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On the Aα spectral radius of generalized weighted digraphs
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Abstract. Let G = (V(G),E(G)) be a generalized weighted digraph without loops and multiple arcs,
where the weight of each arc is a nonnegative and symmetric matrix of same order p. For vi ∈ V(G), let
w+i =

∑
v j∈N+i

wi j, where wi j is the weight of the arc (vi, v j), and N+i is the set of out-neighbors of the vertex vi.

Let Aα(G) = αD(G)+ (1−α)A(G), where 0 ≤ α ≤ 1, A(G) is the adjacency matrix of the generalized weighted
digraph G, and D(G) = dia1(w+1 ,w

+
2 , . . . ,w

+
n ). The spectral radius of Aα(G) is called the Aα spectral radius of

G. In this paper, we give some upper bounds on the Aα spectral radius of generalized weighted digraphs,
and characterize the digraphs achieving the upper bounds. As application, we obtain some upper bounds
on the Aα spectral radius of weighted digraphs and unweighted digraphs.

1. Introduction

Let G = (V(G),E(G)) be a digraph with vertex set V(G) = {v1, v2, . . . , vn} and arc set E(G). If (vi, v j) ∈ E(G),
then vi is called the tail and v j is called the head of the arc (vi, v j). A digraph G is strongly connected if for
every order pair of vertices vi, v j ∈ V(G), there exists a directed path from vi to v j and a directed path from
v j to vi. For any vertex vi ∈ V(G), let N+i = N+vi

(G) = {v j : (vi, v j) ∈ E(G)} denote the set of out-neighbors of
the vertex vi. Throughout this paper, we only consider the digraphs without loops and multiple arcs.

A generalized weighted digraph is a digraph in which each arc is assigned a square matrix, called the
weight of the arc. All the weight matrices will be assumed to be nonnegative and symmetric matrices with
the same order. A generalized weighted digraph can be view as weighted digraph if the weight of each arc
is a positive number, and an unweighted digraph if each arc bearing weight 1.

Let G be a generalized weighted digraph with n vertices, denote by wi j the weight of the arc (vi, v j),
which is a nonnegative and symmetric matrix of order p. For vi ∈ V(G), let w+i =

∑
v j∈N+i

wi j. Clearly, w+i

is a nonnegative and symmetric matrix, we use ρ(w+i ) to denote the spectral radius of w+i . A generalized
weighted digraph G is a generalized weight-semiregular bipartite digraph if it is a strongly connected
digraph whose vertex set can be partitioned into two disjoint nonempty subsets V1 and V2 such that ρ(w+i )
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is a constant for every vertex vi in V1, and ρ(w+j ) is a constant for every vertex v j in V2. If ρ(w+k ) is a constant
for every vertex vk in G, then G is called a generalized weight-regular digraph.

The adjacency matrix A(G) of a generalized weighted digraph G is a block matrix, where the matrix
block ai j of order p is defined by

ai j =

 wi j (or wi, j), if (vi, v j) ∈ E(G),
0, otherwise.

The signless Laplacian matrix of a generalized weighted digraph G is Q(G) = A(G) + D(G), where D(G) =
dia1(w+1 ,w

+
2 , . . . ,w

+
n ). For any real number α ∈ [0, 1], the convex combinations Aα(G) of D(G) and A(G)

defined by
Aα(G) = αD(G) + (1 − α)A(G).

Clearly,
A0(G) = A(G), A1(G) = D(G), and 2A 1

2
(G) = Q(G).

In general, Aα(G) is not symmetric and its eigenvalues can be complex numbers. The spectral radius of
Aα(G) is called the Aα spectral radius of G, denoted by µα(G). Since Aα(G) is a nonnegative matrix, it follows
from Perron Frobenius Theorem that µα(G) is an eigenvalue of Aα(G) and there is a nonnegative eigenvector
corresponding to µα(G). There has been some results on the Aα spectral radius of unweighted digraphs, see
[3, 9, 16, 17].

