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Abstract. For bounded linear operators A and B acting in a Hilbert space, the basic properties of weakly
parallel sum A : B are developed. Many explicit expressions of weakly parallel sum are given and some
equations and inequalities involving the parallel sum and the weakly parallel sum are obtained.

1. Introduction

LetH be a Hilbert space and B(H) be the set of all bounded linear operators onH . For an operator A,
denote by R(A) andN(A) the range and the null space of A, respectively. The closure of R(A) is denoted by
R(A). An operator A ∈ B(H) is said to be positive if ⟨Ax, x⟩ ≥ 0 for all x ∈ H . For a positive operator A, the
unique positive square root is denoted by A

1
2 . Denote by |A| = (A∗A)

1
2 . Let B+(H) be the set of all positive

operators and PK be the orthogonal projection on the closed subspaceK ⊆ H .
Some authors, in particular Anderson and Trapp [1]-[3], Ando [6], Arias, Corach and Maestripieri [8],

Fillmore and Williams [13], as well as Mitra and Puri [20] studied the parallel sum within the class of
nonnegative definite matrices or bounded nonnegative hermitian operators. Xu et al. [14, 18, 19] obtained
the perturbation estimation of the parallel sum and extended some properties of parallel sums to adjoint
operators on Hilbert C∗ modules. The basic properties of the parallel sum for bounded linear operators in
Hilbert spaces were developed recently. Some extensions of the parallel sum and many different equivalent
definitions and the properties were also studied in [3, 9, 11, 13, 19].

Recently, F. Hansen obtains a number of results for the parallel sum of positive definite operators in [15].
The purpose of this paper is to generalise some of them to parallel summable operators and weakly parallel
summable operators. The notion of weakly parallel sum of two operators was introduced by Antezana,
Corach and Stojanoff in [5]. We characterize the weakly parallel sum in terms of the reduced solutions to
particular operator equations and obtain new insight into the theory of weakly parallel sum. We obtain
many results concerning parallel sum and weakly parallel sum. Our goal however is to prove as many
results as possible under no additional hypothesis on the operators involved.

2. Some lemmas

In this section, we begin with some lemmas which play important roles in the sequel. The following
lemma is a standard result.
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Lemma 2.1. ([12, 17], [13, Theorem 2.2]) Let A, B ∈ B(H). Then R(A)+R(B) = R
(
(AA∗+BB∗)

1
2

)
. R(A) is closed

if and only if R(A) = R(AA∗) if and only if R(A∗) is closed. If A ≥ 0, then R(A
1
2 ) = R(A).

Lemma 2.2. For A ∈ B(H) with closed range, let A = UP be the polar decomposition of A, where U is a unique
partial isometry such thatN(U) = N(A) and P = (A∗A)

1
2 . Let P† be the Moore-Penrose inverse of P. Then A† = P†U∗

satisfying AA†A = A, A†AA† = A†,

AA† = PR(A) = PN(A∗)⊥ , A†A = P†P = PP† = U∗U = PR(A∗) = PN(A)⊥ .

By Lemma 2.1, R(A) is closed⇐⇒ R(P) is closed⇐⇒ 0 is not an accumulation point of σ(P). Note that
P† and A† ∈ B(H) if R(A) is closed, where A† ∈ B(H) is called the Moore-Penrose inverse of A. It is well
known that the Moore-Prose inverse A† ∈ B(H) if and only if R(A) is closed and the Moore-Penrose inverse
of A is unique (see [16]). In general, A† is a closed densely defined operator if R(A) is not closed [10, 21].
Let C be a positive operator. The case of a non-invertible term can also be handled by taking the limit of a
sequence of invertible approximations. From spectral theory and the monotone convergence theorem, the
sequence {(C + 1

n I)−1C}∞n=1 converges in the strong operator topology (SOT) monotonically up to C†C, i.e.,
(C + 1

n I)−1C −→ C†C. If A, B ∈ B(H) with R(B) ⊆ R(A), then A†B ∈ B(H) even if A has a non-closed range
[7, Lemma 2.1]. We include the proof of this fact here for completeness.

Lemma 2.3. [7, Lemma 2.1] Let A, B ∈ B(H) be such that R(B) ⊆ R(A). Then A†B is bounded.

Proof. If (xn,A†Bxn) −→ (x, y) for {xn}
∞

n=1 ⊆ H and x, y ∈ H , then xn −→ x, A†Bxn −→ y.We get Bxn −→ Bx
andy ∈ R(A†B). Since R(B) ⊆ R(A), one has Bxn = AA†Bxn −→ Ay. We get Bx = Ay and A†Bx = A†Ay = y.
Hence, A†Bxn −→ A†Bx. By the closed graph theorem, we know A†B ∈ B(H). □

The following well-known criteria concerning the range inclusions and factorization of operators are
given by Douglas [12] and Fillmore-Williams [13].

