Filomat 38:12 (2024), 4009—4019
https://doi.org/10.2298/FIL.2412009B

2K

Published by Faculty of Sciences and Mathematics,
University of NiS, Serbia

Available at: http://www.pmf.ni.ac.rs/filomat

U
;
gy gy

&
Ipapor®

On some Griiss-type inequalities via k-weighted fractional operators
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Abstract. In this paper, we employ the concept of k-weighted fractional integration of one function with
respect to another function to extend the scope of Griiss-type fractional integral inequalities. Furthermore,
we establish and provide proofs for a set of inequalities that incorporate k-weighted fractional integrals.

1. Introduction

In 1935, G. Grtiss [1] proved the well known inequality

1 b 1 b b M- NE
‘bTa f fEge0dx - 7 f fldx f gy < MmN =n)

1 1
provided that f, g are two integrable functions on [4, b] and satisfying the conditions:
m< f(x) <M n<gx)<N;, nmNMeRandx e [a,b]
In 2010, Dahmani et al. [2], proved the following fractional version inequality by using Riemann- Liouville
fractional integral
e W - 1 o)
r(a + 1) a g a a g

2
xa
<[—— - —n).
< (F(a n 1)) (M —m)(N —n) ()
In 2014, Tariboon et al. [3], replaced the constants which appeared as bounds of the functions f and g by
four integrable functions on [0, o), as
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where Fi(x) < f(x) < F2(x), G1(x) < g(x) < Go(x) and H(f, F1, F,) defined by
H(f, F1, F)(x) = (I[7F2(x) = [T f(x)) (I3 f(x) = [7F1(x))

+ e I [F2(0) f(0)] = I§F2(0) I £ (x)

+ 18 [FEOF1 (0] - I f OIS (v)
+HIF2 (OIS (x) — g 18 [F2(0)F1 (v)].

Throughout the past decade, numerous authors have introduced and validated various novel integral
inequalities of the forms (2) and (3) by employing diverse fractional integral operators. Refer to the following
sources for more details, [4]-[11], [13].

On the other hand [12], the weighted fractional integrals is defined, for an integrable function f on the
interval [a, b] and for a differentiable function p such that p’(t) # 0 for all t € [a, b], as follows,

. B — 1 * ’ _ -1
o f ) = s [ O W@ -pOf e o, v>a

where w is a weighted function ( positive measurable function).

2. k-weighted fractional Operator

In this section, we present a definition of the k-weighted fractional integrals of a function f with respect
to the function 1) and we prove that they are bounded in a specified space. Let [a, b] C [0, +0), where a < b.

Definition 2.1. The k-weighted fractional integral operators are defined as follows: Let o > 0, k > 0 and ¢ be a
positive, strictly increasing differentiable function such that 1’(s) # 0 for all s € [a,b]. The left and right sided
k-weighted fractional integral of a function f with respect to the function 1 on [a, b] are defined respectively as follows.

. 1 3 .
0 = s [V O@@ -0 oo, a<xst @

o 1 b o
b*]k,,zlff(x) = m[x V@O - @) T wbftdt, a<x<b, 6)

where w is a weighted non-decreasing function and I'y is the k-gamma function defined by

Ti(a) = f e dt.
0

The space L;N [a,b] of all real-valued Lebesgue measurable functions f on [a, b] with norm conditions:
b z
If 1= (f | f) P W(x)dx) <o, 1<p < +o
is known as weighted Lebesgue space, where W be a weight function ( measurable and positive ).

1. Put W = 1, the space L;f" [a, b] reduces to the classical space L,[a, b].
2. Choose W(x) = w’(x){’(x) and p = 1, we get

b
Lx,[a,b] = {f S lx,= f | w(x) f(x) | ' (x)dx < 00}- (6)
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In the next theorem, we show that the the k-weighted fractional operators are bounded.

