a ∈ RHer;
(4) If x = a∗, then (a+)∗a∗a = (aa#)∗a∗. Therefore a = a∗. Thus a ∈ RHer;
(5) If x = (a+)∗, then (a+)∗(a+)∗a = (aa#)∗(a+)∗. Applying the involution on the equality, we get

a∗a+a+ = a+aa#.

Multiplying the equality on the right by aa+, one yields

a+aa# = a+.

Then a ∈ REP, it follows that a∗a+a+ = a#. Thus a ∈ RHer by [11, Theorem 1.4.2];
(6) If x = (a#)∗, then (a+)∗(a#)∗a = (aa#)∗(a#)∗. Taking involution of the equality, we have

a∗a#a+ = a#.

Multiplying the equality by a from the right side, one gets

a∗a# = a#a.

Thus a ∈ RHer by [11, Theorem 1.4.2];
(7) If x = (a+)# = (aa#)∗a(aa#)∗, then (a+)∗(aa#)∗a(aa#)∗a = (aa#)∗(aa#)∗a(aa#)∗.Multiplying the equality on the

right by a+a+a∗,we obtain
aa+ = a+a∗.
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Taking the involution of this equality, we get aa+ = a(a+)∗. Therefore,

aa# = aa+aa# = a(a+)∗aa# = a(a+)∗ = aa+.

Then a ∈ REP, it follows that x = (a+)# = (a#)# = a. Thus a ∈ RHer by (1);
(8) If x = (a#)+ = a+a3a+, then (a+)∗a+a3a+a = (aa#)∗a+a3a+.Multiplying the equality on the right by a#, one

has
(a+)∗a = a+a.

Therefore,
a#a = a#aa+a = a#a(a+)∗a = (a+)∗a = a+a.

Then a ∈ REP, one gets x = (a#)+ = (a+)+ = a. Thus a ∈ RHer by (1).

Applying the involution on Eq.(6.3) , we get

a∗xa+ = xaa#. (4)

Corollary 6.4. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if Eq.(6.4) has at least one solution in ρa.

Multiplying Eq.(6.4) on the right by a, and then revise as follows:

a∗xaa+ = xa. (5)

Theorem 6.5. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if Eq.(6.5) has at least one solution in ρa.

7. The general solution of bivariate equations

Now we generalize Eq.(6.1) as follows

a∗xa# = a#ay. (6)

Theorem 7.1. Let a ∈ R#
∩ R+. Then the general solution of Eq.(7.1) is given byx = (a#)∗a+p + u − aa+uaa+

y = a+pa# + v − a+av
, where p, u, v ∈ R with a+p = aa+a+p. (7)

Proof. First

a∗((a#)∗a+p + u − aa+uaa+)a# = a+pa# = aa+a+pa#

= a#aaa+a+pa# = a#aa+pa#

= a#a(a+pa# + v − a+av).

It follows that the formula (7.2) is the solution of Eq.(7.1).

Next, let
{

x = x0

y = y0
be any solution of Eq.(7.1). Then

a∗x0a# = a#ay0.

Choose p = a(aa#)∗a#ay0a, u = x0 − (a#)∗a+p and v = y0 − a+pa#.
Then

a+p = a+a(aa#)∗a#ay0a = (aa#)∗a#ay0a

= (aa#)∗(a∗x0a#)a = a∗x0a#a = a#ay0a,
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and
aa+a+p = aa+(a#ay0a) = a#ay0a = a+p.

Since

aa+uaa+ = aa+(x0 − (a#)∗a+p)aa+ = aa+x0aa+ − aa+(a#)∗a+paa+

= aa+x0aa+ − aa+(a#)∗a#ay0a2a+ = aa+x0aa+ − aa+(a#)∗a∗x0a#a2a+

= aa+x0aa+ − aa+x0aa+ = 0.

It follows that
x0 = (a#)∗a+p + u − aa+uaa+,

and

a+av = a+a(y0 − a+pa#) = a+ay0 − a+pa#

= a+ay0 − a#ay0aa# = a+ay0 − a∗x0a#aa#

= a+ay0 − a+a(a∗x0a#) = a+ay0 − a+a(a#ay0)
= a+ay0 − a+ay0 = 0.

Then
y0 = a+pa# + v − a+av.

Hence the general solution of Eq.(7.1) is given by the formula (7.2).

Theorem 7.2. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if the general solution of Eq.(7.1) is given byx = (a#)∗a+p + u − aa+uaa+

y = a+p(a#)∗ + v − a+av
,where p,u, v ∈ R. (8)

Proof. “⇒ ” Since a ∈ RHer, a ∈ REP and a# = (a#)∗. It follows that a+ = aa+a+. Hence the formula (7.3) is the
same as the formula (7.2). By Theorem 7.1, we are done.

“⇐ ” From the assumption, we have

a∗((a#)∗a+p + u − aa+uaa+)a# = a#a(a+p(a#)∗ + v − a+av),

e.g.
a+pa# = a#aa+p(a#)∗ forall p ∈ R.

Especially, choose p = a2, one yields
a+a = a(a#)∗.

So a+ = a(a#)∗a+. By Corollary 2.5, a ∈ RHer.

We establish the following equation

aa+xaa+(a#)∗ = (a+)∗y. (9)

Theorem 7.3. Let a ∈ R#
∩ R+. Then the general solution of Eq.(7.4) is given byx = (a#)∗a+p + u − aa+uaa+

y = a+p(a#)∗ + v − a+av
, where p, u, v ∈ R with pa+ = paa+a+. (10)
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Proof. First, we have
aa+((a#)∗a+p + u − aa+uaa+)aa+(a#)∗ = aa+(a#)∗a+paa+(a#)∗

= (aa+(a#)∗a+a)a+paa+(a#)∗ = (a+)∗a+paa+(a#)∗ = (a+)∗a+paa+a+a(a#)∗

= (a+)∗a+pa+a(a#)∗ = (a+)∗a+p(a#)∗ = (a+)∗(a+p(a#)∗ + v − a+av).

