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Abstract. In this paper, we study generalized metric properties at a subset on the hyperspace F (X) of
finite subsets of a space X endowed with the Vietoris topology. We prove that X has the covering property
γ at A if and only ifF (X) has the covering property γ at ⟨A⟩F (X) for each A ⊂ X and some γ. By these results,
we obtain some results related to the images of metric spaces under some kinds of continuous mappings at
a subset on the Vietoris hyperspace F (X).

1. Introduction and preliminaries

Recently, the generalized metric properties on hyperspaces with the Vietoris topology have been studied
by many authors ([3, 4, 9–11, 13–18]).

In 2020 and 2022, covering concepts such as external bases, so-networks, sn-networks, cs-networks, cs∗-
networks, point-regular covers, point-finite covers, point-countable covers at a subset A for a space X were
introduced and studied by S. Lin, X.W. Ling, Y. Ge and W. He ([5, 6]). They obtained some good results.
In this paper, we also introduce some more covering concepts like cn-networks, ck-networks, compact-
finite covers, compact-countable covers, locally finite covers, locally countable covers at a subset A for a
space X and study them on the Vietoris hyperspace F (X) at a subset ⟨A⟩F (X) for F (X). Throughout this
paper, (P) is assumed to be one of the following properties: point-finite, point-countable, compact-finite,
compact-countable, locally finite, locally countable. Moreover, all spaces are assumed to be T1 and regular,
N denotes the set of all positive integers. For A ⊂ X, we prove that

1. X has a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) at A which is a point-star
network at A for X if and only if F (X) has a sequence of open covers (resp., so-covers, cs-covers,
cs∗-covers) at ⟨A⟩F (X) which is a point-star network at ⟨A⟩F (X) for F (X);

2. X has a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) with property (P) at A which
is a point-star network at A for X if and only if F (X) has a sequence of open covers (resp., so-covers,
cs-covers, cs∗-covers) with property (P) at ⟨A⟩F (X) which is a point-star network at ⟨A⟩F (X) for F (X);

3. X has an external base (resp., an so-network, an sn-network, a cs-network, a cs∗-network, a cn-network,
a ck-network) with property σ-(P) at A for X if and only if F (X) has an external base (resp., an so-
network, an sn-network, a cs-network, a cs∗-network, a cn-network, a ck-network) with property σ-(P)
at ⟨A⟩F (X) for F (X).
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By these results, we obtain that

1. X has a point-regular external base (resp., so-network, sn-network, cs-network, cs∗-network) at A for
X if and only if F (X) has a point-regular external base (resp., so-network, sn-network, cs-network,
cs∗-network) at ⟨A⟩F (X) for F (X);

2. X has a point-countable external base (resp., so-network, sn-network, cs-network, cs∗-network, cn-
network, ck-network) at A for X if and only if F (X) has a point-countable external base (resp.,
so-network, sn-network, cs-network, cs∗-network, cn-network, ck-network) at ⟨A⟩F (X) for F (X).

On the other hand, we also get some results about the images of metric spaces under some kinds of
continuous mappings at a subset on the Vietoris hyperspaceF (X). Moreover, if A = X, then ⟨A⟩F (X) = F (X),
we get some new results and get back some known results (for example, [4, Theorem 4.7], [14, Theorems
37, 41], [18, Theorem 2.6], [18, Corollaries 2.7, 2.8]) on the Vietoris hyperspace F (X).

For a sequence {xn}n∈N converging to x, we say that {xn}n∈N is eventually in P if {x} ∪ {xn : n ≥ m} ⊂ P for
some m ∈ N, and {xn}n∈N is frequently in P if some subsequence of {xn}n∈N is eventually in P. Furthermore,
if P is a family of subsets of a space X and A ⊂ X, then

St(A,P) =
⋃
{P ∈ P : P ∩ A , ∅};

(P)A = {P ∈ P : P ∩ A , ∅}.

For x ∈ X, we use the notation St(x,P) instead of St({x},P).
Given a space X, we define its hyperspaces as the following sets:

1. CL(X) = {A ⊂ X : A is closed and nonempty};
2. K(X) = {A ∈ CL(X) : A is compact};
3. Fn(X) = {A ∈ CL(X) : |A| ≤ n}, where n ∈N;
4. F (X) = {A ∈ CL(X) : A is finite}.

The set CL(X) is topologized by the Vietoris topology defined as the topology generated by

B = {⟨U1, . . . ,Uk⟩ : U1, . . . ,Uk are open subsets of X, k ∈N},

where

⟨U1, . . . ,Uk⟩ =
{
A ∈ CL(X) : A ⊂

⋃
i≤k Ui, A ∩Ui , ∅ for each i ≤ k

}
.

Note that, by definition, K(X), Fn(X) and F (X) are subspaces of CL(X). Hence, they are topologized with
the appropriate restriction of the Vietoris topology. Moreover,

1. CL(X) is called the hyperspace of nonempty closed subsets of X;
2. K(X) is called the hyperspace of nonempty compact subsets of X;
3. Fn(X) is called the n-fold symmetric product of X;
4. F (X) is called the hyperspace of finite subsets of X.

On the other hand, it is obvious that F (X) =
⋃
∞

n=1Fn(X) and Fn(X) ⊂ Fn+1(X) for each n ∈N.

Remark 1.1. ([15]) Let X be a space and let n ∈N.