Lemma 2.4. [12, 13] If A, B ∈ B(H), then the following results are equivalent:

(i) A = BC for some operator C ∈ B(H).

(ii) AA∗ ≤ kBB∗ for some k > 0.

(iii) R(A) ⊆ R(B).
If one of these conditions holds then there exists a unique solution C0 ∈ B(H) of the equation BX = A such that

R(C0) ⊂ R(B∗) andN(C0) = N(A). This solution is called the Douglas reduced solution. Moreover, ∥C0∥
2 = inf{λ >

0 : AA∗ ≤ λBB∗}. By Lemma 2.3, Douglas reduced solution is C0 = B†A ∈ B(H).

It is worth pointing out that, if 0 ≤ A ≤ B, then R(A
1
2 ) ⊆ R(B

1
2 ) and ∥A∥ ≤ ∥B∥. Moreover, R(A) ⊆ R(B)

if R(B) is closed. As we known, A, B ∈ B(H ,K ) are parallel summable (p.s) if R(A) ⊆ R(A + B) and
R(A∗) ⊆ R(A∗ + B∗). These conditions imply that R(B) ⊆ R(A + B) and R(B∗) ⊆ R(A∗ + B∗). We recall the
definition of the weakly parallel sum of operators introduced in [5].

Definition 2.5. Operators A, B ∈ B(H ,K ) are said to be weakly parallel summable (w.p.s) if the following range
inclusion relations hold:

R(A) ⊆ R(| A∗ + B∗ |
1
2 ), R(B) ⊆ R(| A∗ + B∗ |

1
2 ), R(A∗) ⊆ R(| A + B |

1
2 ), R(B∗) ⊆ R(| A + B |

1
2 ). (1)

In this case, the reduced solutions of operator equations

A =| A∗ + B∗ |
1
2 UX, B =| A∗ + B∗ |

1
2 UX, A∗ =| A + B |

1
2 X, B∗ =| A + B |

1
2 X (2)

are denoted by EA, EB, FA and FB, respectively, where U is the partial isometry of the polar decomposition
of A + B andN(U) = N(A + B).
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Definition 2.6. Let A, B ∈ B(H) be w.p.s and let EA, FA be the reduced solutions of the operator equations

A =| A∗ + B∗ |
1
2 UX, A∗ =| A + B |

1
2 X,

respectively, where U is the partial isometry of the polar decomposition of A + B = U|A + B| andN(U) = N(A + B).
The weakly parallel sum of operators A and B, denoted by A : B ∈ B(H), is

A : B = A − F∗AEA. (3)

We recall the famous polar decomposition theorem [10, 21]. For every operators A, B ∈ B(H), the polar
decomposition A + B = U|A + B| = |A∗ + B∗|U, where U is a partial isometry such that U∗U = P

R(A∗+B∗)

and UU∗ = P
R(A+B). By Lemma 2.2, if R(A + B) is closed, (A + B)† = |A + B|†U∗ = U∗|A∗ + B∗|†. Moreover,

U|A + B|
1
2 = |A∗ + B∗|

1
2 U and U|A + B|

†

2 = |A∗ + B∗|
†

2 U,where |T|
†

2 = (|T|
1
2 )†.

Lemma 2.7. Let A, B ∈ B(H) be w.p.s. The reduced solutions EA, EB, FA and FB of the equations in (2) can be
denoted by

EA = U∗ | A∗ + B∗ |
†

2 A, FA =| A + B |
†

2 A∗, EB = U∗ | A∗ + B∗ |
†

2 B, FB =| A + B |
†

2 B∗, (4)

respectively.

3. Further properties of the p.s and w.p.s operators

In this section, we review the relevant materials and present our characterization theorems. The weakly
parallel sum and the reduced solutions satisfy several useful properties which are given in the following
theorem. The partly results and their proofs can be found in [5, 11].

Theorem 3.1. Let A, B ∈ B(H) be w.p.s and let EA, EB, FA and FB be the reduced solutions of the equations in (2),
respectively. Then

(i) EA + EB and FA + FB are the reduced solution of the equation A + B = |A∗ + B∗|
1
2 UX and A∗ + B∗ = |A + B|

1
2 X,

respectively. Moreover,

EA + EB = |A + B|
1
2 and FA + FB = |A + B|

1
2 U∗. (5)

(ii) λA and λB are w.p.s, A : B = B : A = F∗BEA = F∗AEB and λA : λB = λ(A : B) = λB : λA for all λ ∈ C. If
R(A + B) is closed, then

A : B = A − F∗AEA = B − F∗BEB = F∗AEB = F∗BEA = A − A(A + B)†A = B − B(A + B)†B

= A(A + B)†B = B(A + B)†A = B : A.
(6)

(iii) A∗ and B∗ are w.p.s and (A : B)∗ = A∗ : B∗ = B∗ : A∗.

