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Abstract. In this paper, under some new appropriate conditions imposed on the parameter and mappings
involved in the resolvent operator associated with a (Ĥ, η)-monotone operator, its Lipschitz continuity is
proved and an estimate of its Lipschitz constant is computed. The resolvent operator method is used and
a new equivalence relationship between a class of multi-valued variational inclusion problems involving
(Ĥ, η)-monotone operators and a class of fixed points problems is established. The obtained equivalence
relationship is employed and a new iterative algorithm for solving the multi-valued variational inclusion
problem is constructed. Under some suitable assumptions, the convergence analysis of the sequences
generated by our proposed iterative algorithm is studied.

1. Introduction

In the last fifty years, variational inequality problems have been the focus of attention of researchers
coming from mathematics, economics, and many other disciplines. This is mainly because many nonlinear
problems arising in optimization, operations research, structural analysis, and engineering sciences can
be transformed into variational inequality problems. For more details, we refer the interested reader, for
example, to [6, 12, 16] and the references therein. Due to numerous theoretical and practical applications
to problems in different areas of science, during the past few decades, there has been a major activity in
the study of various extensions of variational inequality problems. In the last two decades, variational
inclusions as the generalization of variational inequalities have attracted increasing attention. There is a
rich literature on analysing and solving different classes of variational inclusion problems, see, for example,
[1–3, 7, 11, 13–15, 18, 22, 23, 25–27, 29, 31, 34, 35] and the references therein.

Because of the importance and extremely wide applications of variational inequalities and variational
inclusions in a huge variety of scientific fields, considerable attention has been paid to the construction and
development of general methods, such as the projection method and its variant forms, linear approximation,
descent method, Newton’s method and the method based on the auxiliary principle technique, for the
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sensitivity analysis of solution sets of various kinds of them in recent years. The resolvent operator
method, as a generalization of the projection method, is an important and useful tool for studying the
approximation solvability of nonlinear variational inequalities and variational inclusions, see, for example,
[1, 3–5, 7–10, 13–15, 18, 19, 22, 23, 25, 26, 28, 29, 31, 35] and the references therein.

It is worth pointing out that the concept of maximal monotonicity plays an important role in the study of
various types of problems arising in the domain of optimization, nonlinear analysis, differential equations,
and related fields. For this reason, in recent years, many efforts have been made to generalize the notion
of maximal monotonicity for studying and analyzing variant classes of variational inequality (inclusion)
problems based on different generalizations of maximal monotonicity. By the same taken, Huang and Fang
[18] were the first to introduce the notion of maximal η-monotone operators and gave the definition of the
resolvent operator for the maximal η-monotone operator in the setting of Hilbert spaces. In 2003, Fang
and Huang [14] succeeded to introduce another extension of maximal monotone operator the so-called
H-monotone operator and define the corresponding resolvent operator for solving a class of variational
inclusion problems involving H-monotone operators. Subsequently, Fang et al. [15] introduced the concept
of (H, η)-monotone operator as a unifying framework for the classes of maximal monotone operators,
maximal η-monotone operators and H-monotone operators. At the same time, they defined the resolvent
operator associated with an (H, η)-monotone operator and used it for finding the approximate solutions of
a system of variational inclusions involving (H, η)-monotone operators. In 2008, Sun et al. [28] introduced
and studied the notion of M-monotone operator in a Hilbert space setting as an extension of maximal
monotone and H-monotone operators. In the same year, Zou and Huang [35] extended such an operator
from the Hilbert space setting to a Banach space setting and called it H(., .)-accretive. By defining the
resolvent operator associated with an H(., .)-accretive operator and employing it, the authors studied a class
of variational inclusion problems involving H(., .)-accretive operators in the setting of Banach spaces.

Recently, Ahmad et al. [1] introduced and studied the concept of H(., .)-Co-monotone mapping in
the context of Hilbert space as a unifying framework for the classes of maximal monotone operators, H-
monotone operators and M-monotone operators. They defined the resolvent operator associated with an
H(., .)-Co-monotone mapping and used it to construct an iterative algorithm for solving a class of variational
inclusion problems involving H(., .)-Co-monotone mappings. Under some appropriate hypotheses, they
established an existence and convergence result for the class of variational inclusion problems considered
in [1]. Further generalizations of maximal monotone operators and the generalized operators mentioned
above in different contexts along with discussions can be found in [1, 13, 22, 23, 25, 26, 29, 31] and the
references therein.

Motivated and inspired by the excellent work mentioned above, in this paper, we pursue two goals.
Our first objective is to study a new class of multi-valued variational inclusion problems (for short, MVIP)
involving (Ĥ, η)-monotone operators. For this end, the Lipschitz continuity of the resolvent operator asso-
ciated with a (Ĥ, η)-monotone operator is proved under some new assumptions imposed on the parameter
and mappings involved in it and an estimate of its Lipschitz constant is computed. With the help of the
resolvent operator technique, the equivalence between the MVIP and a fixed point problem is established.
We apply the obtained equivalence relationship and suggest a new iterative algorithm for approximating
a solution of the MVIP. Under some appropriate conditions, the strong convergence of the sequences
generated by our proposed iterative algorithm to a solution of the MVIP is proved. The second purpose of
this paper is to investigate and analyze the notion of H(., .)-Co-monotone mapping introduced in [1] and
to point out some comments regarding it. We show that under the hypotheses considered in [1], every
H(., .)-Co-monotone mapping is actually a Ĥ-monotone operator and is not a new one. Moreover, reviewing
all results given in [1], some remarks concerning them are pointed out. Our results are new, and improve
and generalize many known corresponding results.

2. Basic Definitions and Properties

Throughout this paper, we assume that X is a real Hilbert space endowed with a norm ∥.∥ and an inner
product ⟨., .⟩, and CB(X) is the family of all nonempty closed and bounded subsets of X. Further, let D(., .)
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be the Hausdorffmetric on CB(X) defined by

D(A,B) = max{sup
x∈A

inf
y∈B
∥x − y∥, sup

y∈B
inf
x∈A
∥x − y∥}, ∀A,B ∈ CB(X).

For a given multi-valued mapping M̂ : X⇒ X,

(i) the set Range(M̂) defined by

Range(M̂) = {y ∈ X : ∃x ∈ X : (x, y) ∈ M̂} =
⋃
x∈X

M̂(x)

is called the range of M̂;

(ii) the set Graph(M̂) defined by

Graph(M̂) = {(x,u) ∈ X × X : u ∈ M̂(x)},

is called the graph of M̂.

In what follows, we recall some concepts and known results which will be used in the sequel.

Definition 2.1. Let T : X→ X and η : X × X→ X be the operators. T is said to be

(i) monotone, if

⟨T(x) − T(y), x − y⟩ ≥ 0, ∀x, y ∈ X;

(ii) η-monotone, if

⟨T(x) − T(y), η(x, y)⟩ ≥ 0, ∀x, y ∈ X;

(iii) strictly monotone, if T is monotone and equality holds if and only if x = y;
(iv) strictly η-monotone, if T is η-monotone and equality holds if and only if x = y;
(v) r-strongly monotone, if there exists a constant r > 0 such that

⟨T(x) − T(y), x − y⟩ ≥ r∥x − y∥2, ∀x, y ∈ X;

(vi) k-strongly η-monotone, if there exists a constant k > 0 such that

⟨T(x) − T(y), η(x, y)⟩ ≥ k∥x − y∥2, ∀x, y ∈ X;

(vii) ς-relaxed monotone, if there exists a constant ς > 0 such that

⟨T(x) − T(y), x − y⟩ ≥ −ς∥x − y∥2, ∀x, y ∈ X;

(viii) α-expansive, if there exists a constant α > 0 such that

∥T(x) − T(y)∥ ≥ α∥x − y∥, ∀x, y ∈ X;

(ix) γ-Lipschitz continuous, if there exists a constant γ > 0 such that

∥T(x) − T(y)∥ ≤ γ∥x − y∥, ∀x, y ∈ X.

Definition 2.2. [15, 18] Let η : X × X → X be a vector-valued operator. A multi-valued operator M̂ : X ⇒ X is
said to be

(i) monotone, if

⟨u − v, x − y⟩ ≥ 0, ∀(x,u), (y, v) ∈ Graph(M̂);

(ii) η-monotone, if

⟨u − v, η(x, y)⟩ ≥ 0, ∀(x,u), (y, v) ∈ Graph(M̂);
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(iii) ϱ-strongly monotone, if there exists a constant ϱ > 0 such that

⟨u − v, x − y⟩ ≥ ϱ∥x − y∥2, ∀(x,u), (y, v) ∈ Graph(M̂);

(iv) ξ-strongly η-monotone, if there exists a constant ξ > 0 such that

⟨u − v, η(x, y)⟩ ≥ ξ∥x − y∥2, ∀(x,u), (y, v) ∈ Graph(M̂);

(v) m-relaxed monotone, if there exists a constant m > 0 such that

⟨u − v, x − y⟩ ≥ −m∥x − y∥2, ∀(x,u), (y, v) ∈ Graph(M̂);

(vi) maximal monotone, if M̂ is monotone and (I + λM̂)(X) = X, for every real constant λ > 0;
(vii) maximal η-monotone, if M̂ is η-monotone and (I + λM̂)(X) = X, for every real constant λ > 0.

Fang and Huang [14] and subsequently Verma [29, 30] introduced and studied, respectively, the classes
of Ĥ-monotone operators and Ĥ-maximal m-relaxed monotone operators as the generalizations of maximal
monotone operators as follows.

Definition 2.3. Let Ĥ : X → X be a single-valued operator and M̂ : X ⇒ X be a multi-valued operator. M̂ is said
to be

(i) Ĥ-monotone [14] if M̂ is monotone and (Ĥ + λM̂)(X) = X holds for every real constant λ > 0;
(ii) Ĥ-maximal m-relaxed monotone (also referred to as Ĥ-maximal monotone in the literature) [29, 30] if M̂ is

m-relaxed monotone and (Ĥ + λM̂)(X) = X holds for every real constant λ > 0.

Fang et al. [15] introduced and studied the class of (Ĥ, η)-monotone operators as a unifying framework
for the classes of maximal monotone operators, maximal η-monotone operators and Ĥ-monotone operators
as follows.

Definition 2.4. [15] Let η : X × X → X and Ĥ : X → X be two vector-valued operators. A multi-valued operator
M̂ : X ⇒ X is said to be (Ĥ, η)-monotone, if M̂ is η-monotone and (Ĥ + λM̂)(X) = X holds, for every real constant
λ > 0.

The following new example illustrates that for given operators η : X × X → X and Ĥ : X → X, a
(Ĥ, η)-monotone operator may be neither Ĥ-monotone nor maximal η-monotone.

Example 2.5. Let m and n be two arbitrary but fixed natural numbers such that n is even and Mm×n(C) be
the vector space of all m × n matrices with complex entries over C. Then

Mm×n(C) = {A =
(

al j

)
|al j ∈ C, l = 1, 2, . . . ,m; j = 1, 2, . . . ,n}

is a Hilbert space with the inner product ⟨A,B⟩ := tr(AB∗), for all A,B ∈Mm×n(C), where tr denotes the trace,
that is, the sum of diagonal entries, and B∗ denotes the Hermitian conjugate (or adjoint) of the matrix B,
that is, B∗ = Bt, the complex conjugate of the transpose B. The inner product defined above induces a norm
on Mm×n(C) as follows:

∥A∥ =
( m∑

l=1

n∑
j=1

|al j|
2
) 1

2 , ∀A ∈Mm×n(C).

For any A =
(

al j

)
∈Mm×n(C), we have

A =
(

al j

)
=

m∑
l=1

∑
j∈{1,3,..., n−2

2 }

(Al(2 j−1)(2 j+1) + Al(2 j)(2 j+2)),
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that is, every m × n matrix A ∈ Mm×n(C) can be written as a linear combination of mn
2 matrices Al(2 j−1)(2 j+1)

and Al(2 j)(2 j+2), where for each l ∈ {1, 2, . . . ,m} and j ∈ {1, 3, . . . , n−2
2 }, Al(2 j−1)(2 j+1) is an m × n matrix in which

the (l, 2 j−1) and (l, 2 j+1)-entries equal to al(2 j−1) = xl(2 j−1)+ iyl(2 j−1) and al(2 j+1) = xl(2 j+1)+ iyl(2 j+1), respectively,
and all other entries equal to zero, and Al(2 j)(2 j+2) is an m × n matrix in which the (l, 2 j) and (l, 2 j + 2)-entries
equal to al(2 j) = xl(2 j) + iyl(2 j) and al(2 j+2) = xl(2 j+2) + iyl(2 j+2), respectively, and all other entries equal to zero.
For each l ∈ {1, 2, . . . ,m} and j ∈ {1, 3, . . . , n−2

2 }, yields

Al(2 j−1)(2 j+1) + Al(2 j)(2 j+2) =



0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · al(2 j−1) 0 al(2 j+1) · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0



+



0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · al(2 j) 0 al(2 j+2) · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0



=
yl(2 j−1) + yl(2 j+1) − i(xl(2 j−1) + xl(2 j+1))

2



0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · il(2 j−1) 0 il(2 j+1) · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0



+
yl(2 j−1) − yl(2 j+1) − i(xl(2 j−1) − xl(2 j+1))

2



0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · il(2 j−1) 0 −il(2 j+1) · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0



+
yl(2 j) + yl(2 j+2) − i(xl(2 j) + xl(2 j+2))

2



0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · il(2 j) 0 il(2 j+2) · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0


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+
yl(2 j) − yl(2 j+2) − i(xl(2 j) − xl(2 j+2))

2



0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · il(2 j) 0 −il(2 j+2) · · · 0 0
...
... · · ·

...
...