1. Fn(X) is closed in F (X).
2. f1 : X↠ F1(X) given by f1(x) = {x} is a homeomorphism.
3. Every Fm(X) is a closed subset of Fn(X) for each m,n ∈N, m < n.

Notation 1.2. ([14]) If U1, . . . ,Us are open subsets of a space X, then ⟨U1, . . . ,Us⟩F (X) denotes the intersection of
the open set ⟨U1, . . . ,Us⟩ of the Vietoris topology, with F (X).

Notation 1.3. ([17]) Let X be a space. If {x1, . . . , xr} is a point of F (X) and {x1, . . . , xr} ∈ ⟨U1, . . . ,Us⟩F (X), then for
each j ≤ r, we let
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Ux j =
⋂
{U ∈ {U1, . . . ,Us} : x j ∈ U}.

Observe that ⟨Ux1 , . . . ,Uxr⟩F (X) ⊂ ⟨U1, . . . ,Us⟩F (X).

Definition 1.4. Let A ⊂ X and P be a family of subsets of a space X.

1. A is called a sequential neighborhood of x ∈ X [5], if each sequence L converging to x is eventually in A.
2. A is called sequentially open [5], if A is a sequential neighborhood of each point in A.
3. P is called a network at x ∈ X [5], if x ∈

⋂
P, and for each neighborhood U of x in X, there is P ∈ P

such that P ⊂ U.
4. P is called a cs-cover [5] (resp., cs∗-cover [6]) at A for X, if every sequence L converging to x ∈ A in X is

eventually (resp., frequently) in some P ∈ P.
5. P is called an open cover (resp., so-cover) at A for X [5], if each element of P is an open (resp., a

sequentially open) set in X and A ⊂
⋃
P.

6. P is called a cs-network (resp., cs∗-network) at A for X [5], if for each x ∈ A, any sequence L converging
to x ∈ U with U open in X, then L is eventually (resp., frequently) in P ⊂ U for some P ∈ P.

7. P is called an sn-network at a point x ∈ X [5], if the following are satisfied: (i) P is a network at x in X;
(ii) if U,V ∈ P, then W ⊂ U ∩ V for some W ∈ P; (iii) each element of P is a sequential neighborhood
of x in X.

8. P =
⋃

x∈APx is called an external base (resp., sn-network, so-network) at A for X [5], if Px is a local base
(resp., an sn-network, an sn-network consisting of sequentially open sets) at x in X for each x ∈ A.

9. P is called a cn-network at x ∈ X [2], if for each neighborhood Ox of x, the set
⋃
{P ∈ P : x ∈ P ⊂ Ox} is

a neighborhood of x; P is a cn-network at A for X, if P is a cn-network at each point x ∈ A.
10. P is called a ck-network at x ∈ X [2], if for any neighborhood Ox of x, there is a neighborhood Ux ⊂ Ox

of x such that for each compact subset K ⊂ Ux, there exists a finite subfamilyF ⊂ P satisfying x ∈
⋂
F

and K ⊂
⋃
F ⊂ Ox; P is a ck-network at A for X, if P is a ck-network at each point x ∈ A.

Remark 1.5. 1. External base (at A) ⇒ so-network (at A) ⇒ sn-network (at A) ⇒ cs-network (at A) ⇒
cs∗-network (at A).

2. External base (at A)⇒ ck-network (at A)⇒ cn-network (at A).

Definition 1.6. Let A ⊂ X and P be a family of subsets of a space X.

1. P is said to be point-finite (resp., point-countable) at A [5], if the family (P)x is finite (resp., countable)
for each x ∈ A.

2. P is said to be compact-finite (resp., compact-countable) at A, if for each compact subset K in the subspace
A of X, the family (P)K is finite (resp., countable).

3. P is said to be locally finite (resp., locally countable) at A, if for each x ∈ A, there exists an open
neighborhood V of x such that the family (P)V is finite (resp., countable).

4. P is said to be point-regular at A [5], if for each x ∈ A and x ∈ U with U open in X, {P ∈ (P)x : P 1 U} is
finite.

Definition 1.7. For a cover P of a subset A of a space X. We say that P has property σ-(P) at A, if P can be
expressed as P =

⋃
n∈NPn, where each Pn has property (P) at A, and Pn ⊂ Pn+1 for each n ∈N.

Definition 1.8. ([5]) Let X be a space and A ⊂ X. A sequence {Pn}n∈N of families of subsets in X is called a
point-star network at A for X, if {St(x,Pn)}n∈N is a network at x in X for each x ∈ A.

Remark 1.9. ([5]) Point-star networks for a space are also called σ-strong networks.

For some undefined or related concepts, we refer the reader to [2, 5–8, 18].



L. Q. Tuyen, O. V. Tuyen / Filomat 38:12 (2024), 4291–4301 4294

2. Main results

Let X be a space. We say that a sequence {An}n∈N consisting of subsets of X converges to a subset A ⊂ X,
if for each open set U in X with A ⊂ U, there exists k ∈N such that An ⊂ U for each n > k.

Notation 2.1. Let P1, . . . ,Ps be subsets of a space X. Then, we denote

⟨P1, . . . ,Ps⟩F (X) = ⟨P1, . . . ,Ps⟩ ∩ F (X) and ⟨P1, . . . ,Ps⟩K(X) = ⟨P1, . . . ,Ps⟩ ∩K(X),

where

⟨P1, . . . ,Ps⟩ =
{
A ∈ CL(X) : A ⊂

⋃
i≤s Pi, A ∩ Pi , ∅ for each i ≤ s

}
.