(iv) R(A) ∩ R(B) ⊆ R(A : B) ⊆ R(A) ∩ R(B). If R(A + B) is closed, then

R(A : B) = R(A) ∩ R(B) and N(A : B) =
[
R(A∗) ∩ R(B∗)

]⊥
.

(v)N(A : B) = N(A) +N(B) and A(N(A : B)) ⊆ R(A + B) when R(A) and R(B) are closed.

Proof. (i) By Lemma 2.7,

EA + EB = U∗ | A∗ + B∗ |
†

2 (A + B) = U∗ | A∗ + B∗ |
1
2 U = |A + B|

1
2

and
FA + FB = |A + B|

†

2 (A∗ + B∗) = |A + B|
†

2 |A + B|U∗ = |A + B|
1
2 U∗.
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Since A + B = |A∗ + B∗|
1
2 U(EA + EB) and

R(EA + EB) = R(|A + B|
1
2 ) = R(|A + B|

1
2 U∗) ⊆ N(|A∗ + B∗|

1
2 U)⊥. (7)

By Lemma 2.4, EA + EB is the unique reduced solution of the equation A + B = |A∗ + B∗|
1
2 UX. Similarly,

FA + FB is the unique reduced solution of the equation A∗ + B∗ = |A + B|
†

2 X.
(ii) By Lemma 2.7 and item (i), F∗BEA = (|A∗ + B∗|

1
2 U − F∗A)EA = A − F∗AEA = F∗A(|A + B|

1
2 − EA) = F∗AEB.

These lead to the following two properties of weakly parallel sum:

A : B = B : A = F∗BEA = F∗AEB and λA : λB = λ(A : B) = λB : λA.

If R(A + B) is closed, then

F∗AEB = A|A + B|
†

2 |A + B|
†

2 U∗B = A|A + B|†U∗B = A(A + B)†B,

F∗BEA = B|A + B|
†

2 |A + B|
†

2 U∗A = B|A + B|†U∗A = B(A + B)†A,

F∗AEA = A(A + B)†A and F∗BEB = B(A + B)†B.

By the definition of weakly parallel sum in (3),

A : B = A − F∗AEA = A − A(A + B)†A = A −
[
(A + B) − B

]
(A + B)†A = B(A + B)†A = F∗BEA.

Similarly, B : A = B − F∗BEB = B − B(A + B)†B = A(A + B)†B = F∗AEB.
(iii) By (ii) the result is obvious.
(iv) For every z ∈ R(A) ∩ R(B), there exist x, y such that z = Ax = By, i.e., z = |A∗ + B∗|

1
2 UEAx =

|A∗ + B∗|
1
2 UEBy. The relation |A∗ + B∗|

1
2 U(EAx − EBy) = 0 implies that EAx = EBy since EA and EB are the

reduced solutions of the equations in (2), respectively. By items (i) and (ii),

(A : B)(x + y) = F∗BEAx + F∗AEBy = F∗BEAx + F∗AEAx = (F∗A + F∗B)EAx = |A∗ + B∗|
1
2 UEAx = z, (8)

i.e., R(A) ∩ R(B) ⊆ R(A : B).

Note that A = F∗A|A + B|
1
2 , B = |A∗ + B∗|

1
2 UEB and R(EB) ⊆ N(|A∗ + B∗|

1
2 U)⊥ ⊆ R(|A + B|

1
2 ). For any x ∈ H ,

there exists a sequence {yn} ∈ H such that |A + B|
1
2 yn → EBx and Ayn = F∗A|A + B|

1
2 yn → F∗AEBx = (A : B)x.

Hence, R(A : B) ⊆ R(A). Similarly, one has R(A : B) ⊆ R(B) and R(A : B) ⊆ R(A) ∩ R(B).
If R(A+ B) is closed, by item (ii) and Lemma 2.4 we have, R(A : B) = R

(
A(A + B)†B

)
= R
(
B(A + B)†A

)
⊆

R(A)∩R(B).Hence, R(A : B) = R(A)∩R(B).Moreover, by item (iii),N(A : B) = R[(A : B)∗]⊥ = R(A∗ : B∗)⊥ =[
R(A∗) ∩ R(B∗)

]⊥
.