... · · ·
...
...

0 0 · · · 0 0 0 · · · 0 0
0 0 · · · 0 0 0 · · · 0 0


=

yl(2 j−1) + yl(2 j+1) − i(xl(2 j−1) + xl(2 j+1))
2

Nl(2 j−1)(2 j+1)

+
yl(2 j−1) − yl(2 j+1) − i(xl(2 j−1) − xl(2 j+1))

2
N′l(2 j−1)(2 j+1)

+
yl(2 j) + yl(2 j+2) − i(xl(2 j) + xl(2 j+2))

2
Nl(2 j)(2 j+2)

+
yl(2 j) − yl(2 j+2) − i(xl(2 j) − xl(2 j+2))

2
N′l(2 j)(2 j+2),

where for each l ∈ {1, 2, . . . ,m} and j ∈ {1, 3, . . . , n−2
2 }, Nl(2 j−1)(2 j+1) is an m × n matrix in which the (l, 2 j − 1)

and (l, 2 j + 1)-entries equal to i and all other entries equal to zero, N′l(2 j−1)(2 j+1) is an m × n matrix with the
(l, 2 j − 1)-entry i, the (l, 2 j + 1)-entry −i, and all other entries equal to zero, Nl(2 j)(2 j+2) is an m × n matrix
with the (l, 2 j) and (l, 2 j + 2)-entries i, and all other entries equal to zero, and N′l(2 j)(2 j+2) is an m × n matrix
in which the (l, 2 j) and (l, 2 j + 2)-entries equal to i and −i, respectively, and all other entries equal to zero.
Accordingly, for any A ∈Mm×n(C), we have

A =
m∑

l=1

∑
j∈{1,3,..., n−2

2 }

(Al(2 j−1)(2 j+1) + Al(2 j)(2 j+2))

=

m∑
l=1

∑
j∈{1,3,..., n−2

2 }

[ yl(2 j−1) + yl(2 j+1) − i(xl(2 j−1) + xl(2 j+1))
2

Nl(2 j−1)(2 j+1)

+
yl(2 j−1) − yl(2 j+1) − i(xl(2 j−1) − xl(2 j+1))

2
N′l(2 j−1)(2 j+1)

+
yl(2 j) + yl(2 j+2) − i(xl(2 j) + xl(2 j+2))

2
Nl(2 j)(2 j+2)

+
yl(2 j) − yl(2 j+2) − i(xl(2 j) − xl(2 j+2))

2
N′l(2 j)(2 j+2)

]
.

Therefore, the set{
Nl(2 j−1)(2 j+1),N′l(2 j−1)(2 j+1),Nl(2 j)(2 j+2),N′l(2 j)(2 j+2) : l = 1, 2, . . . ,m; j = 1, 3, . . . ,

n − 2
2

}
spans the Hilbert space Mm×n(C). Taking El(2 j−1)(2 j+1) := 1

√
2
Nl(2 j−1)(2 j+1), E′l(2 j−1)(2 j+1) := 1

√
2
N′l(2 j−1)(2 j+1),

El(2 j)(2 j+2) := 1
√

2
Nl(2 j)(2 j+2) and E′l(2 j)(2 j+2) := 1

√
2
N′l(2 j)(2 j+2), for each l ∈ {1, 2, . . . ,m} and j ∈ {1, 3, . . . , n−2

2 }, it
follows that the set

B =
{
El(2 j−1)(2 j+1),E′l(2 j−1)(2 j+1),El(2 j)(2 j+2),E′l(2 j)(2 j+2) : l = 1, 2, . . . ,m; j = 1, 3, . . . ,

n − 2
2

}
also spans the Hilbert space Mm×n(C). It can be easily seen that the set B is linearly independent and
orthonormal and so B is an orthonormal basis for the Hilbert space Mm×n(C).
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Let the mappings M̂ : Mm×n(C) ⇒ Mm×n(C), η : Mm×n(C) ×Mm×n(C) → Mm×n(C) and Ĥ : Mm×n(C) →
Mm×n(C) be defined, respectively, by

M̂(A) =
{
Φ, A = E′s(2k)(2k+2),

−A + E′s(2k)(2k+2), A , E′s(2k)(2k+2),

η(A,B) =
{
α(B − A), A,B , E′s(2k)(2k+2),

0, otherwise,

and Ĥ(A) = βA + γE′s(2k)(2k+2), for all A,B ∈Mm×n(C), where

Φ =
{
El(2 j−1)(2 j+1) − E′s(2k)(2k+2),E

′

l(2 j−1)(2 j+1) − E′s(2k)(2k+2),El(2 j)(2 j+2) − E′s(2k)(2k+2),

E′l(2 j)(2 j+2) − E′s(2k)(2k+2) : l = 1, 2, . . . ,m; j = 1, 3, . . . ,
n − 2

2

}
,

α, β and γ are arbitrary real constants such that β < 0 < α, s ∈ {1, 2, . . . ,m} and k ∈ {1, 3, . . . , n−2
2 } are arbitrary

but fixed natural numbers, and 0 is the zero vector of the space Mm×n(C), that is, the zero m × n matrix.
Then, for all A,B ∈Mm×n(C), A , B , E′s(2k)(2k+2), we get

⟨M̂(A) − M̂(B),A − B⟩ = ⟨−A + E′s(2k)(2k+2) + B − E′s(2k)(2k+2),A − B⟩

= ⟨B − A,A − B⟩ = −∥A − B∥2 = −

√√√ m∑
l=1

n∑
j=1

|al j − bl j|
2 < 0,

i.e., M̂ is not monotone and so M̂ is not Ĥ-monotone. For any given A,B ∈Mm×n(C), A , B , E′s(2k)(2k+2), we
yield

⟨M̂(A) − M̂(B), η(A,B)⟩ = ⟨−A + E′s(2k)(2k+2) + B − E′s(2k)(2k+2), α(B − A)⟩

= α⟨B − A,B − A⟩ = α∥B − A∥2 = α

√√√ m∑
l=1

n∑
j=1

|al j − bl j|
2 > 0.

Taking into account that for each of the cases when A , B = E′s(2k)(2k+2), B , A = E′s(2k)(2k+2) and A = B =
E′s(2k)(2k+2), we have η(A,B) = 0, it follows that

⟨u − v, η(A,B)⟩ = 0, ∀(A,u), (B, v) ∈ Graph(M̂).

Therefore, M̂ is an η-accretive mapping.
In virtue of the facts that for any A ∈Mm×n(C), A , E′s(2k)(2k+2),

∥(I + M̂)(A)∥ = ∥E′s(2k)(2k+2)∥ = 1 > 0

and

(I + M̂)(E′s(2k)(2k+2)) =
{
El(2 j−1)(2 j+1),E′l(2 j−1)(2 j+1),El(2 j)(2 j+2),E′l(2 j)(2 j+2) :

l = 1, 2, . . . ,m; j = 1, 3, . . . ,
n − 2

2

}
= B,

where I is the identity mapping on X =Mm×n(C), we deduce that 0 < (I + M̂)(Mm×n(C)). Accordingly, I + M̂
is not surjective and so M̂ is not a maximal η-monotone operator.

For any λ > 0 and A ∈Mm×n(C), taking B = 1
β−λA + γ+λλ−βE′s(2k)(2k+2) (λ , β, because β < 0), we obtain

(Ĥ + λM̂)(B) = (Ĥ + λM̂)( 1
β−λA + γ+λλ−βE′s(2k)(2k+2)) = A.

Consequently, for every λ > 0, Ĥ + λM̂ is surjective and so M̂ is a (Ĥ, η)-monotone operator.
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We now present a new example which shows that for given single-valued operators Ĥ : X → X and
η : X × X→ X, a maximal η-monotone operator need not be (Ĥ, η)-monotone.

Example 2.6. Let m,n ∈ N and Mm×n(F) be the space of all m × n matrices with real or complex entries.
Then

Mm×n(F) = {A =
(

ai j

)
|ai j ∈ F, i = 1, 2, . . . ,m; j = 1, 2, . . . ,n;F = R or C}

is a Hilbert space with respect to the Hilbert-Schmidt norm

∥A∥ =
( m∑

i=1

n∑
j=1

|ai j|
2
) 1

2 , ∀A ∈Mm×n(F)

induced by the Hilbert-Schmidt inner product

⟨A,B⟩ = tr(A∗B) =
m∑

i=1

n∑
j=1

āi jbi j, ∀A,B ∈Mm×n(F),

where tr denotes the trace, that is, the sum of the diagonal entries, and A∗ denotes the Hermitian conjugate
(or adjoint) of the matrix A, that is, A∗ = At, the complex conjugate of the transpose A, and the bar denotes
complex conjugation and superscript denotes the transpose of the entries. Let us denote by Dn(R) the space
of all diagonal n× n matrices with real entries, that is, the (i, j)-entry is an arbitrary real number if i = j, and
is zero if i , j. Then

Dn(R) = {A =
(

ai j

)
|ai j ∈ R, ai j = 0 if i , j; i, j = 1, 2, . . . ,n}

is a subspace of Mn×n(R) = Mn(R) with respect to the operations of addition and scalar multiplication
defined on Mn(R), and the Hilbert-Schmidt inner product on Dn(R), and the Hilbert-Schmidt norm induced
by it become

⟨A,B⟩ = tr(A∗B) = tr(AB)

and

∥A∥ =
√
⟨A,A⟩ =

√
tr(AA) =

( n∑
i=1

a2
ii

) 1
2 ,

respectively. Let us now define the operators M̂, Ĥ : Dn(R) → Dn(R) and η : Dn(R) × Dn(R) → Dn(R),
respectively, as

M̂(A) = M̂(
(

ai j

)
) =

( αi
βi+γi sinqi niai j

)
,

Ĥ(A) = Ĥ(
(

ai j

)
) =

(
ξi + ρi sinki tiai j

)
and

η(A,B) = η(
(

ai j

)
,
(

bi j

)
) =

(
θi cospi miai j cosPi mibi j(sinqi nibi j − sinqi niai j),

)
for all A =

(
ai j

)
,B =

(
bi j

)
∈ Dn(R), where ξi ∈ R, αi, βi, γi, θi, pi,mi,ni, ti > 0 and pi, qi and ki are arbitrary

but fixed even natural numbers for i = 1, 2, . . . ,n.
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For any A,B ∈ Dn(R), we yield

⟨M̂(A) − M̂(B), η(A,B)⟩

= tr
( ( αi

βi+γi sinqi niai j
−

αi
βi+γi sinqi nibi j

)
(
θi cospi miai j cosPi mibi j(sinqi nibi j − sinqi niai j)

) )
= tr

( (
αiγiθi cospi miai j cosPi mibi j(sinqi niai j−sinqi nibi j)2

(βi+γi sinqi niai j)(βi+γi sinqi nibi j)

) )
=

n∑
i=1

αiγiθi cospi miai j cosPi mibi j(sinqi niai j − sinqi nibi j)2

(βi + γi sinqi niai j)(βi + γi sinqi nibi j)
≥ 0,

which means that M̂ is an η-monotone operator.
Let us define for each i ∈ {1, 2, . . . ,n}, the function fi : R→ R as fi(x);= ξi + ρi sinki tix+ αi

βi+γi sinqi nix
, for all

x ∈ R. Then, for any A ∈ Dn(R), we obtain

(Ĥ + M̂)(A) = (Ĥ + M̂)(
(

ai j

)
)

=
(
ξi + ρi sinki tiai j +

αi
βi+γi sinqi niai j

)
=

(
fi(ai j)

)
.

Taking into account that for each i ∈ {1, 2, . . . ,n},

fi(x) = ξi + ρi sinki tix +
αi

βi + γi sinqi nix
≥ ξi +

αi

βi + γi
,

it follows that x < fi(R) for all x ∈ (−∞, ξi(βi+γi)+αi

βi+γi
), that is, for each i ∈ {1, 2, . . . ,n}, fi(R) , R. Consequently,

(Ĥ + M̂)(Dn(R)) , Dn(R), i.e., Ĥ + M̂ is not surjective, and so M̂ is not (Ĥ, η)-monotone. Now, let λ > 0 be
an arbitrary real constant and assume that for each i ∈ {1, 2, . . . ,n}, the function 1i : R → R is defined by
1i(x) := x + λαi

βi+γi sinqi nix
, for all x ∈ R. Then, for any A =

(
ai j

)
∈ Dn(R), we have

(I + λM̂)(A) = (I + λM̂)(
(

ai j

)
) =

(
ai j +

λαi
βi+γi sinqi niai j

)
=

(
1i(ai j)

)
,

where I is the identity operator on Dn(R). Since 1i(R) = R for each i ∈ {1, 2, . . . ,n}, we conclude that
(I + λM̂)(Dn(R)) = Dn(R), that is, I + λM̂ is surjective. Taking into account the arbitrariness in the choice of
λ > 0, it follows that M̂ is a maximal η-monotone operator.