Theorem 2.2. The fractional integrals (4), (5) are defined for functions f € Lx,,[a, b], existing almost everywhere
and

oLf() € Ly, la,b], I, f(x) € Ly, [a, b]. ?)
Moreover

||, <clfly,, o], <clifel,, (®)
where

oo o) - Y(a)t
B (o + k) ’

Proof. Let f € Ly, [a,b]. Appling Fubini’s Theorem, we get

b
M ”X = f | w() T4 F ) | 9 (6) dx

b X
kI’:(a) f f lwE) f6)] ¢ ) (@ () = 9 () ¢ (x) ds dx

<
_1 ’ ' [ ,
= krk(a)‘fﬂ |w(S)f(S)|(‘£ W(x) = P(s) Y (x)dx | (s)ds

1 b .
" aT(@) f |w(s)f(5)] (W) = ()" ¥ (s)ds

b) - @)t [*
LD [awsolv o

= Clf]
Similarly

XTU :

h b) — ()t
[ 1otz g g < YOV

Xo *

This gives us our desired formulas (7) and (8). O

One important feature of the left side k-weighted fractional operators is that they depend on the choice
of the functions 1) give rise to certain types of left side k-weighted fractional integrals.

1. Taking w(t) = 1, we get the left side k-Hilfer operator (generalized k-fractional integral) of order a > 0

" 1 (7 e
wTH0 = i [ @0 R x2a

2. Taking (1) = 7, we get the left side k-weighted Riemann-Liouville fractional operator of order o > 0

1

e RL f(X) = WOKTH(@)

fx(x — s)%_lw(s)f(s)ds, xX>a,
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3. Using (1) = In 1, we obtain the left side k-weighted Hadamard fractional operator of order a > 0

o _ 1 X X -1 ds
ﬂ@fW)—aaﬁfgapf(mg) wEfe) 5, x>a>1,

4. Putting (1) = Z5 " where p > 0, we deduce the left side k-weighted Katugompola fractional operators(
(k, s)-weighted fractlonal) of order a > 0,

(P+1)1 £ X

m (xp+1 _ Sp+1)%_1 w(s)f(s)spdsl c>a

e Ko (%) =

5. Setting Y(7) = % where 0 > 0, we result the left sided k-weighted fractional conformable operator
of order a > 0 [13].

-1 w(s) f(s)
a*ckwf(x) w(x)kl—. (a)f (x a)@ (S )9) mds xX>a,

Remark 2.3. Since w is non-decreasing on [a, b], apply the notion of k-weighted fractional integral (4), we get

1 . o
o | Y Oe@-ve e

T2 1(x)
e
< e [ VOG@ v e

b —
:ﬁf‘“ﬂwm P ds,

another part

o 1 x N
T 1) Smfa W (5) (¥ (¥) — ¢ () w(x) ds

— 1 * ’ 7_1
e [ veOww-vor

Therefore
ayp @) — @)t _ wb) (&) - P@)?
@S TR S T v@hdath ®
Ifw =1, we get equality in (9).
The following Holder inequality can be deduced from Corollary 2 [14] form =2and g > 1:
f f | u(t, s)@(t,s)W(t,s) | dtds
; (10)
(f f | u(t,s) |l D, s) |7 dtds) (f f | ut, )l (t,s) |7 dtds)
By g = 2, then the above inequality (10) can be rewritten as follows:
XX 2
u(t, s)®(t, s)\¥(t, s)dt ds)
(11)

i
< (ju‘x jj | u(t,s) | Cbz(t,s)dtds) (fax f: | u(t,s) | \If2(t,s)dtds).
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3. Weight Griiss-type inequalities
Let f, F1, F, be functions defined on Lx;i, [a, b] verified the condition
Fi(x) < f(x) < F2(x), for all x € [a,b]. (12)
Consider Tﬁ( f,F1, F2) to be an operator defined as follows:

Th(f FLE)®) = (o TPFa) = o 100 F00) (T2 F ) = o] 0P ()

+ o TP o T [0 f)] = T U2 (0) o T 1 f ()

k,w (13)
+ o T 1) 2T LFEF (0] - mJi;f:f(x) I F ()
+ o TPV () o TR () = 0] 5010 Y [P (0OF2 ()]
Taking Fp(x) = M and F;(x) = m , we get
Th(f,m, M) = (M o001 = o T80 F0) (T 10 f ) = o] 0 1(0))
(14)
(TP e T f) = o] 1) T f))
Denote T =: Tg for a = B, we have
T(f,m, M)@) = (M 0T 1 01) = o T 10 F@)) (T 0 f) = ma T 21(). (15)
Appling the elementary inequality AB < (2:£)2, we deduce
ap 2
0] o 102) (M = m)
T(f, m, M)(x) < > .
By using inequality (9), we get
w(b) (@) = P(@)F (M= m)\’
TCf, m, M)@) < ( 2w(@) Te(a + ) ) ' (16)

The first theorem is now presented.