Since graphs in the design of networks and electronic circuits are usually weighted, the spectra of
weighted graphs are often used to solve problems. Fiedler [2] had introduced the following question:
What is the optimal distribution of nonnegative weights (with total sum 1) among the edges of a given
graph, so that the spectral radius of the resulting matrix is minimum? He himself proved that the optimum
solution is achieved. It is natural for us to consider the Fiedler’s problem on the largest spectral radius
of matrices associated with weighted graphs. In fact, the spectral radius, Laplacian spectral radius and
signless Laplacian spectral radius of weighted undirected graphs have been well treated in the literature
[4, 5, 8, 10–14, 18]. However, there are a few of results for the generalized weighted digraphs. Recently, Ş.B.
Bozkurt and D. Bozkurt [1] obtained some upper bounds for the spectral radius of generalized weighted
digraphs and characterized the digraphs achieving the upper bounds. P. Li and Q.X. Huang [7] gave a
sharp upper bound for the spectral radius of generalized weighted digraphs, and if the digraph is strongly
connected, they also characterized the digraphs achieving the upper bound. W.G. Xi and L.G. Wang [15]
obtained an upper bound for the signless Laplacian spectral radius of generalized weighted digraphs, and
if the digraph is strongly connected, they also characterized the digraphs achieving the upper bound. In
this paper, we will give some upper bounds on the Aα spectral radius of generalized weighted digraphs.
As application, we also obtain some upper bounds on the Aα spectral radius of weighted digraphs and
unweighted digraphs.

2. Lemmas and Results

Lemma 2.1. ([6]) Let B be an n× n real nonnegative symmetric matrix, ρ(B) be the largest eigenvalue. Then for any
x ∈ Rn(x , 0), y ∈ Rn(y , 0),

|xTBy| ≤ ρ(B)
√

xTx
√

yT y. (1)

The equality holds in (1) if and only if x is an eigenvector of B corresponding to ρ(B) and y = αx for some α ∈ R.

Lemma 2.2. ([6]) Let M be an n × n real symmetric matrix with eigenvalues λ1 ≥ λ2 ≥ · · · ≥ λn. Then for any
x ∈ Rn(x , 0),

xTMx ≥ λnxTx. (2)

The equality holds if and only if x is an eigenvector of M corresponding to the eigenvalue λn.
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Lemma 2.3. ([7]) Let G = (V(G),E(G)) be a generalized weighted digraph and wi j be a nonnegative symmetric
matrix of order p of the arc (vi, v j) ∈ E(G) and w+i =

∑
v j∈N+i

wi j. Also let x be an eigenvector of wi j corresponding to the

largest eigenvalue ρ(wi j) for all i, j. Then x is also an eigenvector of w+i corresponding to the largest eigenvalue ρ(w+i )
for all i, and ρ(w+i ) =

∑
v j∈N+i

ρ(wi j).

In the following, we give some upper bounds for the Aα spectral radius of generalized weighted
digraphs.

Theorem 2.4. Let G = (V(G),E(G)) be a strongly connected generalized weighted digraph with vertex set V(G) =
{v1, v2, . . . , vn} and arc set E(G). Then

µα(G) ≤ max
(vi,v j)∈E(G)


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2

 , (3)

where wi j is the nonzero nonnegative symmetric matrix of order p of the arc (vi, v j) ∈ E(G). Moreover, the equality
holds in (3) if and only if the following two conditions hold:

(i) wi j has a common eigenvector corresponding to the largest eigenvalue ρ(wi j) for all vi, v j;
(ii) G is an weight-regular digraph or G is an weight-semiregular bipartite digraph.

Proof. Let X = (xT
1 , x

T
2 , · · · , x

T
n )T be a nonnegative eigenvector of Aα(G) corresponding to the eigenvalue

µα(G) > 0, where xi ≥ 0 is a column vector in Rp corresponding to the vertex vi of G. Since Aα(G)X = µα(G)X,

µα(G)xi = αw+i xi + (1 − α)
∑

vk∈N+i

wikxk,

that is

(µα(G)Ip − αw+i )xi = (1 − α)
∑

vk∈N+i

wikxk. (4)

By multiplying xT
i to (4), we get

xT
i (µα(G)Ip − αw+i )xi = (1 − α)

∑
vk∈N+i

xT
i wikxk

≤ (1 − α)
∑

vk∈N+i

|xT
i wikxk|

≤ (1 − α)
∑

vk∈N+i

ρ(wik)
√

xT
i xi

√
xT

k xk (using (1)).