According to Example 2.5, for given vector-valued operators Ĥ : X → X and η : X × X → X, a (Ĥ, η)-
monotone operator need not be maximal η-monotone. As a consequent of Theorem 2.1 in [21], we obtain
the following conclusion in which the sufficient conditions for a (Ĥ, η)-monotone operator M̂ to be maximal
η-monotone are stated.

Lemma 2.7. Let η : X × X → X be a vector-valued operator, Ĥ : X → X be a strictly η-monotone operator,
M̂ : X ⇒ X be a (Ĥ, η)-monotone operator, and let x,u ∈ X be two given points. If ⟨u − v, η(x, y)⟩ ≥ 0 holds, for all
(v, y) ∈ Graph(M̂), then (u, x) ∈ Graph(M̂), that is, M̂ is a maximal η-monotone operator.

Invoking Example 2.6, for given vector-valued operators Ĥ : X → X and η : X × X → X, a maximal
η-monotone operator may not be (Ĥ, η)-monotone. The next result provides the sufficient conditions for a
maximal η-monotone operator to be (Ĥ, η)-monotone. Before dealing with it, we need to recall the following
definitions.
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Definition 2.8. [14, Definition 2.2] A single-valued operator Ĥ : X→ X is said to be coercive if

lim
∥x∥→+∞

⟨Ĥ(x), x⟩
∥x∥

= +∞.

Definition 2.9. [14, Definition 2.3] An operator A : X → X is said to be bounded if A(B) is bounded for every
bounded subset B of X. A is said to be hemi-continuous if for any fixed x, y, z ∈ X, the function t 7→ ⟨A(x + ty), z⟩ is
continuous at 0+.

Lemma 2.10. Let η : X×X→ X be a vector-valued operator and Ĥ : X→ X be a bounded, coercive, hemi-continuous
and η-monotone operator. If M̂ : X⇒ X is a maximal η-monotone operator, then M̂ is (Ĥ, η)-monotone.

Proof. Since Ĥ is bounded, coercive, hemi-continuous and η-monotone, in the light of Corollary 32.26 of
[32], it follows that Ĥ+λM̂ is surjective for every λ > 0, i.e., the range of Ĥ+λM̂ is precisely X for all λ > 0.
Thus, M̂ is a (Ĥ, η)-monotone operator. This is the desired result.

Theorem 2.11. Let η : X × X → X be a vector-valued operator, Ĥ : X → X be a strictly η-monotone operator
and M̂ : X ⇒ X be an η-monotone operator. Then, for every real constant λ > 0, the operator (Ĥ + λM̂)−1 from
Range(Ĥ + λM̂) to X is single-valued.

Proof. Suppose, by contradiction, that there exists z ∈ Range(Ĥ + λM̂) such that x, y ∈ (Ĥ + λM̂)−1(z) and
x , y. Then, we have z ∈ (Ĥ + λM̂)(x) and z ∈ (Ĥ + λM̂)(y), and so there exist u ∈ M̂(x) and v ∈ M̂(y) such
that

Ĥ(x) + λu = Ĥ(y) + λv. (1)

Taking into account that M̂ and Ĥ are η-monotone, by (1), yields

0 ≤ ⟨λ(u − v), η(x, y)⟩ = −⟨Ĥ(x) − Ĥ(y), η(x, y)⟩ ≤ 0,

which implies that ⟨Ĥ(x) − Ĥ(y), η(x, y)⟩ = 0. Since Ĥ is strictly η-monotone, it follows that x = y which is
in contradiction to our assumption.

With the goal of defining the resolvent operator associated with a (Ĥ, η)-monotone operator, Fang et al.
[15] presented the following assertion which is an immediate consequence of the previous theorem.

Lemma 2.12. [15, Lemma 2.1] Let η : X×X→ X be a vector-valued operator, Ĥ : X→ X be a strictly η-monotone
and M̂ : X ⇒ X be a (Ĥ, η)-monotone operator. Then, for every real constant λ > 0, the operator (Ĥ + λM̂)−1 is
single-valued.

Letting η(x, y) = x − y for all x, y ∈ X, we obtain the following result due to Fang and Huang [14] as a
direct consequence of the previous conclusion.

Lemma 2.13. [14, Theorem 2.1] Let Ĥ : X→ X be a strictly monotone operator and M̂ : X⇒ X be an Ĥ-monotone
operator. Then, for every real constant λ > 0, the operator (Ĥ + λM̂)−1 is single-valued.

Based on Lemma 2.12, for an arbitrary real constant λ > 0, Fang et al. [15] defined the resolvent operator

RĤ,η

M̂,λ
associated with a (Ĥ, η)-monotone operator M̂ as follows.
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Definition 2.14. [15, Definition 2.4] Let η : X × X → X be a vector-valued operator, Ĥ : X → X be a strictly

η-monotone operator and M̂ : X⇒ X be a (Ĥ, η)-monotone operator. The resolvent operator RĤ,η

M̂,λ
: X→ X is defined

by

RĤ,η

M̂,λ
(u) = (Ĥ + λM̂)−1(u), ∀u ∈ X,

where λ > 0 is an arbitrary real constant.

Taking η(x, y) = x− y, for all x, y ∈ X in Definition 2.14, we obtain the definition of the resolvent operator
RĤ

M̂,λ
associated with a Ĥ-monotone operator and an arbitrary real constant λ > 0 as follows.

Definition 2.15. [14, Definition 2.4] Let Ĥ : X → X be a strictly monotone operator and M̂ : X ⇒ X be a
Ĥ-monotone operator. The resolvent operator RĤ

M̂,λ
: X→ X is defined by

RĤ
M̂,λ

(u) = (Ĥ + λM̂)−1(u), ∀u ∈ X,

where λ > 0 is an arbitrary real constant.

It should be remarked that in the rest of the paper, we say that M̂ is a (Ĥ, η)-ς-strongly (resp. Ĥ-ς-strongly)
monotone operator, means that M̂ is a ς-strongly η-monotone (resp. ς-strongly monotone) operator and
(Ĥ + λM̂)(X) = X, for every real constant λ > 0.

In the next theorem, the Lipschitz continuity of the resolvent operator RĤ,η

M̂,λ
associated with a (Ĥ, η)-

monotone operator M̂ and an arbitrary real constant λ > 0 under some appropriate conditions is proved
and an estimate of its Lipschitz constant is computed. Before turning to the main result of this section, let
us recall the following definition.

Definition 2.16. A vector-valued operator η : X × X → X is said to be τ-Lipschitz continuous if there exists a
constant τ > 0 such that ∥η(x, y)∥ ≤ τ∥x − y∥ for all x, y ∈ X.

Theorem 2.17. Let η : X × X → X be a τ-Lipschitz continuous operator, Ĥ : X → X be a π-strongly η-monotone

operator and let M̂ : X⇒ X be a (Ĥ, η)-ς-strongly monotone operator. Then, the resolvent operator RĤ,η

M̂,λ
: X→ X is

τ
λς+π -Lipschitz continuous, i.e.,

∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥ ≤

τ
λς + π

∥u − v∥, ∀u, v ∈ X.

Proof. Owing to the fact that M̂ is a (Ĥ, η)-monotone operator, for any given points u, v ∈ X with ∥RĤ,η

M̂,λ
(u) −

RĤ,η

M̂,λ
(v)∥ , 0, we have

RĤ,η

M̂,λ
(u) = (Ĥ + λM̂)−1(u) and RĤ,η

M̂,λ
(v) = (Ĥ + λM̂)−1(v),

whence we deduce that

λ−1(u − Ĥ(RĤ,η

M̂,λ
(u))) ∈ M̂(RĤ,η

M̂,λ
(u)) and λ−1(v − Ĥ(RĤ,η

M̂,λ
(v))) ∈ M̂(RĤ,η

M̂,λ
(v)).

In the light of the fact that M̂ is ς-strongly η-monotone, yields

λ−1
⟨u − Ĥ(RĤ,η

M̂,λ
(u)) − (v − Ĥ(RĤ,η

M̂,λ
(v))), η(RĤ,η

M̂,λ
(u),RĤ,η

M̂,λ
(v)))⟩ ≥ ς∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥2.
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Taking into account that λ−1 > 0, the preceding inequality implies that

⟨u − v, η(RĤ,η

M̂,λ
(u),RĤ,η

M̂,λ
(v))⟩ ≥ λς∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥2

+ ⟨Ĥ(RĤ,η

M̂,λ
(u)) − Ĥ(RĤ,η

M̂,λ
(v)), η(RĤ,η

M̂,λ
(u),RĤ,η

M̂,λ
(v))⟩.

Using τ-Lipschitz continuity of the operator η, π-strong η-monotonicity of Ĥ and the last inequality, we
obtain

∥u − v∥∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥ ≥ ∥u − v∥∥η(RĤ,η

M̂,λ
(u),RĤ,η

M̂,λ
(v))∥

≥ λς∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥2

+ ⟨Ĥ(RĤ,η

M̂,λ
(u)) − Ĥ(RĤ,η

M̂,λ
(v)), η(RĤ,η

M̂,λ
(u),RĤ,η

M̂,λ
(v))⟩

≥ λς∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥2 + π∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥2

= (λς + π)∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥2.

Since ∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥ , 0, from the preceding inequality, it follows that

∥RĤ,η

M̂,λ
(u) − RĤ,η

M̂,λ
(v)∥ ≤

τ
λς + π

∥u − v∥.

This gives the desired result.

Defining the operator η as η(x, y) = x − y for all x, y ∈ X, we obtain the following corollary as an
immediate consequence of the previous theorem.

Corollary 2.18. Let Ĥ : X→ X be a π-strongly monotone operator and let M̂ : X⇒ X be a Ĥ-ς-strongly monotone
operator. Then, the resolvent operator RĤ

M̂,λ
: X→ X is 1

λς+π -Lipschitz continuous, i.e.,

∥RĤ
M̂,λ

(u) − RĤ
M̂,λ

(v)∥ ≤
1

λς + π
∥u − v∥, ∀u, v ∈ X.

3. Formulation, Iterative Algorithms and Convergence Results

For given single-valued operators P,F,G : X → X and multi-valued operators R,S,T : X ⇒ CB(X) and
M̂ : X⇒ X, we consider the problem of finding x ∈ X, u ∈ R(x), v ∈ S(x) and w ∈ T(x) such that

0 ∈ P(u) − (F(v) − G(w)) + M̂(x), (2)

which is called a multi-valued variational inclusion problem (MVIP).
It should be remarked that the MVIP (2) includes many variational inequalities/inclusions and comple-

mentarity problems as special cases, see, for example, [14, 17, 20, 33] and the references therein.
The next conclusion gives us a characterization of a solution of the MVIP (2) and plays a key role in

establishing our main results in the sequel.

Lemma 3.1. Let P,F,G,R,S and T be the same as in the MVIP (2), and let η : X × X → X be a vector-valued
operator. Suppose further that Ĥ : X → X is a strictly η-monotone operator and M̂ : X ⇒ X is a (Ĥ, η)-monotone
operator. Then, (x,u, v,w) ∈ X × R(x) × S(x) × T(x) is a solution of the MVIP (2) if (x,u, v,w) satisfies

x = RĤ,η

M̂,λ
[Ĥ(x) − λ(P(u) − (F(v) − G(w)))], (3)

where λ > 0 is a real constant.
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Proof. It follows directly from Definition 2.14 and some simple arguments.

Taking η(x, y) = x − y for all x, y ∈ X, we obtain the following result as an immediate consequence of
Lemma 3.1 which provides a characterization of the solution of the problem (2) involving Ĥ-monotone
operator.

Lemma 3.2. Assume that P,F,G,R,S and T are the same as in the MVIP (2). Furthermore, let Ĥ : X → X be a
strictly monotone operator and M̂ : X⇒ X be a Ĥ-monotone operator. Then, (x,u, v,w) ∈ X × R(x) × S(x) × T(x) is
a solution of the MVIP (2) if

x = RĤ
M̂,λ

[Ĥ(x) − λ(P(u) − (F(v) − G(w)))],

where λ > 0 is a real constant.

Lemma 3.3. [24] Let X be a complete metric space and T : X ⇒ CB(X) be a multi-valued mapping. Then, for any
ε > 0 and for any given x, y ∈ X, u ∈ T(x), there exists v ∈ T(y) such that

d(u, v) ≤ (1 + ε)D(T(x),T(y)),

where D(., .) is the Hausdorff metric on CB(X).