Theorem 3.1. Let f,Fy, F, be functions defined on LXfU [a, b] that satisfy the condition (12) and y be an increasing
and positive function on [a, b], having a continuous derivative ¢’ on [a, b], x > aand o, B, k > 0. Then the following
inequalities hold:

T F20) e f@) + T f@) T Fr ()
(17)
0 e STCO T ot STCO RS FAWCOPS WG

and

”+]k10F2(x ”+] f(X) + a*]::ﬁf X) a*] Fl(x)
(18)

> B TR0 + (]S F )
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Proof. Given the hypothesis (12), then for all ¢, s € [a,b] we get
(f(&) = Fx()(Fa(s) = f(5)) 2 0,

then
fOF2(s) + F1(t)f(s) = F1(t)Fa(s) + f(1) £ (s). (19)

and integrating with respect to t over (g, x), we get

Multiplying the inequality (19) by w(x)T(

Fa() T2 f() + f(8) T L0 F1(H) 2 Fa(s) ]y 2 Fa(t) + £(5) ot o £ (1), (20)

Now, Multiplying the above inequality (20) by ;ﬁ(:)k ru:( ) and integrating with respect to s over (a, x), we get

TEOF2 ) T2 () + 0] F0) 00T p 0 P ()

> a*] FZ(X) a*]?wl:l(x) + ﬂ*] f(x) ”+]kzvf(x)

Thus, we get the acquired inequality (17).
By putting § = a through the inequality (17), we obtain the inequality (18). O

Corollary 3.2. Let f € Ly [a, b]and 1 be an increasing and positive function on [a, b], having a continuous derivative
Y’ onla,bl,x >aand a,B, k > 0. Suppose that m < f(x) < M, for all x € [a,b], then the follows inequalities hold:

M TP 0 T f() + mas ] 2100 o TE Y ()
(21)
> Mo T P01 m o ] 7010) + o T8 F(0) 0] 12 £ ()

and
2 2
(M +m) o ] P2 1(0) 0T b £ = Mo (T 510))” + (T 1 f(0)) - (22)
Proof. Put F>(x) = M and F1(x) = m, hence
R0 = M T 010, and o] {YF() = m o] 1),
So, applying Theorem 3.1, we can deduce our results. [J

Remark 3.3. 1. Putw =1 =1landk =1, we get Theorem 2 in [3].
2. Putw=1and k=1, we get Theorem 2.11 and Corollary 2.14 in [4].
3. Putw =1and Y(x) = 17,

4. Putw =1, ¢Y(x) = m where r > 0, we get Theorem 2.1 and Lemma 2.4 in [10], and for k = 1 we get Theorem
5 and Corollary 2 in [5].

5 Putw=1k=1and Y(x) = o ”) where s > 0, we get Theorem 2.1 and Theorem 2.3 in [7] and Theorem 2.1
in [8].
6. Putw=1k=1a=0and ¢(x) = @ where s > 0, we get Theorem 2.1 and Corollary 2.1 in [9].

we get Theorem 2.1 and Lemma 2.4 in [10].

The following Lemma is required to prove the second basic Theorem 3.6.
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Lemma 3.4. Let f,F1, F> be a functions defined on Lyy [a, b] and 1 be an increasing and positive function on [a, b],
having a continuous derivative 1’ on [a,b] , x > a and a, k > 0. Suppose that the condition (12) holds. Then

IR0 T 20 = o T0Y F(0) T 1 ()
(23)

= Th(f, F1, F)(¥) = 0T A1) 0T [(Fa() = FEN(f(x) = Fr(x))],

and
T 1) T b ) = o Thh F() 0T f(6) < TH(f, Fr, Fa) (). (24)
Proof. Forallt,s € [a,b], we have

(Fa(s) = f(&))(f(t) — F1(1)) — (Fa(t) — F(H)(F(t) — F1(t)
= f2() = f(H f(s) (25)
—Fo(t) f(H) + F2(s) f(t) — fF(OF1(t) + f(5)F1(t) — Fa(s)F1(t) + F2(HF1 (D).