From (2), we have
(µα(G) − αρ(w+i ))xT

i xi ≤ xT
i (µα(G)Ip − αw+i )xi.

Therefore

(µα(G) − αρ(w+i ))xT
i xi ≤ xT

i (µα(G)Ip − αw+i )xi

= (1 − α)
∑

vk∈N+i

xT
i wikxk

≤ (1 − α)
∑

vk∈N+i

|xT
i wikxk|

≤ (1 − α)
∑

vk∈N+i

ρ(wik)
√

xT
i xi

√
xT

k xk. (5)
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Let (vi, v j) ∈ E(G). Similarly, we have

(µα(G) − αρ(w+j ))xT
j x j ≤ xT

j (µα(G)Ip − αw+j )x j ≤ (1 − α)
∑

vt∈N+j

ρ(w jt)
√

xT
j x j

√
xT

t xt. (6)

Let a = max
1≤k≤n
{xT

k xk} > 0. We now choose xi0 , the vector component of X such that xT
i0

xi0 = a and there exists

v j0 ∈ N+i0 satisfying xT
j0

x j0 = max
vk∈N+i0

{xT
k xk} ≥ max

vt∈N+i
{xT

t xt}whenever xT
i xi = a. Clearly, (vi0 , v j0 ) ∈ E(G).

Taking i = i0 in (5), we get

(µα(G) − αρ(w+i0 ))xT
i0 xi0 ≤ xT

i0 (µα(G)Ip − αw+i0 )xi0 (7)

= (1 − α)
∑

vk∈N+i0

xT
i0 wi0kxk (8)

≤ (1 − α)
∑

vk∈N+i0

|xT
i0 wi0kxk| (9)

≤ (1 − α)
∑

vk∈N+i0

ρ(wi0k)
√

xT
i0

xi0

√
xT

k xk (10)

≤ (1 − α)
√

xT
i0

xi0

√
xT

j0
x j0

∑
vk∈N+i0

ρ(wi0k). (11)

Taking j = j0 in (6), we get

(µα(G) − αρ(w+j0 ))xT
j0 x j0 ≤ xT

j0 (µα(G)Ip − αw+j0 )x j0

= (1 − α)
∑

vk∈N+j0

xT
j0 w j0kxk

≤ (1 − α)
∑

vk∈N+j0

|xT
j0 w j0kxk| (12)

≤ (1 − α)
∑

vk∈N+j0

ρ(w j0k)
√

xT
j0

x j0

√
xT

k xk (13)

≤ (1 − α)
√

xT
i0

xi0

√
xT

j0
x j0

∑
vk∈N+j0

ρ(w j0k). (14)

We now claim that x j0 , 0. Indeed, by contradiction, we can suppose that x j0 = 0. Then xk = 0 for all k with
vk ∈ N+i0 . Furthermore, by the (8), 0 ≤ (µα(G) − αρ(w+i0 ))xT

i0
xi0 ≤ 0. That is (µα(G) − αρ(w+i0 ))xT

i0
xi0 = 0, and so

(µα(G) − αρ(w+i0 )) = 0 since xT
i0

xi0 , 0, which is impossible. Thus by multiplying the two sides of (11) and
(14), we have

(µα(G) − αρ(w+i0 ))(µα(G) − αρ(w+j0 )) ≤ (1 − α)2
∑

vk∈N+i0

ρ(wi0k)
∑

vk∈N+j0

ρ(w j0k).