Based on the fixed point formulation (3) and using Nadler’s technique [24], we can construct the
following iterative algorithm with mixed errors for finding an approximate solution of the MVIP (2).

Algorithm 3.4. Let P,F,G,R,S and T be the same as in the MVIP (2). Suppose that η : X×X→ X is a vector-valued
operator, Ĥ : X→ X is a strictly η-monotone operator, and M̂ : X⇒ X is a (Ĥ, η)-monotone operator. For any given
x0 ∈ X, u0 ∈ R(x0), v0 ∈ S(x0) and w0 ∈ T(x0), define the sequences {xn}

∞

n=0, {un}
∞

n=0, {vn}
∞

n=0 and {wn}
∞

n=0 in X by the
iterative schemes

xn+1 = (1 − α)xn + αRĤ,η

M̂,λ
[Ĥ(xn) − λ(P(un) − (F(vn) − G(wn)))], (4)

un ∈ R(xn); ∥un − un+1∥ ≤ (1 + (1 + n)−1)D(R(xn),R(xn+1)), (5)

vn ∈ S(xn); ∥vn − vn+1∥ ≤ (1 + (1 + n)−1)D(S(xn),S(xn+1)), (6)

wn ∈ T(xn); ∥wn − wn+1∥ ≤ (1 + (1 + n)−1)D(T(xn),T(xn+1)), (7)

where n = 0, 1, 2 . . . ; λ > 0 is a real constant; α ∈ (0, 1] is a relaxation parameter, {pn}
∞

n=0 and {qn}
∞

n=0 are two
sequences in X to take into account a possible inexact computation of the resolvent operator point satisfying the
following conditions:

lim
n→∞
∥pn∥ = lim

n→∞
∥qn∥ = 0;

∞∑
n=0
∥pn − pn−1∥ < ∞,

∞∑
n=0
∥qn − qn−1∥ < ∞.

(8)

If α = 1 and pn = qn = 0 for all n ≥ 0, then Algorithm 3.4 collapses to the following iterative algorithm.

Algorithm 3.5. Suppose that P,F,G,R,S,T, Ĥ and M̂ are the same as in Lemma 3.2. For any given x0 ∈ X,
u0 ∈ R(x0), v0 ∈ S(x0) and w0 ∈ T(x0), define the sequences {xn}

∞

n=0, {un}
∞

n=0, {vn}
∞

n=0 and {wn}
∞

n=0 in X by the iterative
processes

xn+1 = RĤ
M̂,λ

[Ĥ(xn) − λ(P(un) − (F(vn) − G(wn)))],

un ∈ R(xn); ∥un − un+1∥ ≤ (1 + (1 + n)−1)D(R(xn),R(xn+1)),

vn ∈ S(xn); ∥vn − vn+1∥ ≤ (1 + (1 + n)−1)D(S(xn),S(xn+1)),

wn ∈ T(xn); ∥wn − wn+1∥ ≤ (1 + (1 + n)−1)D(T(xn),T(xn+1)),

where n = 0, 1, 2, . . . ; and λ > 0 is a real constant.
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Before proceeding to the study of convergence analysis of the sequences generated by our proposed
iterative algorithms, we need to recall the following definitions.

Definition 3.6. A multi-valued operator T : X ⇒ CB(X) is said to be D-Lipschitz continuous with constant (or
δ-D-Lipschitz continuous) if there exits a constant δ > 0 such that

D(T(x),T(y)) ≤ δ∥x − y∥, ∀x, y ∈ X.

Definition 3.7. Let Ĥ,P : X→ X be single-valued operators and T : X⇒ CB(X) be a multi-valued operator. Then,
Ĥ is said to be

(i) r-strongly monotone with respect to P, if there exists a constant r > 0 such that

⟨Ĥ(x) − Ĥ(y),P(x) − P(y)⟩ ≥ r∥x − y∥2, ∀x, y ∈ X;

(ii) θ-strongly monotone with respect to P and T, if there exists a constant θ > 0 such that

⟨Ĥ(x) − Ĥ(y),P(x) − P(y)⟩ ≥ θ∥x − y∥2, ∀x, y ∈ X,u ∈ T(x), v ∈ T(y).

Definition 3.8. [1, Definition 2.6] For a given mapping G : X→ X, a multi-valued mapping T : X⇒ X is said to
be

(i) relaxed Lipschitz continuous with respect to G, if there exists a constant k > 0 such that

⟨G(u) − G(v), x − y⟩ ≤ −k∥x − y∥2, ∀x, y ∈ X,u ∈ T(x), v ∈ T(y);

(ii) relaxed monotone with respect to G, if there exists a constant c > 0 such that

⟨G(u) − G(v), x − y⟩ ≥ −c∥x − y∥2, ∀x, y ∈ X,u ∈ T(x), v ∈ T(y).

Comparing Definition 2.6 in [1] and Definition 3.8, one can notice that a small change has been made in
Definition 3.8. In fact, by a careful reading the proof of Theorem 4.1 of [1], we found that in parts (i) and
(ii) of [1, Definition 2.6], “for some u ∈ T(x), v ∈ T(y)” must be replaced by “for all u ∈ T(x), v ∈ T(y)”, as we
have done in parts (i) and (ii) of Definition 3.8.

Theorem 3.9. Let the operators P,F,G : X → X be Lipschitz continuous with constants ρ, ξ and r, respectively,
the operators R,S,T : X ⇒ CB(X) be D-Lipschitz continuous with constants e, h and d, respectively, S is k-relaxed
Lipschitz continuous with respect to F, and T is c-relaxed monotone with respect to G. Suppose that η : X × X→ X
is a τ-Lipschitz continuous operator, Ĥ : X→ X is a π-strongly η-monotone, δ-strongly monotone with respect to P
and R, and t-Lipschitz continuous operator, and M̂ : X ⇒ X is a (Ĥ, η)-ς-strongly monotone operator. If there exits
a real constant λ > 0 such that√

t2 − 2λδ + λ2ρ2e2 +
√

1 − 2λ(k − c) + λ2(ξh + rd)2 <
λς + π
τ

− 1, (9)

2λδ ≤ t2 + λ2ρ2e2, 2λ(k − c) ≤ 1 + λ2(ξh + rd)2, (10)

then, the iterative sequences {xn}
∞

n=0, {un}
∞

n=0, {vn}
∞

n=0 and {wn}
∞

n=0 generated by Algorithm 3.4 converge strongly to
x,u, v and w, respectively, and (x,u, v,w) is a solution of the MVIP (2).

Proof. Making use of (4) and Theorem 2.17, for each n ∈N, yields

∥xn+1 − xn∥ ≤ (1 − α)∥xn − xn−1∥ + α∥R
Ĥ,η

M̂,λ
[Ĥ(xn) − λ(P(un) − (F(vn) − G(wn)))]

− RĤ,η

M̂,λ
[Ĥ(xn−1) − λ(P(un−1) − (F(vn−1) − G(wn−1)))]∥

+ α∥pn − pn−1∥ + ∥qn − qn−1∥

≤ (1 − α)∥xn − xn−1∥ +
ατ
λς + π

(
∥Ĥ(xn) − Ĥ(xn−1) − λ(P(un) − P(un−1))∥

+ ∥xn − xn−1 + λ(F(vn) − F(vn−1) − (G(wn) − G(wn−1)))∥
+ ∥xn − xn−1∥ + α∥pn − pn−1∥ + ∥qn − qn−1∥.

(11)
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Taking into account that Ĥ is δ-strongly monotone with respect to P and R and t-Lipschitz continuous, and
the operator P is ρ-Lipschitz continuous, using (5), e-D-Lipschitz continuity of R and utilizing well known
property of the norm arising from inner product in Hilbert space X, it follows that

∥Ĥ(xn) − Ĥ(xn−1) − λ(P(un) − P(un−1))∥2

= ∥Ĥ(xn) − Ĥ(xn−1)∥2 − 2λ⟨Ĥ(xn) − Ĥ(xn−1),P(un) − P(un−1)⟩

+ λ2
∥P(un) − P(un−1)∥2

≤ t2
∥xn − xn−1∥

2
− 2λδ∥xn − xn−1∥

2 + λρ2
∥un − un−1∥

2

≤ (t2
− 2λδ + λ2ρ2e2(1 + n−1)2)∥xn − xn−1∥

2,

from which we deduce that

∥Ĥ(xn) − Ĥ(xn−1) − λ(P(un) − P(un−1))∥

≤

√
t2 − 2λδ + λ2ρ2e2(1 + n−1)2∥xn − xn−1∥.

(12)

Since S is k-relaxed Lipschitz continuous with respect to F, the operator T is c-relaxed monotone with
respect to G, the operators F and G are Lipschitz continuous with constants ξ and r, respectively, S and T
are D-Lipschitz continuous multi-valued operators with constants h and d, respectively, making use of (6)
and (7) and well known property of the norm arising from inner product in Hilbert space X, yields

∥xn − xn−1 + λ(F(vn) − F(vn−1) − (G(wn) − G(wn−1)))∥2

= ∥xn − xn−1∥
2 + 2λ⟨F(vn) − F(vn−1) − (G(wn) − G(wn−1)), xn − xn−1⟩

+ λ2
∥F(vn) − F(vn−1) − (G(wn) − G(wn−1))∥2

≤ ∥xn − xn−1∥
2 + 2λ⟨F(vn) − F(vn−1), xn − xn−1⟩

− 2λ⟨G(wn) − G(wn−1), xn − xn−1⟩

+ λ2(∥F(vn) − F(vn−1)∥2 + ∥G(wn) − G(wn−1)∥)2

≤ ∥xn − xn−1∥
2
− 2λk∥xn − xn−1∥

2 + 2λc∥xn − xn−1∥
2

+ λ2(ξ∥vn − vn−1∥ + r∥wn − wn−1∥)2

≤ (1 − 2λ(k − c) + λ2(ξh + rd)2(1 + n−1)2)∥xn − xn−1∥
2,

which implies that

∥xn − xn−1 + λ(F(vn) − F(vn−1) − (G(wn) − G(wn−1)))∥

≤

√
1 − 2λ(k − c) + λ2(ξh + rd)2(1 + n−1)2∥xn − xn−1∥.

(13)

Substituting (12) and (13) into (11), we obtain

∥xn+1 − xn∥ ≤ (1 − α)∥xn − xn−1∥ +
ατ
λς + π

(
√

t2 − 2λδ + λ2ρ2e2(1 + n−1)2

+
√

1 − 2λ(k − c) + λ2(ξh + rd)2(1 + n−1)2 + 1)∥xn − xn−1∥

+ α∥pn − pn−1∥ + ∥qn − qn−1∥

= (1 − α)∥xn − xn−1∥ + αφ(n)∥xn − xn−1∥ + α∥pn − pn−1∥ + ∥qn − qn−1∥,

(14)

where for each n ∈N,

φ(n) =
τ

λς + π
(
√

t2 − 2λδ + λ2ρ2e2(1 + n−1)2

+
√

1 − 2λ(k − c) + λ2(ξh + rd)2(1 + n−1)2 + 1).
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Clearly, φ(n)→ φ, as n→∞, where

φ =
τ

λς + π
(
√

t2 − 2λδ + λ2ρ2e2 +
√

1 − 2λ(k − c) + λ2(ξh + rd)2 + 1).

Let ϑ(n) = 1 − α + αφ(n) for each n ∈ N. Then, we know that ϑ(n) → ϑ, as n → ∞, where ϑ = 1 − α + αφ.
Evidently, (10) and (11) imply that φ ∈ (0, 1), and so ϑ ∈ (0, 1). Hence, there exist ϑ̂ ∈ (0, 1) (take ϑ̂ = ϑ+1

2 ∈

(ϑ, 1)) and n0 ∈N such that ϑ(n) ≤ ϑ̂, for all n ≥ n0. Then, for all n > n0, by (14), we deduce that

∥xn+1 − xn∥ ≤ ϑ̂∥xn − xn−1∥ + α∥pn − pn−1∥ + ∥qn − qn−1∥

≤ ϑ̂[ϑ̂∥xn−1 − xn−2∥ + α∥pn−1 − pn−2∥ + ∥qn−1 − qn−2∥]
+ α∥pn − pn−1∥ + ∥qn − qn−1∥

= ϑ̂2
∥xn−1 − xn−2∥ + α(ϑ̂∥pn−1 − pn−2∥ + ∥pn − pn−1∥)

+ ϑ̂∥qn−1 − qn−2∥ + ∥qn − qn−1∥

≤ . . .

(15)

≤ ϑ̂n−n0∥xn0+1 − xn0∥ + α
n−n0∑
i=1

ϑ̂i−1
∥pn−(i−1) − pn−i∥

+

n−n0∑
i=1

ϑ̂i−1
∥qn−(i−1) − qn−i∥.