Multiplying the inequality (25) by m and integrating with respect to ¢ over (a, x), we get
(F2(8) = FONaT 2 F0) = a T EVE1 () = 0T 22 [(Fa(0) = FON(F(X) — Fr(0))]
= elin P20 = f6) eI o f@) = w18 TF0f@] + Fa(s) T £ ) (26)

— Ty s [ FE)] + F6) T o F1(x) - Fz(s>a+J;i:jF1(x) + o] i [F()F1 ()]

Now, Multiplying the above inequality (26) by ) and integrating with respect to s over (4, x), we get

w(x)kr(ﬁ
(TP F2(x) = TP FOO) 0Ty f(2) = T Fr (X))
— T 0160 o T o [(Fa(x) = FOON(F() = Fa(x)]
= o JP010 eI 2 200 = T f0) T 0 f()
— T o T [ fO] + T F2(0 0T (b F(x)
~ e 11@) e T 5 TR F ] + 0T 02 f0) 0 T Fr ()

— e TR () o PR () + 0] {01 ] 1 [F2(0F1 ()]

Thus, we get the acquired inequality (23).
Since

[(Fa(x) = f()(f(x) — F1(x))] 2 O,
then
ﬂ*]k wl(x) ]kw [(F2(x) = fN(f(x) = F1(x))] 2 0

This gives us the inequality (24).
|
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If F; and F; are some constants, then from the above Lemma we have the following Corollary.

Corollary 3.5. Let f € Ly [a,b] and 1 be an increasing and positive function on [a,b], having a continuous
derivative ' on [a, bl and also x > a, a, B, k > 0. Suppose that m < f(x) < M for all x € [a, b], then the following
inequalities hold:

I T 200 = o TEY F0 ] 2 ()

(27)
= TH(f,m, M) — T PX10) T2 (M = FR)(f@) - m)],
and
IV o T 10 F20) = o TED f(0) T 1o F() < T, m, M) (). (28)
If & = B, then from inequalities (28) and (16) we get
ap w2 (W) @) = p(@)t (M —m)\®
T 1@ T 18 P20 = (T ) < ( O (29)

Theorem 3.6. Let f,g,F1,F>,G1,Gy € Lxﬁ, [a,b] and ¢ be an increasing and positive function on [a,b], having a
continuous derivative Y’ on [a,b], x > aand o, B, k > 0. Suppose that

Fi(x) < f(x) < Fa(x) and G1(x) < g(x) < Ga(x), for all x €[a,b], (30)

then the following inequality holds:

Ag(fr g)(x) + Ai(f, g)(x)| <

(31)
VTS FL E) @) + T3 F F2)() (Thg, G, Go) )+, Ti(9, G, Go) (),
where
ASFD® = o TE1@) e 1L L] = ]2 f @) 0 1900,
Proof. Let
K(t,s) = (f()) = f)(g(t) = g(s), for allt,s € [a,b], (32)
then

K(t,s) = f()g(t) + f(s)9(s) = f(£)g(s) = f(s)g(F)-

v yE e
w(x) kTi(ar) w(x)kTi(B)

Multiplying the inequality (32) by
and s over (g, x), we get

f < Tty Ew(s)
. (W) K2 Te(@) T(B)

and integrating the resulting identity with respect to f

K(t,s)dtds

= eI 10T F@IW] + o T 10 w1 9] 39)
— e TP ) e TP 900 = TP f(x) T 9(x)

= AP(f, g)(x) + Ag(f, ().
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Since K(t,s) = (f(t) — f(s))(g(t) — g(s)), apply Holder inequality (11), we get

. . 2
[f Y wty e ()K(t,s)dtds]

o (@) k)*Ti(a) k()