Lemma 2.2. ([18, Lemma 2.1]) Let X be a space and {Fm}m∈N be a sequence of points of F (X). If {Fm}m∈N converges
to F = {x1, . . . , xr} in F (X) and {U1, . . . ,Ur} is a family of pairwise disjoint open subsets of X such that x j ∈ U j for
each j ≤ r, then {Fm ∩U j}m∈N converges to {x j} in X for each j ≤ r.

Lemma 2.3. ([16, Lemma 2.1]) Let ⟨U1, . . . ,Us⟩, ⟨V1, . . . ,Vr⟩ ⊂ CL(X). If there exists i0 ≤ s such that Ui0 ∩

(
⋃

j≤r V j) = ∅, then ⟨U1, . . . ,Us⟩ ∩ ⟨V1, . . . ,Vr⟩ = ∅.

Lemma 2.4. Let X be a space and A ⊂ X. IfK is compact in the subspace ⟨A⟩K(X) ofK(X), then
⋃
K is compact in

the subspace A of X.

Proof. LetU be an open cover of
⋃
K in the subspace A of X. Then, for each U ∈ U, there exists an open

subset VU in X such that U = VU ∩ A. Take any E ∈ K , we have that E ⊂
⋃
K ⊂

⋃
U∈U VU. Since E is

a compact subset of X, there exists a finite subcover {VU1 , . . . ,VUn(E) } of E such that E ∩ VUi , ∅ for each
i ≤ n(E). Thus, E ∈ ⟨VU1 , . . . ,VUn(E)⟩K(X). Now, if we put

U =
{
⟨VU1 , . . . ,VUn(E)⟩K(X) : E ∈ K

}
,

then U is an open cover of K in K(X). Hence, {H ∩ ⟨A⟩K(X) : H ∈ U} is an open cover of K in the subspace
⟨A⟩K(X) of K(X). Since K is compact in the subspace ⟨A⟩K(X) of K(X), there exists a finite subfamily U0 of U
such thatK ⊂

⋃
H∈U0

(H ∩ ⟨A⟩K(X)). Put

U0 =
{
OE j = ⟨VU1(Ej ) , . . . ,VUn(Ej )⟩K(X) : j ≤ m

}
,

V = {U1(E j), . . . ,Un(E j) : j ≤ m}.

Then, V is a finite subfamily ofU. Moreover,
⋃
K ⊂

⋃
V. Indeed, let z ∈

⋃
K . Then, there exists E ∈ K

such that z ∈ E. Since E ∈ K , there exists j ≤ m such that

E ∈ OE j ∩ ⟨A⟩K(X) = ⟨VU1(Ej ) , . . . ,VUn(Ej )⟩K(X) ∩ ⟨A⟩K(X).

This implies that there exists 1 ≤ i ≤ n such that

z ∈ VUi(Ej) ∩ A = Ui(E j) ⊂

⋃
V.

Therefore,
⋃
K is compact in the subspace A of X.

Lemma 2.5. Let X be a space, A ⊂ X and {Pn}n∈N be a sequence of families of subsets in X. For each n ∈N, put

Pn = {⟨P
(n)
1 , . . . ,P

(n)
s ⟩F (X) : P(n)

1 , . . . ,P
(n)
s ∈ Pn, s ∈N}.

1. If {Pn}n∈N is a point-star network at A for X, then {Pn}n∈N is a point-star network at ⟨A⟩F (X) for F (X).
2. For each n ∈N, if Pn is an open cover (resp., an so-cover, a cs-cover, a cs∗-cover) at A for X, thenPn is an open

cover (resp., an so-cover, a cs-cover, a cs∗-cover) at ⟨A⟩F (X) for F (X).
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Proof. We can assume that Pn+1 refines Pn for each n ∈ N. Let F = {x1, . . . , xr} ∈ ⟨A⟩F (X) andU be an open
neighborhood of F in F (X). Then, F ⊂ A and there exist open subsets U1, . . . ,Us of X such that

F ∈ ⟨U1, . . . ,Us⟩F (X) ⊂ U.

Because X is Hausdorff, it follows from Notation 1.3 that we can find pairwise disjoint open subsets
Ux1 , . . . ,Uxr of X such that x j ∈ Ux j for each j ≤ r and

F ∈ ⟨Ux1 , . . . ,Uxr⟩F (X) ⊂ ⟨U1, . . . ,Us⟩F (X) ⊂ U.

(1) For each j ≤ r, since {Pn}n∈N is a point-star network at A for X, {St(x j,Pn)}n∈N is a network at x j in
X for each x j ∈ A. Thus, there exists m j ∈ N such that x j ∈ St(x j,Pn) ⊂ Ux j whenever n ≥ m j. If we put
m = max{m j : j ≤ r}, then

F ∈ ⟨St(x1,Pn), . . . , St(xr,Pn)⟩F (X) ⊂ ⟨Ux1 , . . . ,Uxr⟩F (X)

for every n ≥ m. Moreover, it is easy to see that

St(F,Pn) ⊂ ⟨St(x1,Pn), . . . , St(xr,Pn)⟩F (X).