Making use of (15) it follows that for any m ≥ n > n0,

∥xm − xn∥ ≤

m−1∑
i=n

∥xi+1 − xi∥ ≤

m−1∑
i=n

ϑ̂i−n0∥xn0+1 − xn0∥

+ α
m−1∑
i=n

i−n0∑
j=1

ϑ̂ j−1
∥pi−( j−1) − pi− j∥ +

m−1∑
i=n

i−n0∑
j=1

ϑ̂ j−1
∥qi−( j−1) − qi− j∥.

(16)

Now, in the light of the fact that ϑ̂ < 1, (8) and (16) imply that ∥xm − xn∥ → 0, as n → ∞ and so {xn}
∞

n=0 is a
Cauchy sequence in X. The completeness of X ensures the existence of a x ∈ X such that xn → x, as n→∞.
Employing (5) and e-D-Lipschitz continuity of the operator R, we obtain

∥un − un+1∥ ≤ (1 + (1 + n)−1)D(R(xn),R(xn+1)) ≤ (1 + (1 + n)−1)e∥xn+1 − xn∥,

from which we deduce that {un}
∞

n=0 is a Cauchy sequence in X. Thereby, there exists u ∈ X such that un → u,
as n → ∞. We now show that u ∈ R(x). Since un ∈ R(xn) for each n ≥ 0, applying (5) and e-D-Lipschitz
continuity of R, it follows that

d(u,R(x)) = inf{∥u − z∥ : z ∈ R(x)}
≤ ∥u − un∥ + d(un,R(x))
≤ ∥u − un∥ +D(R(xn),R(x))
≤ ∥u − un∥ + e∥xn − x∥.

The right-hand side of the above inequality tends to zero, as n→∞. Taking into account that R(x) is closed,
it follows that u ∈ R(x). By the same arguments as above, one can prove that {vn}

∞

n=0 and {wn}
∞

n=0 are also
Cauchy sequences in X and vn → v and wn → w, as n→∞, for some v ∈ S(x) and w ∈ T(x), respectively.

Taking into consideration the facts that the operators RĤ,η

M̂,λ
, Ĥ, P,F and G are continuous, xn → x, un → u,

vn → v and wn → w, as n→∞, utilizing (4) and (8), it follows that

x = RĤ,η

M̂,λ
[Ĥ(x) − λ(P(u) − (F(v) − G(w)))].
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Now, based on Lemma 3.1, (x,u, v,w) is a solution of the MVIP (2). This completes the proof.

As a direct consequence of the above theorem, we obtain the following assertion concerning the conver-
gence analysis of the sequences generated by Algorithm 3.5.

Corollary 3.10. Let

(i) the operator Ĥ : X→ X be π-strongly monotone, δ-strongly monotone with respect to P and R, and t-Lipschitz
continuous;

(ii) M̂ : X⇒ X be a Ĥ-ς-strongly monotone operator;
(iii) the operators R,S,T : X⇒ CB(X) be D-Lipschitz continuous with constants e, h and r, respectively;
(iv) the operators P,F,G : X→ X be Lipschitz continuous with constants ρ, ξ and r, respectively;
(v) S be k-relaxed Lipschitz continuous with respect to F;

(vi) T be c-relaxed monotone with respect to G;
(vii) there exists a constant λ > 0 such that√

t2 − 2λδ + λ2ρ2e2 +
√

1 − 2λ(k − c) + λ2(ξh + rd)2 < λς + π − 1,

and (10) holds.

Then, the iterative sequences {xn}
∞

n=0, {un}
∞

n=0, {vn}
∞

n=0 and {wn}
∞

n=0 generated by Algorithm 3.5 converge strongly to
x,u, v and w, respectively, and (x,u, v,w) is a solution of the MVIP (2).

4. H(., .)-Co-Monotone Mappings and Some Comments

This section is devoted to the investigation and analysis of the H(., .)-Co-monotone mapping introduced
in [1] and pointing out some facts concerning it and the results appeared in [1]. At the same time, we show
that our results improve and generalize the corresponding results of [1] and some known results in the
literature.

Definition 4.1. [1, Definition 2.4] Let H : X × X→ X and A,B : X→ X be the mappings. Then

(i) H(A, .) is said to be cocoercive with respect to A with constant µ (or µ-cocoercive with respect to A), if there
exists a constant µ > 0 such that

⟨H(A(x),u) −H(A(y),u), x − y⟩ ≥ µ∥A(x) − A(y)∥2, ∀x, y,u ∈ X;

(ii) H(.,B) is said to be relaxed cocoercive with respect to B with constant γ (or γ-cocoercive with respect to B), if
there exists a constant γ > 0 such that

⟨H(u,B(x)) −H(u,B(y)), x − y⟩ ≥ −γ∥B(x) − B(y)∥2, ∀x, y,u ∈ X;

(iii) H(A,B) is said to be mixed Lipschitz continuous with respect to A and B with constant t, if there exists a
constant t > 0 such that

∥H(A(x),B(x)) −H(A(y),B(y))∥ ≤ t∥x − y∥, ∀x, y ∈ X;

(iv) H(A,B) is said to be mixed strongly monotone with respect to A and B with constant ρ, if there exists a constant
ρ > 0 such that

⟨H(A(x),B(x)) −H(A(y),B(y)), x − y⟩ ≤ ρ∥x − y∥2, ∀x, y ∈ X;

(v) H(A,B) is said to be symmetric cocoercive (or µγ-symmetric cocoercive) with respect to A and B, if H(A, .) is
cocoercive with respect to A with constant µ (or µ-cocoercive with respect to A) and H(.,B) is relaxed cocoercive
with respect to B with constant γ (or γ-relaxed cocoercive with respect to B).
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Proposition 4.2. Suppose that A,B : X → X and H : X × X → X are the mappings such that A is η-expansive,
B is γ-Lipschitz continuous, and H(A,B) is µγ-symmetric cocoercive with respect to A and B. Furthermore, let
Ĥ : X → X be a mapping defined by Ĥ(x) := H(A(x),B(x)) for all x ∈ X. If µη2 > γσ2 (resp. µη2 = γσ2

and µη2 < γσ2) then Ĥ is (µη2
− γσ2)-strongly monotone and hence it is strictly monotone (resp. monotone and

(γσ2
− µη2)-relaxed monotone).

Proof. Taking into account the assumptions, for all x, y ∈ X, yields

⟨Ĥ(x) − Ĥ(y), x − y⟩ = ⟨H(A(x),B(x)) −H(A(y),B(y)), x − y⟩
= ⟨H(A(x),B(x)) −H(A(y),B(x)), x − y⟩
+ ⟨H(A(y),B(x)) −H(A(y),B(y)), x − y⟩

≥ µ∥A(x) − A(y)∥2 − γ∥B(x) − B(y)∥2

= (µη2
− γσ2)∥x − y∥2.

The preceding inequality implies that the mapping Ĥ is (µη2
− γσ2)-strongly monotone and so it is strictly

monotone (resp. monotone and (γσ2
− µη2)-relaxed monotone) provided that µη2 > γσ2 (resp. µη2 = γσ2

and µη2 < γσ2). This gives the desired result.

In the light of Proposition 4.2, every bifunction H : X × X → X which is µγ-symmetric cocoercive with
respect to the mappings A and B, where A is η-expansive and B is σ-Lipschitz continuous, is actually a
univariate (µη2

− γσ2)-strongly monotone (resp. monotone and (γσ2
− µη2)-relaxed monotone) mapping

provided that µη2 > γσ2 (resp. µη2 = γσ2 and µη2 < γσ2) and is not a new one.

Definition 4.3. [1, Definition 2.5] Let f , 1 : X→ X and M : X × X⇒ X be the mappings. Then
(i) M( f , .) is said to be α-strongly monotone with respect to f , if there exits a constant α > 0 such that

⟨u − v, x − y⟩ ≥ α∥x − y∥2, ∀x, y,w ∈ X,u ∈M( f (x),w), v ∈M( f (y),w);

(ii) M(., 1) is said to be β-relaxed monotone with respect to 1, if there exits a constant β > 0 such that

⟨u − v, x − y⟩ ≥ −β∥x − y∥2, ∀x, y,w ∈ X,u ∈M(w, 1(x)), v ∈M(w, 1(y));

(iii) M( f , 1) is said to be symmetric with respect to f and 1with constants α and β (or αβ-symmetric monotone with
respect to f and 1), if M( f , .) is strongly monotone with respect to f with constant α (or α-strongly monotone
with respect to f ) and M(., 1) is relaxed monotone with respect to 1 with constant β (or β-relaxed monotone
with respect to 1).

It is worthwhile to stress that Definition 4.3 is presented making a small change in the context of
Definition 2.5 of [1]. In fact, by a careful reading the results in [1], we found that in parts (i) and (ii) of
Definition 2.5 of [1], “for some u ∈M( f (x),w), v ∈M( f (y),w)” and “for some u ∈M(w, 1(x)), v ∈M(w, 1(y))”
must be replaced by “for all u ∈ M( f (x),w), v ∈ M( f (y),w)” and “for all u ∈ M(w, 1(x)), v ∈ M(w, 1(y))”,
respectively, as we have done in parts (i) and (ii) of Definition 4.3.

Proposition 4.4. Let f , 1 : X→ X and M : X×X⇒ X be the mappings such that M( f , 1) isαβ-symmetric monotone
with respect to f and 1. Assume further that M̂ : X⇒ X is a multi-valued mapping defined by M̂(x) :=M( f (x), 1(x))
for all x ∈ X. Then M̂ is (α − β)-strongly monotone (resp. monotone and (β − α)-relaxed monotone) provided that
α > β ( resp. α = β and α < β).

Proof. Taking into consideration the facts that M( f , .) is α-strongly monotone with respect to f and M(., 1) is
β-relaxed monotone with respect to 1, for all x, y ∈ X, u ∈ M̂(x) and v ∈ M̂(y), we obtain

⟨u − v, x − y⟩ = ⟨u − w + w − v, x − y⟩
= ⟨u − w, x − y⟩ + ⟨w − v, x − y⟩

≥ α∥x − y∥2 − β∥x − y∥2

= (α − β)∥x − y∥2,
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for all w ∈M( f (y), 1(x)). Now, if α > β (resp. α = β and α < β), then the preceding inequality implies that M̂
is (α− β)-strongly monotone (resp. monotone and (β−α)-relaxed monotone). This completes the proof.

Note, in particular, that in view of Proposition 4.4, everyαβ-symmetric monotone bifunction M : X×X⇒
X with respect to the mappings f and 1 is actually a univariate (α− β)-strongly monotone (resp. monotone
and (β − α)-relaxed monotone) mapping and is not a new one.

Recently, Ahmad et al. [1] introduced a class of monotone operators, the so-called H(., .)-Co-monotone
mappings as a generalization of Ĥ-monotone operators as follows.

Definition 4.5. [1, Definition 3.1] Let A,B, f , 1 : X→ X and H : X × X→ X be the single-valued mappings. Let
M : X×X⇒ X be a multi-valued mapping. The mapping M is said to be H(., .)-Co-monotone with respect to A,B, f
and 1, if H(A,B) is symmetric cocoercive ( or µγ-symmetric cocoercive) with respect to A and B, M( f , 1) is symmetric
monotone ( or αβ-symmetric monotone) with respect to f and 1, and (H(A,B) + λM( f , 1))(X) = X for all λ > 0.

Remark 4.6. It should be pointed out that by defining the mapping M̂ : X ⇒ X as M̂(x) := M( f (x), 1(x)) for all
x ∈ X, Proposition 4.4 implies that M̂ is (α − β)-strongly monotone (resp. monotone and (β − α)-relaxed monotone)
provided that α > β (resp. α = β and α < β). Then, by defining the mapping Ĥ : X→ X as Ĥ(x) := H(A(x),B(x)) for
all x ∈ X, in view of Definition 4.5 we have (Ĥ+λM̂)(X) = (H(A,B)+λM( f , 1))(X) = X for all λ > 0. Consequently,
every H(., .)-Co-monotone mapping is actually a Ĥ-(α − β)-strongly monotone (resp. Ĥ-monotone and Ĥ-maximal
(β − α)-relaxed monotone) operator provided that α > β (resp. α = β and α < β) and is not a new one.

In support of the definition of H(., .)-Co-monotone mapping, the authors [1] presented the following
example.

Example 4.7. Let S2(R) be the space of all symmetric 2 × 2 matrices with real entries, that is, consisting of
all 2 × 2 matrices with real entries such that (1, 2)-entry equals to (2, 1)-entry. Then,

S2(R) =
{
A =

(
ai j

)
|ai j ∈ R, a12 = a21, i, j = 1, 2

}
=

{ ( x z
z y

)
|x, y, z ∈ R

}
is a subspace of M2×2(R) = M2(R) with respect to the operations of addition and scalar multiplication
defined on M2(R) in Example 2.6, and the Hilbert-Schmidt inner product on S2(R) and the Hilbert-Schmidt
norm induced by it become the same as in Example 2.6.