Yy e 34
< [L o (W(x) k)2 Ti(e) Tr(B) (f() = f(s))dt dS] (34)

X [f Ty i lw(ty'E T )( (t) — g(s))?dt ds].

o (@) k)*Ti(@) k()

By the equality (f(t) — f(s))*> = f2(t) + f2(s) — 2f(t)f(s) and using the inequalities (24), (33) and (34), we
deduce

(A5(F, @) + A3(F, 9)x)

< (T2 0 T2 P2 + o] 2100 00020 = 20T 12 F ) T 1Y (1))
X (1@ T LF @ + 2T TP E = 2000 01 00)
< (T8, F1 @) + T3 Fr, F)0) (T2, Gr, G, T30, Gr, Go)()

This gives us the desired inequality (31). O

Setting a = 8, we obtain the fundamental Corollaries given below.

Corollary 3.7. Let f,g,F1,F>,G1,G; € LX; [a, b] verified (30) and 1p be an increasing and positive function on [a, b],
having a continuous derivative Y’ on [a,b], x > a and a, k > 0. Then the following inequality holds:

2T 0 T2 [F g0 = T 20 @) T2 ()
(35)

< \T(f, F1, F2)(x) T(g, G1, G2)(x).
If F1, F>, G1 and G; are constants, we have the following Corollary.

Corollary 3.8. Let f,g € Ly [a,b] and 1 be an increasing and positive function on [a,b], having a continuous
derivative ' on [a,b], x > aand a, B, k > 0. Suppose that

m< f(x) <Mandn < g(x) <N, for all x €la,b],

then

T T 5 9] = o F ) T g

b - 2 (36)
(B v

4. Some special cases of Weight Griiss inequality

The Griiss inequality is presented using a particular weighted operator when the function ¢ is chosen.
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4.1. k-Hilfer operator.

Ifw(x) =1,k =1and a = 0, then Corollary 3.7 and Corollary 3.8 reduce to to Theorem 2.23 and Corollary
224 in [4].

4.2. k-weighted Riemann-Liouville operator.
Let ¢(x) = x, then

T ) T [f(x)y(x)] i f) g ()

w(b) (x — a)f
= (Zw(a) Tati) M-m®E=m.
If w =1 and a = 0, Corollary 3.8 reduce to Theorem 3.1 in [2], and Corollary 3.7 reduce to Theorem 9 in [3].

4.3. k-weighted Hadamard operator.
Let ¢(x) = Inx and [a, b] C [1, +oo], then

AT T 9] = o F) T g
w(b) (In(H)F Y
= [Zw(a) To(a + k)) (M = m) (N = n).

If w =1, we get a new result to Griiss inequality involving k-Hadamard operator.

4.4. k-weighted Katugompola operator.
Let Y(x) = 75 "~ where r > 0, then

u+]kw1(X)a+] Y [F(x)g(0)] - u+]kwf(x) Ikwg(x)

< ( Tl o Y (M —m)(N —n)
“\20+ 1) w@) T(a + k) '

If w = 1, Corollary 3.7 reduce to Theorem 2.10 in [10].
If w=1and k = 1, Corollary 3.7 and Corollary 3.8 reduce to Theorem 7 and Remark 1 in [5].

4.5. k-weighted fractional conformable operator.
Let g(x) = &2 a) where s > 0, then

”+]kwl(x) ]kw [f(X)g(X)] ‘1+]a ¢f(X) ]kw X)
3 ( w(b) ((x - ay)t
“\2w(a) st Ti(a + k)

(M—m)(N—n).

If w =1 and k = 1, then Corollary 3.7 reduce to Theorem 2.10 [7] and Theorem 2.10 in [8].
Ifw=1k=1anda = 0, then Corollary 3.7 reduce to Theorem 2.4 in [9] and Corollary 3.8 reduce to
Theorem 1 in [11].

5. Conclusion

This paper introduces a fresh perspective on Griiss-type inequalities by incorporating k-weighted frac-
tional operators. Additionally, it explores a range of related weight inequalities that hinge upon specific
operators reliant on the functions w and 1. These newly introduced weight operators have the potential to
extend the scope of certain existing works in future research endeavors.
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