Hence, F ∈ St(F,Pn) ⊂ U for every n ≥ m. Therefore, {St(F,Pn)}n∈N is a network at F in F (X) for each
F ∈ ⟨A⟩F (X). This shows that {Pn}n∈N is a point-star network at ⟨A⟩F (X) for F (X).

(2) Case 1. Pn is an open cover (resp., so-cover) at A for X. Let A ⊂
⋃
Pn. Then, for each j ≤ r, since x j ∈ A,

there exists P(n)
j ∈ Pn such that x j ∈ P(n)

j . This implies that F ∈ ⟨P(n)
1 , . . . ,P

(n)
r ⟩F (X). Thus, ⟨A⟩F (X) ⊂

⋃
Pn.

If each element of Pn is open in X, then it is obvious that each element ofPn is open in F (X). Therefore,
Pn is an open cover at ⟨A⟩F (X) for F (X).

If each element of Pn is a sequentially open set in X, then each element of Pn is a sequentially open set
in F (X). Indeed, take any W = ⟨P(n)

1 , . . . ,P
(n)
s ⟩F (X) ∈ Pn, we only need to prove that W is a sequentially

open set in F (X). Assume that B = {y1, . . . , ym} ∈ W and the sequence {Bk}k∈N converges to B in F (X).
Claim. There exists N ∈N such that Bk ⊂

⋃
i≤s P(n)

i for each k > N.
Otherwise, then there exists a subsequence {Bkl }l∈N such that Bkl 1

⋃
i≤s P(n)

i for each l ∈ N and {kl}l∈N is
strictly increasing. For each l ∈N, take zl ∈ Bkl \

⋃
i≤s P(n)

i . Since the sequence {Bk}k∈N converges to B inF (X),
it is obvious that {B} ∪ {Bk : k ∈N} is a compact subset in F (X) = ⟨X⟩F (X). This implies that {B} ∪ {Bk : k ∈N}
is a compact subset in ⟨X⟩K(X) = K(X). It follows from Lemma 2.4 that B ∪

⋃
k∈N Bk is a compact subset

in X. Moreover, since B ∪
⋃

k∈N Bk is countable, B ∪
⋃

k∈N Bk has a countable network. This implies that
B ∪
⋃

k∈N Bk is metrizable since a Hausdorff compact space (i.e., compactum) with a countable network is
metrizable [1]. Thus, B ∪

⋃
k∈N Bk is a compact metrizable subspace of X. Therefore, {zl}l∈N must have a

subsequence {zlp }p∈N converges to z. Then, zlp ∈ Bklp
for each p ∈ N. Now, we prove that z ∈ B. If not, since

X is Hausdorff, there exist an open neighborhood U of z and an open neighborhood V of B in X such that
U ∩ V = ∅. Because the sequence {Bk}k∈N converges to B in F (X), the subsequence {Bklp

}p∈N converges to
B in F (X). Moreover, since U is an open neighborhood of z in X and ⟨V⟩F (X) is an open neighborhood of
B in F (X), there exist p0, p1 ∈ N such that zlp ∈ U for each p > p0 and Bklp

⊂ V for each p > p1. If we put
p2 = max{p0, p1}, then zlp ∈ U and zlp ∈ Bklp

⊂ V for each p > p2. This implies that U ∩ V , ∅, which is a

contradiction. Since z ∈ B, there exist q ≤ m and i ≤ s such that z = yq ∈ P(n)
i . Since P(n)

i is a sequentially
open set in X, there exists N ∈N such that zlp ∈ P(n)

i for each p > N. This is a contradiction.
By Claim, without loss of generality, we may assume that Bk ⊂

⋃
i≤s P(n)

i for each k ∈N. Next, we prove
that there exists p ∈N such that Bk ∈ W for each k > p. Suppose not, there exist a subsequence {Bkl }l∈N and
i ≤ s such that Bkl <W and Bkl ∩ P(n)

i = ∅ for each l ∈ N. Moreover, since B ∈ W, there exists t ≤ m such
that yt ∈ P(n)

i . Since the sequence {Bk}k∈N converges to B in F (X), the subsequence {Bkl }l∈N converges to B in
F (X). Let O be an open neighborhood of B in F (X). Similar to the above proof, there exist pairwise disjoint
open subsets Uy1 , . . . ,Uym of X such that yt ∈ Uyt for each t ≤ m, and

B ∈ ⟨Uy1 , . . . ,Uym⟩F (X) ⊂ O.
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By Lemma 2.2, the sequence {Bkl ∩Uyt }l∈N converges to {yt} in X. Moreover, since P(n)
i is a sequentially open

set in X and yt ∈ P(n)
i , there exists N ∈ N such that Bkl ∩Uyt ⊂ P(n)

i for each l > N, which is a contradiction.
Hence,W is a sequentially open set in F (X). This implies that Pn is an so-cover at ⟨A⟩F (X) for F (X).

Case 2. Pn is a cs-cover (resp., cs∗-cover) at A for X. Let {Fm}m∈N be a sequence converging to F in F (X).
Then, for each j ≤ r, the sequence {Fm ∩Ux j }m∈N converges to {x j} in X by Lemma 2.2.

If Pn is a cs-cover at A for X, then there exist P(n)
j ∈ Pn and k j ∈N such that

{x j} ∪
(⋃
{Fm ∩U j : m ≥ k j}

)
⊂ P(n)

j .