Define the operators A,B, f , 1 : X→ X, respectively, by

A
( ( x1 a

a x2

) )
:=

(
2x1

a
2

a
2 2x2

)
,B

( ( x1 a
a x2

) )
:=

(
0 2a
2a 0

)
,

f
( ( x1 a

a x2

) )
:=

(
3x1 2a
2a 2x2

)
, 1

( ( x1 a
a x2

) )
:=

(
−

x1
2 −

a
2

−
a
2 −

x2
3

)
,

for all
(

x1 a
a x2

)
∈ S2(R). Suppose further that the bifunctions H,M : X × X→ X are defined, respectively,

by H(x, y) = x − y and M(x, y) = x + y, for all x =
(

x1 a
a x2

)
, y =

(
y1 a
a y2

)
∈ X = S2(R). Taking into

account that for all x, y ∈ X,

⟨H(A(x), .) −H(A(y), .), x − y⟩ = 2(x1 − y1)2 + (a − b)2 + 2(x2 − y2)2,

⟨H(.,B(x)) −H(.,B(y)), x − y⟩ = −4(a − b)2,

∥A(x) − A(y)∥2 ≤ 2[2(x1 − y1)2 + (a − b)2 + 2(x2 − y2)2],
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and ∥B(x) − B(y)∥2 = 8(a − b)2, the authors [1] deduced that for all x, y ∈ X,

⟨H(A(x), .) −H(A(y), .), x − y⟩ ≥
1
2
∥A(x) − A(y)∥2

and

⟨H(.,B(x)) −H(.,B(y)), x − y⟩ ≥ −
1
2
∥B(x) − B(y)∥2,

i.e., H(A,B) is 1
2 -cocoercive with respect to A and 1

2 -relaxed cocoercive with respect to B, and so H(A,B) is
µγ-symmetric cocoercive with respect to A and B with µ = γ = 1

2 .
At the same time, in the light of the facts that for all x, y ∈ X,

⟨M( f (x), .) −M( f (y), .), x − y⟩ ≥ 2(x1 − y1)2 + 4(a − b)2 + 2(x2 − y2)2,

⟨M(., 1(x)) −M(., 1(y)), x − y⟩ ≥ −
1
2
∥x − y∥2,

and

∥x − y∥2 = (x1 − y1)2 + 2(a − b)2 + (x2 − y2)2,

they concluded that for all x, y ∈ X,

⟨M( f (x), .) −M( f (y), .), x − y⟩ ≥ 2∥x − y∥2

and

⟨M(., 1(x)) −M(., 1(y)), x − y⟩ ≥ −
1
2
∥x − y∥2,

which means that M( f , 1) is 2-strongly monotone with respect to f and 1
2 -relaxed monotone with respect to

1. In other words, M( f , 1) is αβ-symmetric monotone with respect to f and 1 with α = 2 and β = 1
2 . Finally,

relying on the fact that for all x ∈ X,

[H(A,B) +M( f , 1)](x) = H(A(x),B(x)) +M( f (x), 1(x))
= A(x) − B(x) + f (x) + 1(x)

=

( 9x1
2 0
0 7x2

2

)
,

they deduced that [H(A,B)+M( f , 1)](X) , X, which ensures M is not an H(., .)-Co-monotone mapping. Let
us now define the operators Ĥ, M̂ : X→ X, respectively, by

Ĥ(x) = Ĥ
( ( x1 a

a x2

) )
:=

(
2x1 −

3a
2

−
3a
2 2x2

)
and

M̂(x) = M̂
( ( x1 a

a x2

) )
:=

(
5
2 x1

3a
2

3a
2

5
3 x2

)
,

for all x =
(

x1 a
a x2

)
∈ S2(R).

Since α = 2 > β = 1
2 , according to Proposition 4.4, it is expected that M̂ to be (α − β) = 3

2 -strongly
monotone. We now show that our observation is compatible with this fact. In fact, taking into account that
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for all x =
(

x1 a
a x2

)
, y =

(
y1 b
b y2

)
∈ X = S2(R),

⟨M̂(x) − M̂(y), x − y⟩

=
〈 (

5
2 x1

3a
2

3a
2

5
3 x2

)
−

(
5
2 y1

3b
2

3b
2

5
3 y2

)
,

(
x1 − y1 a − b
a − b x2 − y2

) 〉
=

〈 (
5
2 (x1 − y1) 3

2 (a − b)
3
2 (a − b) 5

3 (x2 − y2)

)
,

(
x1 − y1 a − b
a − b x2 − y2

) 〉
= tr

(  5
2 (x1 − y1)2 + 3

2 (a − b)2 (a − b)
(

5
2 (x1 − y1) + 3

2 (x2 − y2)
)

(a − b)
(

3
2 (x1 − y1) + 5

3 (x2 − y2)
)

3
2 (a − b)2 + 5

3 (x2 − y2)2

 )
=

5
2

(x1 − y1)2 + 3(a − b)2 +
5
3

(x2 − y2)2

≥
3
2

[(x1 − y1)2 + 2(a − b)2 + (x2 − y2)2]

=
3
2
∥x − y∥2,

it follows that M̂ is 3
2 -strongly monotone which is compatible with the assertion derived in Proposition 4.4.

But, thanks to the fact that for each x =
(

x1 a
a x2

)
∈ X = S2(R),

(Ĥ + M̂)(x) =
(

2x1 −
3a
2

−
3a
2 2x2

)
+

(
5
2 x1

3a
2

3a
2

5
3 x2

)
=

( 9x1
2 0
0 11x2

3

)
,

we deduce that (Ĥ + M̂)(X) is not precisely X for λ = 1, that is, Ĥ + M̂ is not surjective, and so M̂ is not
Ĥ- 3

2 -strongly monotone. Since in the light of Proposition 4.4, every H(., .)-Co-monotone mapping M with
α > β is actually Ĥ-(α− β)-strongly monotone, the fact that M̂ is not Ĥ- 3

2 -strongly monotone implies that M
is not H(., .)-Co-monotone. Therefore, this fact is also compatible with our above observation.

Note 1 In the rest of the paper, we say that M is an H(., .)-Co-monotone mapping with respect to
A,B, f and 1, means that H(A,B) is symmetric cocoercive with respect to A and B with constants µ and γ,
respectively, and M( f , 1) is symmetric monotone with respect to f and 1with constants α and β, respectively,
where µ > γ and α > β.

Remark 4.8. It is important to emphasize that by a careful checking the results in [1], we found that in the context
of Note 1 and results of [1], four constants µ, γ, α and β must be satisfied the conditions µ > γ and α > β, as these
conditions are added to the context of Note 1.

In order to define the resolvent operator associated with an H(., .)-Co-monotone mapping, Ahmad et al.
[1] presented the following conclusion in which sufficient conditions for the mapping (H(A,B)+λM( f , 1))−1

to be single-valued for all λ > 0 are stated.

Theorem 4.9. [1, Theorem 3.1] Let X be a real Hilbert space. Let A,B, f , 1 : X → X and H : X × X → X be the
mappings. Let M : X×X⇒ X be an H(., .)-Co-monotone mapping with respect to A,B, f and 1. Let A be η-expansive
and B be σ-Lipschitz continuous and η > σ. Then the mapping (H(A,B)+ λM( f , 1))−1 is single-valued for all λ > 0.

Proof. Define Ĥ : X→ X and M̂ : X⇒ X by Ĥ(x) := H(A(x),B(x)) and M̂(x) := M( f (x), 1(x)) for all x ∈ X. In
the light of the assumptions and Remark 4.8, since µ > γ, Proposition 4.2 implies that Ĥ is strictly monotone.
At the same time, from Proposition 4.4 and thanks to Remark 4.8, it follows that M̂ is a Ĥ-monotone operator.
Therefore, all the conditions of Lemma 2.13 are satisfied. Consequently, according to Lemma 2.13, for every
real constant λ > 0, the operator (Ĥ+λM̂)−1 = (H(A,B)+λM( f , 1))−1 is single-valued. This gives the desired
result.
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Here it is to be noted that by a careful reading the proof of Theorem 3.1 of [1], we found that the two
constants η and σmust be satisfied the condition η > σ, as we have added it to the context of Theorem 4.9.

Based on Theorem 4.9 (that is, [1, Theorem 3.1]), Ahmad et al. [1] defined the resolvent operator RH(.,.)
λ,M(.,.)

associated with an H(., .)-Co-monotone mapping M and an arbitrary real constant λ > 0 as follows.

Definition 4.10. [1, Definition 3.2] Let A,B, f , 1 : X→ X and H : X×X→ X be the mappings and M : X×X⇒ X
be an H(., .)-Co-monotone mapping with respect to A,B, f and 1. Suppose further that A is η-expansive and B is
σ-Lipschitz continuous and η > σ. The resolvent operator RH(.,.)

λ,M(.,.) : X→ X is defined by

RH(.,.)
λ,M(.,.)(u) = (H(A,B) + λM( f , 1))−1(u), ∀u ∈ X and λ > 0.

Comparing the contexts of Definition 3.2 in [1] and Definition 4.10, one can easily see that a correct version
of Definition 3.2 of [1], that is, Definition 4.10, is provided by adding the assumptions of η-expansivity of
the mapping A and σ-Lipschitz continuity of the mapping B with η > σ to the context of [1, Definition
3.2]. In fact, in the light of Theorem 4.9, the above-mentioned conditions are essential for the mapping
(H(A,B) + λM)−1 to be single-valued for all λ > 0, and can not be dropped.

Defining the mappings Ĥ : X→ X and M̂ : X⇒ X as Ĥ(x) := H(A(x),B(x)) and M̂(x) :=M( f (x), 1(x)) for
all x ∈ X, by the argument similar to that of Theorem 4.9, it follows that Ĥ is a strictly monotone operator
and M̂ is a Ĥ-monotone operator. Then, accordance with Definition 2.15, for every real constant λ > 0, the
resolvent operator RĤ

M̂,λ
= RH(.,.)

λ,M(.,.) : X→ X associated with Ĥ-monotone operator M̂ and real constant λ > 0,
is defined by

RĤ
M̂,λ

(u) = RH(.,.)
λ,M(.,.)(u) = (Ĥ + λM̂)−1(u) = (H(A,B) + λM( f , 1))−1(u), ∀u ∈ X.

Indeed, the notion of the resolvent operator RH(.,.)
λ,M(.,.) associated with an H(., .)-Co-monotone mapping M and

an arbitrary real constant λ > 0 is actually the same concept of the resolvent operator RĤ
M̂,λ

associated with

a Ĥ-monotone operator M̂, and is not a new one. Therefore, Definition 4.10 is exactly the same Definition
2.15 and is not a new one.

Section 3 in [1] is closed with the following assertion in which, under some appropriate conditions, the
Lipschitz continuity of the resolvent operator RH(.,.)

λ,M(.,.) is proved and an estimate of its Lipschitz constant is
calculated.

Theorem 4.11. [1, Theorem 3.2] Let A,B, f , 1 : X → X and H : X × X → X be the mappings. Suppose that
M : X × X ⇒ X is an H(., .)-Co-monotone mapping with respect to A,B, f and 1. Let A be η-expansive and B be
σ-Lipschitz continuous such that α > β, µ > γ and η > σ. Then the resolvent operator RH(.,.)

λ,M(.,.) : X→ X is Lipschitz
continuous, i.e.,

∥RH(.,.)
λ,M(.,.)(u) − RH(.,.)

λ,M(.,.)(v)∥ ≤ θ∥x − y∥, ∀u, v ∈ X,

where θ = 1
λ(α−β)+µη2−γσ2 .

Proof. Let us define the mappings Ĥ : X → X and M̂ : X ⇒ X as Ĥ(x) := H(A(x),B(x)) and M̂(x) :=
M( f (x), 1(x)) for all x ∈ X. Thanks to the assumptions, Propositions 4.2 and 4.4, and in view of Remark
4.8, it follows that the operator Ĥ is (µη2

− γσ2)-strongly monotone, M̂ is Ĥ-(α − β)-strongly monotone,
and the resolvent operator RH(.,.)

λ,M(.,.) associated with the H(., .)-Co-monotone mapping M and real constant

λ > 0 becomes actually the same resolvent operator RĤ
M̂,λ

associated with the Ĥ-(α − β)-strongly monotone

operator M̂ and given real constant λ. Taking π = µη2
− γσ2 and ς = α − β, all the conditions of Corollary
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2.18 are satisfied and so according to Corollary 2.18, for every real constant λ > 0, the resolvent operator
RĤ

M̂,λ
= RH(.,.)

λ,M(.,.) : X→ X is 1
λς+π =

1
λ(α−β)+µη2−γσ2 -Lipschitz continuous, i.e.,

∥RH(.,.)
λ,M(.,.)(u) − RH(.,.)

λ,M(.,.)(v)∥ = ∥RĤ
M̂,λ

(u) − RĤ
M̂,λ

(v)∥ ≤ 1
λς+π∥u − v∥

= 1
λ(α−β)+µη2−γσ2 ∥u − v∥, ∀u, v ∈ X.

This completes the proof.