Therefore,

µα(G) ≤

α(ρ(w+i0 ) + ρ(w+j0 )) +
√
α2(ρ(w+i0 ) − ρ(w+j0 ))2 + 4(1 − α)2

∑
vk∈N+i0

ρ(wi0k)
∑

vk∈N+j0

ρ(w j0k)

2
,

which leads to the result since (vi0 , v j0 ) ∈ E(G).
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Now, we suppose that the equality holds in (3). Then all inequalities in the above argument must be
equalities. Then by the equality (7), xi0 is an eigenvector of matrix w+i0 corresponding to the eigenvalue
ρ(w+i0 ). By the equalities (10) and (11), for any vk ∈ N+i0 , xi0 is a common eigenvector of wi0k corresponding
to the eigenvalue ρ(wi0k), xk = bi0kxi0 and xT

k xk = xT
j0

x j0 . Hence, for (vi0 , vz) ∈ E(G) and (vi0 , vs) ∈ E(G),
b2

i0zxT
i0

xi0 = xT
z xz = xT

s xs = b2
i0sx

T
i0

xi0 , which implies b2
i0z = b2

i0s. Moreover, for any vk ∈ N+i0 , xT
i0

wi0kxi0 > 0 since
ρ(wi0k) > 0. Furthermore, by the equality (9), bi0kxT

i0
wi0kxi0 = xT

i0
wi0kxk = |xT

i0
wi0kxk| > 0. Hence bi0k > 0 for

any vk ∈ N+i0 . So bi0z = bi0s = b. Thus, for any vk ∈ N+i0 , xk = bxi0 , and xi0 is a common eigenvector of wi0k

corresponding to the eigenvalue ρ(wi0k).
For any v j ∈ N+i0 , x j = bxi0 = x j0 . By replacing j0 with j in the equality (14), for any xl with vl ∈ N+j ,

(µα(G) − αρ(w+j ))xT
j x j = xT

j (µα(G)Ip − αw+j )x j

= (1 − α)
∑

vl∈N+j

|xT
j w jlxl|

= (1 − α)
∑

vl∈N+j

ρ(w jl)
√

xT
j x j

√
xT

l xl

= (1 − α)
√

xT
i0

xi0

√
xT

j x j

∑
vl∈N+j

ρ(w jl).

Hence, we have x j is an eigenvector of matrix w+j corresponding to the eigenvalue ρ(w+j ), and for any
vl ∈ N+j , x j is a common eigenvector of w jl corresponding to the eigenvalue ρ(w jl), xl = c jlx j and xT

l xl = xT
i0

xi0 .
Then (c jlb)2xT

i0
xi0 = xT

i0
xi0 , which implies (c jlb)2 = 1. Moreover, c jlxT

j w jlx j = xT
j w jlxl = |xT

j w jlxl| > 0. Noting that

xT
j w jlx j > 0 since ρ(w jl) > 0, we have c jl > 0 and thus c jl =

1
b . Therefore, for any vl ∈ N+j , xl =

1
b x j =

1
b bxi0 = xi0 .

Now let p = vi0 vi1 . . . vir be a directed path in G. We have the following claim.
Claim: If 0 ≤ t ≤ r is even, then xit = xi0 , if 1 ≤ t ≤ r is odd, then xit = bxi0 .
Firstly, we know that vi0 corresponding to xi0 . Then the claim holds for t = 0, 1, 2 by the above proof.

Now let t = 2, we know that xi2 = xi0 . Let xT
h xh = max

vq∈N+i2

{xT
q xq} ≤ xT

j0
x j0 . Since (vi2 , vh) ∈ E(G) and xi2 = xi0 . As

similar as the inequality (11), we have

(µα(G) − αρ(w+i2 ))xT
i2 xi2 ≤ xT

i2 (µα(G)Ip − αw+i2 )xi2

= (1 − α)
∑

vq∈N+i2

xT
i2 wi2qxq

≤ (1 − α)
∑

vq∈N+i2

|xT
i2 wi2qxq|

≤ (1 − α)
∑

vq∈N+i2

ρ(wi2q)
√

xT
i2

xi2

√
xT

q xq (using (1))

≤ (1 − α)
∑

vq∈N+i2

ρ(wi2q)
√

xT
i2

xi2

√
xT

h xh

≤ (1 − α)
∑

vq∈N+i2

ρ(wi2q)
√

xT
i2

xi2

√
xT

j0
x j0 . (15)