Hence the formula (7.5) is the solution of Eq.(7.4).

Next, let
{

x = x0

y = y0
be any solution of Eq.(7.4). Then we have

aa+x0aa+(a#)∗ = (a+)∗y0.

Choose p = ay0a∗,u = x0 − (a#)∗a+p, v = y0. Then

paa+a+ = ay0a∗aa+a+ = ay0a∗a+ = pa+,

and

aa+uaa+ = aa+(x0 − (a#)∗a+p)aa+ = aa+x0aa+ − aa+(a#)∗a+paa+

= aa+x0aa+ − aa+(a#)∗a+ay0a∗aa+ = aa+x0aa+ − (a+)∗y0a∗

= aa+x0aa+ − aa+x0aa+(a#)∗a∗ = aa+x0aa+ − aa+x0aa+ = 0.

One gets
x0 = (a#)∗a+p + u − aa+uaa+.

Also,

a+p(a#)∗ = a+ay0(a#a)∗ = a∗((a+)∗y0)(aa#)∗

= a∗(aa+x0aa+(a#)∗)(aa#)∗ = a∗(aa+x0aa+(a#)∗)
= a∗(a+)∗y0 = a+ay0 = a+av.

This infers
y0 = a+p(a#)∗ + v − a+av.

Hence every solution of Eq.(7.4) has the form of the formula (7.5). Thus the general solution of Eq.(7.4) is
given by formula (7.5).

Theorem 7.4. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if Eq.(7.1) has the same solution as Eq.(7.4).

Proof. “ ⇒ ” If a ∈ RHer, then a ∈ REP and so a+ = aa+a+. It follows that the formula (7.3) is the same as the
formula (7.5). Hence by Theorem 7.2 and Theorem 7.3, we are done.

“ ⇐ ” From the assumption, we know that the general solution of Eq.(7.1) is given by formula (7.5).
Hence

a∗((a#)∗a+p + u − aa+uaa+)a# = a#a(a+p(a#)∗ + v − a+av).

That is, a+pa# = a#aa+p(a#)∗ for p ∈ R satisfying pa+ = paa+a+. Choose p = a∗. Then

a+a∗a# = a#aa+a∗(a#)∗ = a#aa+.

Multiplying the equality on the right by a2a+, one has

a+a∗ = aa+.

It follows
a# = aa+a# = a+a∗a# = a#aa+.

Hence a ∈ REP, this implies
aa# = aa+ = a+a∗.

Thus a ∈ RHer by [11, Theorem 1.4.2].
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8. Constructions of group invertible elements and Moore Penrose invertible elements

Theorem 8.1. Let a ∈ R#
∩ R+. Then

(1) (a∗xa#)+ = (a∗xa#)# = a+a3a+x#(a+)∗, where x ∈ ρa;
(2) (a#ax)+ = x+aa+, where x ∈ ρa;
(3) (a#ax)# = x#a+a, where x ∈ {a, a#, (a+)∗} = τa;
(4) (a#ax)# = x+aa+, where x ∈ {a+, a∗, (a#)∗, (a+)#, (a#)+} = γa.

Proof. Noting that

xx# = x#x = x#aa+x = xaa+x# =

 aa#,x ∈ τa

(aa#)∗,x ∈ γa
= x#a+ax.

xx+ =
{

aa+,x ∈ τa

a+a,x ∈ γa
.

x+aa#x =
{

a+a,x ∈ τa

aa+,x ∈ γa
.

Then we can complete the proof by a routine vertification.

The following theorem is a direct corollary of Theorem 6.1.

Theorem 8.2. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a+a3a+x#(a+)∗ = x+aa+ for some x ∈ ρa.

Also, we have:

Theorem 8.3. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if a+a3a+x#(a+)∗ = x#a+a for some x ∈ τa.

Theorem 8.4. Let a ∈ R#
∩ R+. Then a ∈ RHer if and only if (a#ax)+ = x+(a#)∗a for some x ∈ ρa.

Proof. “⇒ ” Assume that a ∈ RHer. Then a+ = a# = (a#)∗. Hence

aa+ = aa# = a#a = (a#)∗a.

By Theorem 8.1, we have
(a#ax)+ = x+(a#)∗a,

for all x ∈ ρa.
“⇐ ” By the hypothesis and Theorem 8.1, we have x+aa+ = x+(a#)∗a, for all x ∈ ρa. This gives

xx+aa+ = xx+(a#)∗a.

Noting that

xx+ =
{

aa+,x ∈ τa

a+a,x ∈ γa
.

Thus we have aa+aa+ = aa+(a#)∗a or a+aaa+ = a+a(a#)∗a.
If aa+aa+ = aa+(a#)∗a, then a+ = a+(a#)∗a. Hence a ∈ RHer by Corollary 2.5;
If a+aaa+ = a+a(a#)∗a, then a2a+ = a(a#)∗a = (a(a#)∗a)a+a = a2a+a+a, it follows that

aa+ = aa+a+a.

Hence a ∈ REP, one gets
a = a2a+ = a(a#)∗a

and
a# = aa#a# = a(a#)∗aa#a# = a(a#)∗a# = a(a#)∗a+.

Thus a ∈ RHer by Corollary 2.5.
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