Let X be a real Hilbert space, P,F,G, f , 1 : X → X be single-valued operators, R,S,T : X ⇒ CB(X) and
M : X×X⇒ X be multi-valued operators. Recently, Ahmad et al. [1] considered and studied the variational
inclusion problem of finding x ∈ X, u ∈ R(x), v ∈ S(x) and w ∈ T(x) such that

0 ∈ P(u) − (F(v) − G(w)) +M( f (x), 1(x)). (17)

Utilizing the notion of the resolvent operator RH(.,.)
λ,M(.,.), they gave a characterization of the solution of the

problem (17) in order to construct an iterative algorithm for approximating its solutions as follows.

Lemma 4.12. [1, Lemma 4.1] Let X be a real Hilbert space. Let A,B, f , 1,P,F,G : X→ X and R,S,T : X⇒ CB(X)
be the mappings. Let H : X ×X→ X and M : X ×X⇒ X be the mappings such that M is H(., .)-Co-monotone with
respect to A,B, f and 1. Suppose further that A is η-expansive and B is σ-Lipschitz continuous such that η > σ. Then
(x,u, v,w), where x ∈ X, u ∈ R(x), v ∈ S(x) and w ∈ T(x), is a solution of the problem (17) if (x,u, v,w) satisfies the
following equation:

x = RH(.,.)
λ,M(.,.)[H(A(x),B(x)) − λ(P(u) − (F(v) − G(w)))].

Proof. By defining the mapping Ĥ : X → X and M̂ : X ⇒ X as before, from the assumptions, Propositions
4.2 and 4.4, and Remark 4.8 it follows that Ĥ is strictly monotone, M̂ is Ĥ-monotone, and the resolvent
operator RH(.,.)

λ,M(.,.) associated with the H(., .)-Co-monotone mapping M and real constant λ > 0 is exactly the

same resolvent operator RĤ
M̂,λ

associated with the Ĥ-monotone operator M̂ and λ. In the meanwhile, the
problem (17) involving H(., .)-Co-monotone mapping M becomes actually the same MVIP (2) involving
Ĥ-monotone operator M̂. Then, all the conditions of Lemma 3.2 are satisfied and so based on Lemma 3.2,
(x,u, v,w) ∈ X × R(x) × S(x) × T(x) is a solution of the problem (17) if

x = RĤ
M̂,λ

[Ĥ(x) − λ(P(u) − (F(v) − G(w)))]

= RH(.,.)
λ,M(.,.)[H(A(x),B(x)) − λ(P(u) − (F(v) − G(w)))],

where RH(.,.)
λ,M(.,.) = RĤ

M̂,λ
= (Ĥ + λM̂)−1 = (H(A,B) + λM( f , 1))−1 and λ > 0 is an arbitrary real constant. This is

the same desired result.

It should be remarked that Lemma 4.12 is a correct version of Lemma 4.1 in [1]. In fact, in view of the
conclusion of [1, Lemma 4.1], the resolvent operator RH(.,.)

λ,M(.,.) must be single-valued. According to Theorem

4.9 and Definition 4.10, for RH(.,.)
λ,M(.,.) to be single-valued, the mappings A and B must be η-expansive and

σ-Lipschitz continuous, respectively, such that η > σ. By adding these assumptions to the context of [1,
Lemma 4.1], its correct version, that is Lemma 4.12 is presented. In the meanwhile, it is notable that contrary
to the claim in [1], the characterization of the solution for the problem (17) involving H(., .)-Co-monotone
mapping M with respect to A,B, f and 1, presented in Lemma 4.12 is actually the same characterization of
the solution for the problem (2) involving Ĥ-monotone operator M̂ given in Lemma 3.2, and is not a new
one.

Based on Lemma 4.12, Ahmad et al. [1] constructed the following iterative algorithm for finding an
approximate solution of the problem (17) involving an H(., .)-Co-monotone mapping M with respect to
A,B, f and 1.
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Algorithm 4.13. [1, Algorithm 4.1] For any x0 ∈ X, u0 ∈ R(x0), v0 ∈ S(x0) and w0 ∈ T(x0), compute the sequences
{xn}

∞

n=0, {un}
∞

n=0, {vn}
∞

n=0 and {wn}
∞

n=0 by the following iterative scheme:

xn+1 = RH(.,.)
λ,M(.,.)[H(A(xn),B(xn)) − λ(P(un) − (F(vn) − G(wn)))], (18)

un ∈ R(xn); ∥un − un+1∥ ≤ D(R(xn),R(xn+1)), (19)
vn ∈ S(xn); ∥vn − vn+1∥ ≤ D(S(xn),S(xn+1)), (20)
wn ∈ T(xn); ∥wn − wn+1∥ ≤ D(T(xn),T(xn+1)), (21)

where n = 0, 1, 2, . . . ; and λ > 0 is a constant.

By a careful reading Algorithm 4.13, we found that the sequences {xn}
∞

n=0, {un}
∞

n=0, {vn}
∞

n=0 and {wn}
∞

n=0
generated by Algorithm 4.13 are not well defined necessarily. In fact, for any given x0 ∈ X, u0 ∈ R(x0),
v0 ∈ S(x0) and w0 ∈ T(x0), the authors computed xn+1 ∈ X by induction of n using the iterative scheme
(18), and then they claimed that one can choose un+1 ∈ R(xn+1), vn+1 ∈ S(xn+1) and wn+1 ∈ T(xn+1) satisfying
(19)–(21). In the light of Lemma 3.3, if X is a complete metric space and T : X → CB(X) is a multi-
valued mapping, then for any ε > 0 and for any given x, y ∈ X, u ∈ T(x), there exists v ∈ T(y) such that
d(u, v) ≤ (1 + ε)D(T(x),T(y)). But, the following example illustrates that for given x, y ∈ X and u ∈ T(x),
there may not be a point v ∈ T(y) such that d(u, v) ≤ D(T(x),T(y)).

Example 4.14. Consider X = l∞(Z) = {z = {zn}
∞
n=−∞ : sup

n∈Z
|zn| < ∞, zn ∈ C} the Banach space consisting

of all bounded complex sequences z = {zn}
∞
n=−∞ with the supremum norm ∥z∥∞ = sup

n∈Z
|zn|. Any element

z = {zn}
∞
n=−∞ = {xn + iyn}

∞
n=−∞ ∈ l∞(Z) can be written as

z =
∞∑

p=−∞

(. . . , 0, 0, . . . , 0, xpq+1 + iypq+1, xpq+2 + iypq+2, . . . , x(p+1)k + iy(p+1)k, 0, 0, . . . )

=

∞∑
p=−∞

(2p+1)q
2∑

m=pq+1

(. . . , 0, 0, . . . , 0, xm + iym, 0, 0, . . . , 0, x(2p+1)q−m+1 + iy(2p+1)q−m+1, 0, 0, . . . )

=

∞∑
p=−∞

(2p+1)q
2∑

m=pq+1

[ ym + y(2p+1)q−m+1 − i(xm + x(2p+1)q−m+1)
2

wm,(2p+1)q−m+1

+
ym − y(2p+1)q−m+1 − i(xm − x(2p+1)q−m+1)

2
w′m,(2p+1)q−m+1

]
,

where q ≥ 2 is an arbitrary but fixed even natural number; for each p ∈ Z and m ∈ {pq+ 1, pq+ 2, . . . , (2p+1)q
2 },

wm,(2p+1)q−m+1 = (. . . , 0, 0, . . . , 0, im, 0, 0, . . . , 0, i(2p+1)q−m+1, 0, 0, . . . ),

i at the mth and ((2p + 1)q −m + 1)th coordinates and all other coordinates are zero, and

w′m,(2p+1)q−m+1 = (. . . , 0, 0, . . . , 0, im, 0, 0, . . . , 0,−i(2p+1)q−m+1, 0, 0, . . . ),

i and −i at the mth and ((2p + 1)q − m + 1)th coordinates, respectively, and all other coordinates are zero.
Thus, the set

B =

{
wm,(2p+1)q−m+1,w′m,(2p+1)q−m+1 : p ∈ Z,m = pq + 1, pq + 2, . . . ,

(2p + 1)q
2

}
spans the real Banach space l∞(Z). It can be easily seen thatB is linearly independent and so it is a Schauder
basis for the real Banach space l∞(Z). Define the set-valued mapping T : l∞(Z)→ CB(l∞(Z)) by

T(x) =
{
Φ1, x , w′s,(2θ+1)q−s+1,

Φ2, x = w′s,(2θ+1)q−s+1,
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where

Φ1 =
{{ α

k√

enβ!
r∏

j=1
nγ j!

i
}∞

n=−∞
,w′m,(2p+1)q−m+1 : p ∈ Z; m = pq + 1, pq + 2, . . . ,

(2p + 1)q
2

}
,

Φ2 =
{
wm,(2p+1)q−m+1 : p ∈ Z; m = pq + 1, pq + 2, . . . ,

(2p + 1)q
2

}
,

α ∈ [−1, 0) is an arbitrary but fixed real number, k ∈ N\{1} and r ∈ N are arbitrary but fixed natural
numbers, β, γ are two arbitrary but fixed even natural numbers, and s = θq + t for an arbitrary but fixed

θ ∈ Z and t ∈ {1, 2, . . . , q
2 }. Take w′s,(2θ+1)q−s+1 , x ∈ X arbitrarily, y = w′s,(2θ+1)q−s+1 and u =

{
α

k√
enβ !

r∏
j=1

nγ j!
i
}∞

n=−∞
.

If a =
{

α
k√

enβ !
r∏

j=1
nγ j!

i
}∞

n=−∞
, then in virtue of the fact that α < 0, for any p ∈ Z and m ∈ {pq+ 1, pq+ 2, . . . , (2p+1)q

2 },

we get

d(a,wm,(2p+1)q−m+1) = ∥
{ α

k√

enβ!
r∏

j=1
nγ j!

i
}∞

n=−∞
− wm,(2p+1)q−m+1∥∞

= sup
{∣∣∣∣ α

k√

enβ!
r∏

j=1
nγ j!

∣∣∣∣, ∣∣∣∣ α
k√

emβ!
r∏

j=1
mγ j!

− 1
∣∣∣∣,

∣∣∣∣ α
k√

e((2p+1)q−m+1)β!
r∏

j=1
((2p + 1)q −m + 1)γ j!

− 1
∣∣∣∣ :

n ∈ Z; n , m, (2p + 1)q −m + 1
}

=
∣∣∣∣ α

k√

emβ!
r∏

j=1
mγ j!

− 1
∣∣∣∣ = 1 −

α
k√

emβ!
r∏

j=1
mγ j!
.

Since α ∈ [−1, 0), it follows that

d(a,T(y)) = inf
b∈T(y)

d(a, b) = inf
{
1 −

α
k√

emβ!
r∏

j=1
mγ j!

: p ∈ Z; m = pq + 1, pq + 2, . . . ,
(2p + 1)q

2

}
= 1.

For the case when a = w′σ,(2δ+1)q−σ+1 for some δ ∈ Z and σ ∈ {δq + 1, δq + 2, . . . , (2δ+1)q
2 }, then for each p ∈ Z

and m ∈ {pq + 1, pq + 2, . . . , (2p+1)q
2 }, one has

d(a,wm,(2p+1)q−m+1) =
{
∥w′σ,(2δ+1)q−σ+1 − wσ,(2δ+1)q−σ+1∥∞, m = σ,
∥w′σ,(2δ+1)q−σ+1 − wm,(2p+1)q−m+1∥∞, m , σ,

=

{
2 m = σ,
1 m , σ

and so

d(a,T(y)) = inf
b∈T(y)

d(a, b) = 1.

Taking into account the above-mentioned fact, we conclude that

sup
a∈T(x)

d(a,T(y)) = 1.
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If b = wm̂,(2p̂+1)q−m̂+1 for some p̂ ∈ Z and m̂ ∈ {p̂q + 1, p̂q + 2, . . . , (2p̂+1)q
2 }, thanks to the fact α < 0, we obtain

d(
{ α

k√

enβ!
r∏

j=1
nγ j!

i
}∞

n=−∞
,wm̂,(2p̂+1)q−m̂+1) = ∥

{ α
k√

enβ!
r∏

j=1
nγ j!

i
}∞

n=−∞
− wm̂,(2p̂+1)q−m̂+1∥∞

= sup
{∣∣∣∣ α

k√

enβ!
r∏

j=1
nγ j!

∣∣∣∣, ∣∣∣∣ α
k√

em̂β!
r∏

j=1
m̂γ j!

− 1
∣∣∣∣,

∣∣∣∣ α
k√

e((2p̂+1)q−m̂+1)β!
r∏

j=1
((2p̂ + 1)q − m̂ + 1)γ j!

− 1
∣∣∣∣ :

n ∈ Z; n , m̂, (2p̂ + 1)q − m̂ + 1
}

=
∣∣∣∣ α

k√

em̂β!
r∏

j=1
m̂γ j!