Noting that xi1 = x j0 = bxi0 , then we have

(µα(G) − αρ(w+i1 ))xT
i1 xi1 ≤ (1 − α)

∑
vk∈N+i1

ρ(wi1k)
√

xT
i1

xi1

√
xT

i0
xi0 .
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Therefore,

µα(G) ≤

α(ρ(w+i1 ) + ρ(w+i2 )) +
√
α2(ρ(w+i1 ) − ρ(w+i2 ))2 + 4(1 − α)2

∑
vk∈N+i1

ρ(wi1k)
∑

vk∈N+i2

ρ(wi2k)

2

≤ max
(vi,v j)∈E(G)


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2


= µα(G),

which means

µα(G) =

α(ρ(w+i1 ) + ρ(w+i2 )) +
√
α2(ρ(w+i1 ) − ρ(w+i2 ))2 + 4(1 − α)2

∑
vk∈N+i1

ρ(wi1k)
∑

vk∈N+i2

ρ(wi2k)

2
.

Furthermore, we have (15) must be equality. Thus, we get xi2 = xi0 is an eigenvector of matrix w+i2
corresponding to the eigenvalue ρ(w+i2 ), and for any vq ∈ N+i2 , xT

q xq = xT
j0

x j0 = xT
i1

xi1 . Again the equality (15)
means xi2 = xi0 is a common eigenvector of wi2q corresponding to the eigenvalue ρ(wi2q), xq = bqxi2 = bqxi0
where bq > 0 similar as the proof of bi0k > 0. Thus b2

qxT
i0

xi0 = xT
j0

x j0 = b2xT
i0

xi0 , and so bq = b. Hence,
xi3 = bxi0 = x j0 . Noting that xi2 = xi0 and xi3 = x j0 . Regarding vi2 as vi0 and repeating the above process, we
will get the claim by induction since G is strongly connected. At last, xi0 is a common eigenvector of wi j
corresponding to the eigenvalue ρ(wi j) for every arc (vi, v j) of G.

Now let V1 = {vi | xi = xi0 } and V2 = {vi | xi = bxi0 }. Since G is strongly connected digraph, then
V(G) = V1 ∪ V2 and the subdigraphs induced by V1 and V2 respectively are empty digraphs if b , 1, and
V(G) = V1 if b = 1. In the following, we consider the following two cases.

Case 1: b = 1.
In this case, for any 1 ≤ k ≤ n, xk = xi0 , and xi0 is a common eigenvector of wi j corresponding to the

eigenvalue ρ(wi j) for every arc (vi, v j) of G. By Lemma 2.3, xi0 is also an eigenvector of w+k corresponding to
the largest eigenvalue ρ(w+k ) for all k, and ρ(w+k ) =

∑
v j∈N+k

ρ(wkj). Then, for any vk ∈ V(G),

µα(G)xi0 = αw+k xi0 + (1 − α)
∑

vi∈N+k

wkixi0 = αρ(w+k )xi0 + (1 − α)ρ(w+k )xi0 = ρ(w+k )xi0 ,

which implies that ρ(w+k ) = µα(G). Therefore, G is a generalized weight-regular digraph.
Case 2: b , 1.
Therefore, G is a bipartite digraph. For any vs ∈ V1, xs = xi0 , and for any vt ∈ V2, xt = bxi0 . And

xi0 is a common eigenvector of wi j corresponding to the eigenvalue ρ(wi j) for every arc (vi, v j) of G. By
Lemma 2.3, xi0 is also an eigenvector of w+k corresponding to the largest eigenvalue ρ(w+k ) for all k, and
ρ(w+k ) =

∑
v j∈N+k

ρ(wkj).

If vs ∈ V1,
µα(G)xi0 = αw+s xi0 + (1 − α)

∑
vk∈N+s

wskbxi0 = αρ(w+s )xi0 + (1 − α)ρ(w+s )bxi0 ,

which implies that µα(G) = αρ(w+s ) + (1 − α)ρ(w+s )b, that is ρ(w+s ) = µα(G)
α+(1−α)b .