If we put k = max{k j : j ≤ r}, then ⟨P(n)
1 , . . . ,P

(n)
r ⟩F (X) ∈ Pn and

{F} ∪ {Fm : m > k} ⊂ ⟨P(n)
1 , . . . ,P

(n)
r ⟩F (X).

This shows that Pn is a cs-cover at ⟨A⟩F (X) for F (X).
If Pn is a cs∗-cover at A for X, by induction on r, then there exist P(n)

j ∈ Pn and a subsequence {mk}k∈N of
N such that

{x j} ∪
(⋃
{Fmk ∩U j : k ∈N}

)
⊂ P(n)

j .

This implies that ⟨P(n)
1 , . . . ,P

(n)
r ⟩F (X) ∈ Pn and

{F} ∪ {Fmk : k ∈N} ⊂ ⟨P(n)
1 , . . . ,P

(n)
r ⟩F (X).

Therefore, Pn is a cs∗-cover at ⟨A⟩F (X) for F (X).

Let P be a family of subsets of a space X. If we put

P =
{
⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P, s ∈N

}
,

then observe that P is a family of subsets of F (X).

Lemma 2.6. Let X be a space and A ⊂ X. If P has property (P) at A for X, then P has property (P) at ⟨A⟩F (X) for
F (X).

Proof. Let F = {x1, . . . , xr} ∈ ⟨A⟩F (X). Then, F ⊂ A.
Case 1. (P) is point-finite (resp., point-countable). Then, for each j ≤ r, since P is point-finite (resp.,

point-countable) at A for X, P j = {P ∈ P : x j ∈ P} is finite (resp., countable). If we put P0 =
⋃

j≤rP j, then P0
is finite (resp., countable). Therefore, to prove that P is point-finite (resp., point-countable) at ⟨A⟩F (X) for
F (X), we only need to show that{

W ∈ P : F ∈ W
}
⊂

{
⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P0, s ∈N

}
.

In fact, take any ⟨E1, . . . ,Ek⟩F (X) <
{
⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P0, s ∈ N

}
with k ∈ N. Then, Ei0 < P0 for

some i0 ≤ k. This implies that x j < Ei0 for every j ≤ r. Thus, F < ⟨E1, . . . ,Ek⟩F (X). Hence, ⟨E1, . . . ,Ek⟩F (X) <
{W ∈ P : F ∈ W}.

Case 2. (P) is compact-finite (resp., compact-countable). Let K be compact in the subspace ⟨A⟩F (X) of
F (X). Then, K is compact in the subspace ⟨A⟩K(X) of K(X). It follows from Lemma 2.4 that K =

⋃
K is

compact in the subspace A of X. Moreover, sinceK ⊂ ⟨K⟩F (X), we claim that

{W ∈ P :W∩K , ∅} ⊂ {W ∈ P :W∩ ⟨K⟩F (X) , ∅}.

Since P is compact-finite (resp., compact-countable) at A for X, P0 = {P ∈ P : P ∩ K , ∅} is finite (resp.,
countable). On the other hand,

{W ∈ P :W∩ ⟨K⟩F (X) , ∅} ⊂ {⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P0, s ∈N}.
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In fact, let k ∈ N and ⟨E1, . . . ,Ek⟩F (X) < {⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P0, s ∈ N}. Then, there exists i0 ≤ k
such that Ei0 < P0. This implies that Ei0 ∩ K = ∅. By Lemma 2.3, ⟨E1, . . . ,Ek⟩F (X) ∩ ⟨K⟩F (X) = ∅. Thus,
⟨E1, . . . ,Ek⟩F (X) < {W ∈ P :W∩ ⟨K⟩F (X) , ∅}.

Hence, {W ∈ P : W∩K , ∅} is finite (resp., countable). This shows that P is compact-finite (resp.,
compact-countable) at ⟨A⟩F (X) for F (X).

Case 3. (P) is locally finite (resp., locally countable). Then, for each i ≤ r, there exists an open neighbor-
hood Wi of xi such that (P)Wi is finite (resp., countable). If we put

Vi =Wi \ {x j : j ≤ r, j , i},

then Vi is open in X for every i ≤ r, and ⟨V1, . . . ,Vr⟩F (X) is an open neighborhood of F in F (X). On
the other hand, {W ∈ P : W ∩ ⟨V1, . . . ,Vr⟩F (X) , ∅} is finite (resp., countable). In fact, for each i ≤ r,
since P is locally finite (resp., locally countable) at A in X, Pi = {P ∈ P : P ∩ Vi , ∅} is finite (resp.,
countable). If we put P0 =

⋃
i≤rPi, then P0 is finite (resp., countable). Now, take any ⟨E1, . . . ,Ek⟩F (X) <{

⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P0, s ∈ N
}

with k ∈ N. Then, there exists i0 ≤ k such that Ei0 < P0. Thus,
Ei0 ∩ Vi = ∅ for every i ≤ r. It follows from Lemma 2.3 that ⟨E1, . . . ,Ek⟩F (X) ∩ ⟨V1, . . . ,Vr⟩F (X) = ∅. Hence,
⟨E1, . . . ,Ek⟩F (X) < {W ∈ P :W∩ ⟨V1, . . . ,Vr⟩F (X) , ∅}. This implies that

{W ∈ P :W∩ ⟨V1, . . . ,Vr⟩F (X) , ∅} ⊂ {⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P0, s ∈N}.