− 1
∣∣∣∣

= 1 −
α

k√

em̂β!
r∏

j=1
m̂γ j!
,

and for each p ∈ Z and m ∈ {pq + 1, pq + 2, . . . , (2p+1)q
2 },

d(w′m,(2p+1)q−m+1,wm̂,(2p̂+1)q−m̂+1) =
{
∥w′m̂,(2p̂+1)q−m̂+1 − wm̂,(2p̂+1)q−m̂+1∥∞, m = m̂,
∥w′m,(2p+1)q−m+1 − wm̂,(2p̂+1)q−m̂+1∥∞, m , m̂,

=

{
2 m = m̂,
1 m , m̂.

Since α < 0, it follows that

d(T(x), b) = inf
a∈T(x)

d(a, b) = 1

and so

sup
b∈T(y)

d(T(x), b) = 1.

Accordingly,

D(T(x),T(y)) = max
{

sup
a∈T(x)

d(a,T(y)), sup
b∈T(y)

d(T(x), b)
}
= 1.

Owing to the fact that for each p ∈ Z and m ∈ {pq + 1, pq + 2, . . . , (2p+1)q
2 },

∥

{ α
k√

enβ!
r∏

j=1
nγ j!

i
}∞

n=−∞
− wm,(2p+1)q−m+1∥∞ = 1 −

α
k√

emβ!
r∏

j=1
mγ j!

> 1,

because α ∈ [−1, 0), we deduce that for any v ∈ T(y),

d(u, v) = ∥u − v∥∞ > D(T(x),T(y)).

It is significant to mention that if T(y) is compact, then such a point v does exist. In fact, if T : X→ C(X),
where C(X) is the family of all the nonempty compact subsets of X, then for any given x, y ∈ X, u ∈ T(x),
there exists v ∈ T(y) such that d(u, v) ≤ D(T(x),T(y)). In the light of the above-mentioned arguments, we
now present the correct version of Algorithm 4.13 only by making some small changes in relations (19)–(21)
as follows.
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Algorithm 4.15. Let X,A,B, f , 1,P,F,G,R,S,T,H and M be the same as in Lemma 4.12. For any given x0 ∈ X,
u0 ∈ R(x0), v0 ∈ S(x0) and w0 ∈ T(x0), compute the sequences {xn}

∞

n=0, {un}
∞

n=0, {vn}
∞

n=0 and {wn}
∞

n=0 by the following
iterative schemes:

xn+1 = RH(.,.)
λ,M(.,.)[H(A(xn),B(xn)) − λ(P(un) − (F(vn) − G(wn)))],

un ∈ R(xn); ∥un − un+1∥ ≤ (1 + (1 + n)−1)D(R(xn),R(xn+1)),

vn ∈ S(xn); ∥vn − vn+1∥ ≤ (1 + (1 + n)−1)D(S(xn),S(xn+1)),

wn ∈ T(xn); ∥wn − wn+1∥ ≤ (1 + (1 + n)−1)D(T(xn),T(xn+1)),

where n = 0, 1, 2, . . . ; and λ > 0 is a constant.

It should be noticed that by defining the mappings Ĥ : X → X and M̂ : X ⇒ X as Ĥ(x) := H(A(x),B(x))
and M̂(x) := M( f (x), 1(x)) for all x ∈ X, using the assumptions, Propositions 4.2 and 4.4 and Remark 4.8 we
conclude that Ĥ is strictly monotone, M̂ is Ĥ-monotone and the resolvent operator RH(.,.)

λ,M(.,.) associated with

the H(., .)-Co-monotone mapping M and real constant λ > 0 is exactly the same resolvent operator RĤ
M̂,λ

associated with the Ĥ-monotone operator M̂ and λ. In virtue of these facts, for each n ≥ 0, we yield

xn+1 = RH(.,.)
λ,M(.,.)[H(A(xn),B(xn)) − λ(P(un) − (F(vn) − G(wn)))]

= RĤ
M̂,λ

[Ĥ(xn) − λ(P(un) − (F(vn) − G(wn)))].

Then, Algorithm 4.15 becomes actually the same Algorithm 3.5 and is not a new one.

Definition 4.16. [1, Definition 2.7] Let H : X × X → X, A,B,P : X → X and T : X ⇒ CB(X) be the mappings.
The mapping H is said to be mixed strongly monotone with respect to P and T, if there exists a constant δ > 0 such
that

⟨H(A(xn),B(xn)) −H(A(xn−1),B(xn−1)),P(un) − P(un−1)⟩ ≥ δ∥xn − xn−1∥
2,

∀xn, yn ∈ X,un ∈ T(xn),un−1 ∈ T(xn−1).

As a matter of fact, a small change has been made in the context of Definition 4.16. In fact, Definition
4.16 plays a key role in the study of convergence analysis of the proposed iterative algorithm in [1]. But,
by a careful reading the proof of Theorem 4.1 in [1], we found that in Definition 2.7 of [1], “for some
un ∈ T(xn),un−1 ∈ T(xn−1)” must be replaced by “for all un ∈ T(xn),un−1 ∈ T(xn−1)” as we have done in
Definition 4.16. Note, in particular, that by defining the mapping Ĥ : X→ X as Ĥ(x) := H(A(x),B(x)) for all
x ∈ X, we note that Definition 4.16 reduces to the definition of strong monotonicity of the mapping Ĥ with
respect to P and T presented in Definition 3.7(ii) and is not a new one.

The following conclusion regarding the strong convergence of the iterative sequences generated by the
suggested algorithm in [1] is the most important result that appeared in [1].

Theorem 4.17. [1, Theorem 4.1] Let X be a real Hilbert space and A,B, f , 1,P,F,G : X → X and H : X × X → X
be the single-valued mappings. Let R,S,T : X ⇒ CB(X) be the multi-valued mappings and M : X × X ⇒ X be a
multi-valued mapping such that M is H(., .)-Co-monotone with respect to A,B, f and 1. Assume that

(i) H(A,B) is µ-cocoercive with respect to A and µ-relaxed cocoercive with respect to B;
(ii) A is η-expansive;

(iii) B is σ-Lipschitz continuous;
(iv) H(A,B) is mixed Lipschitz continuous with constant t > 0;
(v) H(A,B) is mixed strongly monotone with respect to P and R with constant δ > 0;

(vi) M( f , 1) is α-strongly monotone with respect to f and β-relaxed monotone with respect to 1;
(vii) R,S and T are D-Lipschitz continuous mappings with constants e, h and d, respectively;
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(viii) P,F and G are Lipschitz continuous mappings with constants ρ, ξ and r, respectively;
(ix) S is relaxed Lipschitz continuous with respect to F with constant k > 0;
(x) T is relaxed monotone with respect to G with constant c > 0;

(xi) there exists a constant λ > 0 such that√
t2 − 2λδ + λ2ρ2e2 +

√
1 − 2λ(k − c) + λ2(ξh + rd)2 < λ(α − β) + µη2

− γσ2
− 1, (22)

2λδ ≤ t2 + λ2ρ2e2, 2λ(k − c) ≤ 1 + λ2(ξh + rd)2, (23)
µ > γ, η > σ, α > β. (24)

Then, the iterative sequences {xn}
∞

n=0, {un}
∞

n=0, {vn}
∞

n=0 and {wn}
∞

n=0 generated by Algorithm 4.15 converge strongly to
x,u, v and w, respectively, and (x,u, v,w) is a solution of the problem (17).

Proof. By defining the mappings Ĥ : X → X and M̂ : X ⇒ X by Ĥ(x) := H(A(x),B(x)) and M̂(x) :=
M( f (x), 1(x)) for all x ∈ X, thanks to the assumptions, Propositions 4.2 and 4.4 and Remark 4.8 it follows
that Ĥ is (µη2

− γσ2)-strongly monotone, M̂ is Ĥ-(α − β)-strongly monotone, the resolvent operator RH(.,.)
λ,M(.,.)

becomes actually the resolvent operator RĤ
M̂,λ

, and the problem (17) involving H(., .)-Co-monotone mapping

M is exactly the same MVI (2) involving Ĥ-(α − β)-strongly monotone mapping M̂. At the same time,
owing to the facts mentioned above, Algorithm 4.15 reduces to Algorithm 3.5. Now, taking ς = α − β and
π = µη2

− γσ2, we observe that all the conditions of Corollary 3.10 are satisfied. Therefore, the statement
follows from Corollary 3.10 immediately.

By comparing the contexts of Theorem 4.1 of [1] and Theorem 4.17, one can observe that some changes
have been made in the context of Theorem 4.17. In fact, in the context of [1, Theorem 4.1], the condition
k > c must be replaced by µ > γ and η > σ, as we have done in (24). Furthermore, the constant λ > 0, in
addition to (22), must be satisfied (23), as we have added the required assumptions to assumption (xi) in
the context of Theorem 4.17. At the same time, as it was pointed out Algorithm 4.13 (that is, [1, Algorithm
4.1]) is not well defined necessarily and Algorithm 4.15 is its correct version. For this reason, in the context
of Theorem 4.17, Algorithm 4.13 is replaced by Algorithm 4.15.

In support of Theorem 4.1 in [1], the authors presented an example and asserted that assumptions (i) to
(xi) of the aforesaid theorem are satisfied for the variational inclusion problem (17). We end this paper by
investigating and analyzing [1, Example 4.1] and point out that contrary to the claim of the authors in [1],
all the conditions of [1, Theorem 4.1] do not hold.

Example 4.18. Consider X = R2 with usual inner product. Let A,B, f , 1 : R2
→ R2 be defined, respectively,

by

A(x) := (
1
3

x1 − x2, x1 +
1
3

x2),

B(x) := (−
1
2

x1 +
1
2

x2,−
1
2

x1 −
1
2

x2),

f (x) := (4x1 −
4
3

x2,
4
3

x1 + 4x2),

1(x) := (
13
4

x1 −
3
4

x2,
3
4

x1 +
13
4

x2),

for all x = (x1, x2) ∈ R2. Suppose that H,M : R2
×R2

→ R2 are defined, respectively, by H(x, y) := x + y and
M(x, y) := x − y, for all x, y ∈ R2. In the final section of [1], the authors showed that H(A,B) is 13

10 -cocoercive

with respect to A, 1-relaxed cocoercive with respect to B, the operator A is
√

10
3 -expansive, the operator B

is 1
√

2
-Lipschitz continuous, M( f , 1) is 4-strongly monotone with respect to f and 1

4 -relaxed monotone with
respect to 1. At the same time, they claimed that M is an H(., .)-Co-monotone mapping with respect to
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A,B, f and 1. By a careful reading the proof of [1, Theorem 4.1], we found that the multi-valued mapping
M : X × X ⇒ X was assumed to be H(., .)-Co-monotone, and the resolvent operator RH(.,.)

λ,M(.,.) : X → X must
be θ = 1

λ(α−β)+µη2−γσ2 -Lipschitz continuous. Invoking Theorems 4.9 and 4.11, α > β, µ > γ and η > σ are the

necessary conditions for the resolvent operator RH(.,.)
λ,M(.,.) associated with an H(., .)-Co-monotone mapping M

and a real constant λ > 0 to be well defined and θ = 1
λ(α−β)+µη2−γσ2 -Lipschitz continuous. But, taking µ = 3

10 ,

γ = 1, η =
√

10
3 , σ = 1

√
2
, α = 4 and β = 1

4 , we have α > β, η > σ and µ < γ such that µη2 < γσ2. Hence,
contrary to the claim in [1], all the conditions of [1, Theorem 4.1] are not satisfied.

5. Conclusion

The introduction of the notion of M-monotone operator in a Hilbert space setting, as a generalization
of maximal monotone operator and H-monotone operator, was first made by Sun et al. [28] in 2008. In
later years, the efforts in this direction have been continued and further generalizations of them were
introduced and the resolvent operators associated with these generalizations were defined. In one of
these attempts and with goal of providing a unifying framework for the classes of maximal monotone
operators, H-monotone operators and M-monotone operators, Ahmad et al. [1] introduced and studied the
concept of H(., .)-Co-monotone mapping in the context of Hilbert space and defined the resolvent operator
associated with such a mapping. In this paper, we have proved the Lipschitz continuity of the resolvent
operator associated with a (Ĥ, η)-monotone operator under some new appropriate conditions imposed on
the parameter and mappings involved in it and computed an estimate of its Lipschitz constant. We have
employed the resolvent operator method and established a new equivalence relationship between a class
of multi-valued variational inclusion problems involving (Ĥ, η)-monotone operators (for short, MVIP) and
a class of fixed points problems. We have used the obtained equivalence relationship and constructed a
new iterative algorithm for solving the MVIP. The convergence analysis of the sequences generated by
our suggested iterative algorithm has been studied under some suitable assumptions. In the final section,
we have investigated and analyzed the concept of H(., .)-Co-monotone mapping introduced in [1] and
pointed out some comments about it. We have shown that under the hypotheses considered in [1], every
H(., .)-Co-monotone mapping is actually a Ĥ-monotone operator and is not a new one. Further remarks
concerning the results given in [1] have been provided.
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