If vt ∈ V2,
µα(G)bxi0 = αw+t bxi0 + (1 − α)

∑
vk∈N+t

wtkxi0 = αρ(w+t )bxi0 + (1 − α)ρ(w+t )xi0 ,
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which implies that µα(G)b = αρ(w+t )b + (1 − α)ρ(w+t ), that is ρ(w+t ) = µα(G)b
αb+(1−α) . Therefore, G is a generalized

weight-semiregular bipartite digraph.
For converse, suppose that the conditions (i) − (ii) shown in the second part of the theorem hold for the

digraph G. Then we must prove that

µα(G) = max
(vi,v j)∈E(G)


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2

 .
Let x be a common eigenvector of wi j corresponding to the largest eigenvalue ρ(wi j) for all vi, v j. By
Lemma 2.3, x is also an eigenvector of w+i corresponding to the largest eigenvalue ρ(w+i ) for all i, and
ρ(w+i ) =

∑
v j∈N+i

ρ(wi j). Firstly, we suppose that G is an weight regular digraph. Let ρ
(
w+i
)
= γ for all vi ∈ V(G).

Let X = {xT, xT, . . . , xT
}
T. Then the following equation can be easily seen Aα(G)X = γX. Therefore γ is an

eigenvalue of Aα(G). So γ ≤ µα(G). On the other hand,

max
(vi,v j)∈E(G)


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2

 = γ.
Thus

µα(G) ≤ max
(vi,v j)∈E(G)


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2

 = γ.
Hence,

µα(G) = γ = max
(vi,v j)∈E(G)


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2

 .
In the following, suppose G is an weight-semiregular bipartite digraph. Let U,W be the partite sets of G.

Let ρ(w+i ) = γ for any vi ∈ U, and ρ(w+j ) = β for any v j ∈W. Without loss of generality, let U = {v1, v2, . . . , vk}

and W = {vk+1, vk+2, . . . , vn}. Therefore,

Aα(G) =



αw+1 · · · 0 (1 − α)w1,k+1 · · · (1 − α)w1,n
...

...
...

...
0 · · · αw+k (1 − α)wk,k+1 · · · (1 − α)wk,n

(1 − α)wk+1,1 · · · (1 − α)wk+1,k αw+k+1 · · · 0
...

...
...

...
(1 − α)wn,1 · · · (1 − α)wn,k 0 · · · αw+n


.

Let X = (xT, xT, . . . , xT︸         ︷︷         ︸
k

, θxT, θxT, . . . , θxT︸               ︷︷               ︸
n−k

)T, where

θ =
α(β − γ) +

√
α2(γ − β)2 + 4(1 − α)2γβ

2(1 − α)γ
.
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Let

T =
α(γ + β) +

√
α2(γ − β)2 + 4(1 − α)2γβ

2
.

Since

Aα(G)X =



αw+1 x + (1 − α)
∑

vt∈N+1

w1,tθx

...

αw+k x + (1 − α)
∑

vt∈N+k

wk,tθx

αw+k+1θx + (1 − α)
∑

vt∈N+k+1

wk+1,tx

...

αw+nθx + (1 − α)
∑

vt∈N+n

wn,tx



=



αρ(w+1 )x + (1 − α)
∑

vt∈N+1

ρ(w1,t)θx

...

αρ(w+k )x + (1 − α)
∑

vt∈N+k

ρ(wk,t)θx

αρ(w+k+1)θx + (1 − α)
∑

vt∈N+k+1

ρ(wk+1,t)x

...

αρ(w+n )θx + (1 − α)
∑

vt∈N+n

ρ(wn,t)x



=



αρ(w+1 )x + (1 − α)ρ(w+1 )θx
...

αρ(w+k )x + (1 − α)ρ(w+k )θx
αρ(w+k+1)θx + (1 − α)ρ(w+k+1)x

...
αρ(w+n )θx + (1 − α)ρ(w+n )x



=



αγx + (1 − α)γθx
...