Therefore, we claim that {W ∈ P :W∩ ⟨V1, . . . ,Vr⟩F (X) , ∅} is finite (resp., countable). Hence, P is locally
finite (resp., locally countable) at ⟨A⟩F (X) for F (X).

Theorem 2.7. Let X be a space and A ⊂ X.

1. X has a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) at A which is a point-star network at A
for X if and only if F (X) has a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) at ⟨A⟩F (X) which
is a point-star network at ⟨A⟩F (X) for F (X).

2. X has a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) with property (P) at A which is a
point-star network at A for X if and only if F (X) has a sequence of open covers (resp., so-covers, cs-covers,
cs∗-covers) with property (P) at ⟨A⟩F (X) which is a point-star network at ⟨A⟩F (X) for F (X).

Proof. Necessity. By Lemmas 2.5 and 2.6.
Sufficiency. Assume that {Pn}n∈N is a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) at

⟨A⟩F (X), and a point-star network at ⟨A⟩F (X) for F (X). For each n ∈N, we put

Qn = {W ∩ F1(X) :W ∈ Pn}.

Then, {Qn}n∈N is a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) at ⟨A⟩F1(X) = ⟨A⟩ ∩ F1(X),
and a point-star network at ⟨A⟩F1(X) = ⟨A⟩ ∩ F1(X) for F1(X). On the other hand, for each n ∈ N, if Pn has
property (P) at ⟨A⟩F (X) for F (X), then Qn has property (P) at ⟨A⟩F1(X) = ⟨A⟩ ∩ F1(X) for F1(X). By Remark
1.1, the proof of sufficiency is completed.

In Theorem 2.7, if (P) is point-finite, then by [5, Theorems 3.3, 3.4] and [6, Theorem 3.4], we obtain the
following corollary.

Corollary 2.8. Let X be a space and A ⊂ X. Then, X has a point-regular external base (resp., so-network, sn-
network, cs-network, cs∗-network) at A for X if and only if F (X) has a point-regular external base (resp., so-network,
sn-network, cs-network, cs∗-network) at ⟨A⟩F (X) for F (X).

By Corollary 2.8, [6, Theorems 3.4, 3.10] and [8, Theorem 5.3], we obtain the following corollary.

Corollary 2.9. Let X be a space and A ⊂ X. Then, X is the image of a metric space under an almost-open (resp.,
a strictly countably bi-quotient, a sequence-covering, a 1-sequence-covering, sequentially quotient) and compact
mapping at A for X if and only if F (X) is the image of a metric space under an almost-open (resp., a strictly countably
bi-quotient, a sequence-covering, a 1-sequence-covering, sequentially quotient) and compact mapping at ⟨A⟩F (X) for
F (X).
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Lemma 2.10. Let X be a space and A ⊂ X. Then, P is an external base (resp., an so-network, an sn-network, a
cs-network, a cs∗-network, a cn-network, a ck-network) at A for X, then P is an external base (resp., an so-network,
an sn-network, a cs-network, a cs∗-network, a cn-network, a ck-network) at ⟨A⟩F (X) for F (X).

Proof. Suppose that F = {x1, . . . , xr} ∈ ⟨A⟩F (X) andU is an open neighborhood of F in F (X). Then, F ⊂ A and
by the proof of Lemma 2.5, there exist pairwise disjoint open subsets Ux1 , . . . ,Uxr of X such that x j ∈ Ux j for
each j ≤ r, and

F ∈ ⟨Ux1 , . . . ,Uxr⟩F (X) ⊂ U.

Case 1. Assume that P =
⋃

x∈APx is an external base (resp., so-network, sn-network) at A for X, where
each Px is a local base (resp., an sn-network consisting of sequentially open sets, an sn-network) at x in X
for each x ∈ A. Put

PF =
{
⟨Px1 , . . . ,Pxr⟩F (X) : Px j ∈ Px j ,Pxi ∩ Px j , ∅, i , j, i, j ≤ r

}
.

If Px is a local base at x in X for each x ∈ A, then it is easy to check that PF is a local base at F in F (X).
IfPx is an sn-network (resp., an sn-network consisting of sequentially open sets) at x in X for each x ∈ A,

then it is obvious that PF is a network at F in F (X) and ifW1,W2 ∈ PF, thenW ⊂ W1 ∩W2 for some
W ∈ PF. Now, take anyW ∈ PF. Then,W = ⟨Px1 , . . . ,Pxr⟩F (X), where each Px j ∈ Px j and Pxi ∩ Px j , ∅ if
i , j.

If each element of Px is a sequentially open set in X, then by the proof of Case 1 of Lemma 2.5(2), we
claim thatW is a sequentially open set in F (X). This implies that each element ofPF is a sequentially open
set in F (X).

If each element of Px is a sequential neighborhood of x in X, thenW is a sequential neighborhood of
F in F (X). In fact, let {Fn}n∈N be a sequence converging to F in F (X). By the proof of Case 1 of Lemma
2.5(2), we claim that there exists m ∈N such that Fn ∈ W for each n > m. This shows thatW is a sequential
neighborhood of F in F (X). Therefore, each element of PF is a sequential neighborhood of F in F (X).

Finally, sinceP =
⋃

F∈⟨A⟩F (X)
PF,P is an external base (resp., so-network, sn-network) at ⟨A⟩F (X) for F (X).

Case 2. P is a cs-network (resp., cs∗-network) at A for X. Suppose that {Fm}m∈N is a sequence converging
to F in F (X). For each j ≤ r, it follows from Lemma 2.2 that the sequence {Fm ∩Ux j }m∈N converges to {x j} in
X.

If P is a cs-network at A for X, then there exist P j ∈ P and k j ∈N such that

{x j} ∪
(⋃
{Fm ∩Ux j : m ≥ k j}

)
⊂ P j ⊂ Ux j .

Put k = max{k j : j ≤ r}. Then, ⟨P1, . . . ,Pr⟩F (X) ∈ P and

{F} ∪ {Fm : m > k} ⊂ ⟨P1, . . . ,Pr⟩F (X) ⊂ ⟨Ux1 , . . . ,Uxr⟩F (X) ⊂ U.

Therefore, P is a cs-network at ⟨A⟩F (X) for F (X).
If P is a cs∗-network at A for X, by induction on r, then there exist P j ∈ P and a subsequence {mk}k∈N of

N such that

{x j} ∪
(⋃
{Fmk ∩Ux j : k ∈N}

)
⊂ P j ⊂ Ux j .

This implies that ⟨P1, . . . ,Pr⟩F (X) ∈ P and

{F} ∪ {Fmk : k ∈N} ⊂ ⟨P1, . . . ,Pr⟩F (X) ⊂ ⟨Ux1 , . . . ,Uxr⟩F (X) ⊂ U.

Hence, P is a cs∗-network at ⟨A⟩F (X) for F (X).
Case 3. P is a cn-network at A for X. For each j ≤ r, if we put P j = {P ∈ P : x j ∈ P ⊂ Ux j }, then

⋃
P j is a

neighborhood of x j in X for each j ≤ r. This implies that for each j ≤ r, there exists an open subset V j in X
such that x j ∈ V j ⊂

⋃
P j.Moreover, if we put R =

⋃
j≤rP j, then
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F ∈ ⟨V1, . . . ,Vr⟩F (X) ⊂
〈⋃

P1, . . . ,
⋃
Pr

〉
F (X)

⊂

⋃
{⟨P1, . . . ,Ps⟩F (X) : F ∈ ⟨P1, . . . ,Ps⟩F (X),P1, . . . ,Ps ∈ R, s ∈N}

⊂

⋃
{W ∈ P : F ∈ W ⊂ U}.

On the other hand, since ⟨V1, . . . ,Vr⟩F (X) is open in F (X), we claim that
⋃
{W ∈ P : F ∈ W ⊂ U} is a

neighborhood of F in F (X). This shows that P is a cn-network at ⟨A⟩F (X) for F (X).
Case 4. P is a ck-network at A for X. For each j ≤ r, there is a neighborhood Vx j of x j in X such that

Vx j ⊂ Ux j and for each compact subset A j ⊂ Vx j , there exists a finite subfamilyA j of P satisfying x j ∈
⋂
A j

and A j ⊂
⋃
A j ⊂ Ux j . Next, for each j ≤ r, since X is regular, there exists an open subset Wx j in X such

that x j ∈ Wx j ⊂ Wx j ⊂ Vx j . Now, if we putVF = ⟨Wx1 , . . . ,Wxr⟩F (X), then for each compact subset K ⊂ VF,⋃
K ⊂

⋃
j≤r Wx j . Since K is compact in F (X), K is compact in ⟨X⟩K(X) = K(X). It follow from Lemma 2.4

that
⋃
K is compact in X. Hence, we claim that K j = (

⋃
K )∩Wx j is compact in X and K j ⊂ Vx j . Thus, there

exists a finite subfamily F j ⊂ P such that x j ∈
⋂
F j and K j ⊂

⋃
F j ⊂ Ux j . Lastly, if we put R =

⋃
j≤r F j and

F = {⟨P1, . . . ,Ps⟩F (X) : F ∈ ⟨P1, . . . ,Ps⟩F (X),P1, . . . ,Ps ∈ R, s ∈N},

then F is finite, F ∈
⋂
F and

⋃
F ⊂ ⟨Ux1 , . . . ,Uxr⟩F (X). Furthermore, K ⊂

⋃
F . In fact, take any

{y1, . . . , yp} ∈ K . Then, {y1, . . . , yp} ⊂
⋃
K . For each k ≤ p, since

⋃
K =

⋃
j≤r K j, there exists j0 ≤ r such that

yk ∈ K j0 ⊂
⋃
F j0 . This implies that {y1, . . . , yp} ∈

⋃
F . Thus,K ⊂

⋃
F ⊂ ⟨Ux1 , . . . ,Uxr⟩F (X). Therefore, P is a

ck-network at ⟨A⟩F (X) for F (X).

Theorem 2.11. Let X be a space and A ⊂ X. Then, X has an external base (resp., an so-network, an sn-network,
a cs-network, a cs∗-network, a cn-network, a ck-network) with property σ-(P) at A for X if and only if F (X) has an
external base (resp., an so-network, an sn-network, a cs-network, a cs∗-network, a cn-network, a ck-network) with
property σ-(P) at ⟨A⟩F (X) for F (X).