αγx + (1 − α)γθx
αβθx + (1 − α)βx

...
αβθx + (1 − α)βx


,
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αγ + (1 − α)γθ

=αγ + (1 − α)γ
α(β − γ) +

√
α2(γ − β)2 + 4(1 − α)2γβ

2(1 − α)γ

=αγ +
α(β − γ) +

√
α2(γ − β)2 + 4 (1 − α2)γβ

2

=
α(γ + β) +

√
α2(γ − β)2 + 4(1 − α)2γβ

2
= T,

and

Tθ − αβθ = (T − αβ)θ

=

α(γ − β) +
√
α2(γ − β)2 + 4(1 − α)2γβ

2

 α(β − γ) +
√
α2(γ − β)2 + 4(1 − α)2γβ

2(1 − α)γ


=
α2(γ − β)2 + 4(1 − α)2γβ − α2(γ − β)2

4(1 − α)γ
=(1 − α)β ,

then
(1 − α)β + αβθ = Tθ.

Therefore, Aα(G)X = TX. Hence, T is an eigenvalue of Aα(G). Thus T ≤ µα(G). On the other hand, because

max
(vi,v j)∈E(G)

=


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2

 = T,

hence

µα(G) ≤ max
(vi,v j)∈E(G)


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2

 = T.

Thus

µα(G) = T = max
(vi,v j)∈E(G)


α(ρ(w+i ) + ρ(w+j )) +

√
α2(ρ(w+i ) − ρ(w+j ))2 + 4(1 − α)2

∑
vk∈N+i

ρ(wik)
∑

vk∈N+j

ρ(w jk)

2

 .
This completes the proof.

From Theorem 2.4, we have the following two corollaries.

Corollary 2.5. Let G = (V(G),E(G)) be a strongly connected weighted digraph, where the weight wi j of each arc
(vi, v j) ∈ E(G) is a positive number. Then

µα(G) ≤ max
(vi,v j)∈E(G)


α(w+i + w+j ) +

√
α2(w+i + w+j )2 + 4(1 − 2α)w+i w+j

2

 ,
where w+i =

∑
vk∈N+i

wik.
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Proof. For weighted digraph where the weight wi j of each arc is a positive number, we have ρ(w+i ) = w+i ,
ρ(wi j) = wi j for all vi, v j. Then by Theorem 2.4, we get the required result.

Corollary 2.6. Let G = (V(G),E(G)) be a strongly connected unweighted digraph. Then

µα(G) ≤ max
(vi,v j)∈E(G)


α(d+i + d+j ) +

√
α2(d+i + d+j )2 + 4(1 − 2α)d+i d+j

2

 ,
where d+i is the outdegree of vertex vi in the unweighted digraph G.

Proof. For an unweighted digraph, we have wi j = 1 for (vi, v j) ∈ E(G), w+i = d+i . By Corollary 2.5, the result
follows.

Theorem 2.7. Let G = (V(G),E(G)) be a strongly connected generalized weighted digraph with vertex set V(G) =
{v1, v2, . . . , vn} and arc set E(G). Then

µα(G) ≤ max
(vi,v j)∈E(G)

αρ(
∑

vk∈N+i

wik) + (1 − α)
∑

vk∈N+j

ρ(w jk)

 , (16)

where wi j is the nonzero nonnegative symmetric matrix of order p of the arc (vi, v j) ∈ E(G). Moreover, if G is an
weight-regular digraph and wi j has a common eigenvector corresponding to the largest eigenvalue ρ(wi j) for all vi, v j,
then the equality holds.

Proof. Let M be a block diagonal matrix dia1(β1Ip, β2Ip, . . . , βnIp), where Ip is the p × p identity matrix,
βi =

∑
vk∈N+i

ρ(wik). Let X = (xT
1 , x

T
2 , · · · , x

T
n )T be a nonnegative eigenvector of M−1Aα(G)M corresponding to the

eigenvalue µα(G) > 0, where xi ≥ 0 is a column vector in Rp corresponding to the vertex vi of G. Let xs is
the vector component of X such that xT

s xs = max
1≤k≤n
{xT

k xk} > 0. Since X is nonzero, so is xs. The (i, j)-th block of

M−1Aα(G)M is 
αw+i , if i = j,
(1 − α) β j

βi
wi j, if (vi, v j) ∈ E(G),

0, otherwise.