Proof. Necessity. Assume that P =
⋃

n∈NPn is an external base (resp., an so-network, an sn-network, a
cs-network, a cs∗-network, a cn-network, a ck-network) at A for X, where each Pn has property (P) at A for
X and Pn ⊂ Pn+1 for each n ∈N. It follows from Lemma 2.6 that

Pn = {⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ Pn, s ∈N}

has property (P) at ⟨A⟩F (X) for F (X), and Pn ⊂ Pn+1 for each n ∈ N. If we put P =
⋃

n∈NPn then it is easy
to see that

P ⊂ {⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P, s ∈N}.

Now, let W ∈ {⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P, s ∈ N}. Then, there exist P1, . . . ,Ps ∈ P such that
W = ⟨P1, . . . ,Ps⟩F (X). Since P =

⋃
n∈NPn, there exists ni ∈ N such that Pi ∈ Pni for each i ≤ s. If we put

m = max{ni : i ≤ s}, then P1, . . . ,Ps ∈ Pm and m ∈N. This implies thatW ∈ Pm ⊂ P. Thus, we claim that

P = {⟨P1, . . . ,Ps⟩F (X) : P1, . . . ,Ps ∈ P, s ∈N}.

It follows from Lemma 2.10 that P is an external base (resp., an so-network, an sn-network, a cs-network, a
cs∗-network, a cn-network, a ck-network) at ⟨A⟩F (X) for F (X).

Sufficiency. Let P =
⋃

n∈NPn be an external base (resp., an so-network, an sn-network, a cs-network, a
cs∗-network, a cn-network, a ck-network) with property σ-(P) at ⟨A⟩F (X) for F (X). For each n ∈N, we put

Qn = {W ∩ F1(X) :W ∈ Pn}.

Then, Q =
⋃

n∈NQn is an external base (resp., an so-network, an sn-network, a cs-network, a cs∗-network, a
cn-network, a ck-network) with property σ-(P) at ⟨A⟩F1(X) = ⟨A⟩ ∩ F1(X) for F1(X). Thus, X has an external
base (resp., an so-network, an sn-network, a cs-network, a cs∗-network, a cn-network, a ck-network) with
property σ-(P) at A for X by Remark 1.1.
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In Theorem 2.11, if (P) is point-countable, then we obtain the following corollary.

Corollary 2.12. Let X be a space and A ⊂ X. Then, X has a point-countable external base (resp., so-network,
sn-network, cs-network, cs∗-network, cn-network, ck-network) at A for X if and only if F (X) has a point-countable
external base (resp., so-network, sn-network, cs-network, cs∗-network, cn-network, ck-network) at ⟨A⟩F (X) for F (X).

By Corollary 2.12, [6, Theorem 4.6] and [8, Theorems 3.2, 3.6, 3.9], we obtain the following corollary.

Corollary 2.13. Let X be a space and A ⊂ X. Then, X is the image of a metric space under an open (resp.,
a strictly countably bi-quotient, a pseudo-sequence-covering, a sequentially quotient, a sequence-covering, a 1-
sequence-covering) and s-mapping at A for X if and only if F (X) is the image of a metric space under an open
(resp., a strictly countably bi-quotient, a pseudo-sequence-covering, a sequentially quotient, a sequence-covering, a
1-sequence-covering) and s-mapping at ⟨A⟩F (X) for F (X).

In Theorems 2.7, 2.11 and Corollaries 2.8, 2.12, if A = X, then ⟨A⟩F (X) = F (X), we obtain the following
corollary.

Corollary 2.14. Let X be a space.

1. X has a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) which is a point-star network for X if
and only if so does F (X);

2. X has a sequence of open covers (resp., so-covers, cs-covers, cs∗-covers) with property (P) which is a point-star
network for X if and only if so does F (X);

3. X has a point-regular base (resp., so-network, sn-network, cs-network, cs∗-network) if and only if so does F (X);
4. X has a base (resp., an so-network, an sn-network, a cs-network, a cs∗-network, a cn-network, a ck-network)

with property σ-(P) if and only if so does F (X);
5. X has a point-countable base (resp., so-network, sn-network, cs-network, cs∗-network, cn-network, ck-network)

if and only if so does F (X).

In Corollary 2.14(2), if (P) is locally finite, then we get the following corollary.

Corollary 2.15. Let X be a space. Then, X is so-metrizable (resp., strict σ-space, strict ℵ-space) if and only if so does
F (X).

Remark 2.16. By Corollary 2.14 and Remark 1.9, we get back the following known results in [4, Theorem
4.7], [14, Theorems 37, 41], [18, Theorem 2.6] and [18, Corollaries 2.7, 2.8].

1. X has a σ-strong network consisting of cs∗-covers (cs-covers) if and only if so does F (X);
2. X has a σ-(P)-strong network consisting of cs∗-covers (cs-covers) if and only if so does F (X);
3. X has a point-regular base (resp., sn-network, cs-network, cs∗-network) if and only if so does F (X);
4. X has a point-countable base (resp., cs-network) if and only if so does F (X);
5. X is an sn-metrizable space (resp., an sn-developable space, a strongly sn-developable space) if and

only if so is F (X);
6. X is a weak Cauchy sn-symmetric space (resp., Cauchy sn-symmetric space) if and only if so is F (X);
7. X is a Cauchy sn-symmetric space with a σ-(P)-property cs∗-network (resp., cs-network, sn-network)

if and only if so is F (X);
8. X has property γ if and only if so does F (X), where property γ is one of the images of metric spaces

under some kinds of continuous mappings, which is determined in [18, Corollary 2.8].
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