Then we have M−1Aα(G)MX = µα(G)X. Furthermore, we get

µα(G)xs = αw+s xs + (1 − α)
∑

vk∈N+s

wsk
βk

βs
xk,

i.e.,

(µα(G)Ip − αw+s )xs = (1 − α)
∑

vk∈N+s

wsk
βk

βs
xk,
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i.e.,

xT
s (µα(G)Ip − αw+s )xs = (1 − α)

∑
vk∈N+s

βk

βs
xT

s wskxk

≤ (1 − α)
∑

vk∈N+s

|
βk

βs
xT

s wskxk|

≤ (1 − α)
∑

vk∈N+s

βk

βs
ρ(wsk)

√
xT

s xs

√
xT

k xk (using (1))

≤ (1 − α)xT
s xs

∑
vk∈N+s

βk

βs
ρ(wsk). (17)

From the inequality (17) and (2), we have

µα(G) − αρ(w+s ) ≤
xT

s (µα(G)Ip − αw+s )xs

xT
s xs

≤ (1 − α)
∑

vk∈N+s

βk

βs
ρ(wsk). (as xT

s xs > 0)

Thus

µα(G) ≤ αρ(w+s ) + (1 − α)
∑

vk∈N+s

βk

βs
ρ(wsk)

≤ αρ(w+s ) + (1 − α)
max
vk∈N+s
{βk}

βs

∑
vk∈N+s

ρ(wsk)

= αρ(w+s ) + (1 − α) max
vk∈N+s
{βk}

= αρ(w+s ) + (1 − α) max
vk∈N+s
{

∑
vt∈N+k

ρ(wkt)}

≤ max
(vi,v j)∈E(G)

{αρ(
∑

vk∈N+i

wik) + (1 − α)
∑

vk∈N+j

ρ(w jk)}.

Then we complete the first part of the theorem.
Next, suppose that G is an weight-regular digraph and wi j has a common eigenvector corresponding

to the largest eigenvalue ρ(wi j) for all vi, v j. Let ρ(w+i ) = γ for any vi ∈ V(G), and x be a common
eigenvector of wi j corresponding to the largest eigenvalue ρ(wi j) for all vi, v j. Then by Lemma 2.3, x is
also an eigenvector of w+i corresponding to the largest eigenvalue ρ(w+i ) for all i, and ρ(w+i ) =

∑
v j∈N+i

ρ(wi j).

Hence, we can easily verified Aα(G)X = γX, where X = {xT, xT, . . . , xT
}
T. So γ ≤ µα(G). On the other hand,

αρ(
∑

vk∈N+i

wik) + (1 − α)
∑

vk∈N+j

ρ(w jk) = γ. Since

µα(G) ≤ max
(vi,v j)∈E(G)

{αρ(
∑

vk∈N+i

wik) + (1 − α)
∑

vk∈N+j

ρ(w jk)} = γ.

Then
µα(G) = γ = max

(vi,v j)∈E(G)
{αρ(

∑
vk∈N+i

wik) + (1 − α)
∑

vk∈N+j

ρ(w jk)}.

Hence the theorem is proved.

From Theorem 2.7, we have the following two corollaries.
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Corollary 2.8. Let G = (V(G),E(G)) be a strongly connected weighted digraph, where the weight wi j of each arc
(vi, v j) ∈ E(G) is a positive number. Then

µα(G) ≤ max
(vi,v j)∈E(G)

{
αw+i + (1 − α)w+j

}
,

where w+i =
∑

vk∈N+i

wik.

Corollary 2.9. Let G = (V(G),E(G)) be a strongly connected unweighted digraph. Then

µα(G) ≤ max
(vi,v j)∈E(G)

{
αd+i + (1 − α)d+j

}
,

where d+i is the outdegree of vertex vi in the digraph G.
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[11] S. Sorgun, Ş. Büyükköse, The new upper bounds on the spectral radius of weighted graphs, Appl. Math. Comput., 218 (2012), 5231–5238.
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