(v) If R(A) and R(B) are closed, then N(A : B) =
[
R(A∗) ∩ R(B∗)

]⊥
= N(A) +N(B). Hence, for ev-

ery x ∈ N(A : B), there exist xn ∈ N(A) and yn ∈ N(B) such that xn + yn → x as n → ∞. One has
Ax = A limn→∞(xn + yn) = limn→∞ Ayn = limn→∞(A + B)yn. Thus Ax ⊆ R(A + B) for every x ∈ N(A : B). □

In case that the ranges of A, B and A+B are closed, for every y ∈ R(A)∩R(B), there exists x = (A†+B†)y ∈ H
such that

(A : B)x = F∗AEBB†y + F∗BEAA†y = F∗A|A + B|
†

2 U∗y + F∗B|A + B|
†

2 U∗y = (F∗A + F∗B)|A + B|
†

2 U∗y

= |A∗ + B∗|
1
2 UU∗|A∗ + B∗|

†

2 y = PR(A+B)y = y.
(9)

It is worth noting that, if A, B ∈ B(H) are P.S, thenR(A) ⊆ R(A+B) andR(B) = R(A+B−A) ⊆ R(A+B)+R(A) =
R(A + B). By Lemma 2.3, it has (A + B)†A and (A + B)†B ∈ B(H). A†(A : B) and B†(A : B) ∈ B(H) if R(A + B)
is closed by Theorem 3.1. Some constructions for the weakly parallel sum are given below.
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Theorem 3.2. Let A, B ∈ B(H) be w.p.s. If the ranges A, B and A + B are closed, then

(i) A : B = (A : B)(A† + B†)(A : B).

(ii) A : B =
[
PR(A∗)∩R(B∗)(A† + B†)PR(A)∩R(B)

]†
.

(iii) A : B = 1
2

[
F∗AEA + F∗BEB − (A − B)(A + B)†(A − B)

]
.

Proof. If A, B ∈ B(H) are w.p.s, then

R(A) + R(B) ⊆ R(|A∗ + B∗|
1
2 ) ⊆ R(|A∗ + B∗|) = R(A + B),

R(A∗) + R(B∗) ⊆ R(|A + B|
1
2 ) ⊆ R(|A + B|) = R(A∗ + B∗).

(10)

So, P
R(A+B)x = x, ∀x ∈ R(A) ∩ R(B). If A, B and A + B are closed, then the following (i) ∼ (iii) hold.

(i) For every z ∈ H , by Theorem 3.1 and (9), y := (A : B)z ∈ R(A) ∩ R(B) and (A : B)(A† + B†)y = y.
Hence, (A : B)(A† + B†)(A : B)z = (A : B)z for all z ∈ H , i.e., (A : B)(A† + B†)(A : B) = A : B.

(ii) Note that (A : B)†(A : B) = PR(A∗)∩R(B∗) and (A : B)(A : B)† = PR(A)∩R(B). By multiplying (A : B)†

from left and right on both sides of item (i), we have (A : B)† = PR(A∗)∩R(B∗)(A† + B†)PR(A)∩R(B), i.e., A : B =[
PR(A∗)∩R(B∗)(A† + B†)PR(A)∩R(B)

]†
.

(iii) By Theorem 3.1, item (ii),

(A − B)(A + B)†(A − B) = A(A + B)†A + B(A + B)†B − A(A + B)†B − B(A + B)†A

= F∗AEA + F∗BEB − 2A : B,

i.e., A : B = 1
2

[
F∗AEA + F∗BEB − (A − B)(A + B)†(A − B)

]
. This completes the proof. □

Let A,B ∈ B(H) be closed range operators. For every x ∈ H , denote by y = (A : B)x, z = (A∗ : B∗)x. By
Theorem 3.2, item (i), it is obvious that ⟨(A : B)x, x⟩ = ⟨A†y, z⟩ + ⟨B†y, z⟩. This implies that A : B ≥ 0 if A,
B ∈ B+(H) in Theorem 3.2.

Theorem 3.3. Let A, B ∈ B(H) be w.p.s and u, v ∈ R(A) ∩ R(B) be such that u = Ax = By and v = Az = Bw for
some x, y, z, w ∈ H . If (x + y) − (z + w) ∈ N(A) +N(B), then u = v.

Proof. Since (x+ y)− (z+w) ∈ N(A)+N(B), there exist nA ∈ N(A) and nB ∈ N(B) such that (x+ y)− (z+w) =
nA + nB. Since A, B ∈ B(H) is w.p.s, by (8), the relations

u = |A∗ + B∗|
1
2 UEAx = |A∗ + B∗|

1
2 UEBy and v = |A∗ + B∗|

1
2 UEAz = |A∗ + B∗|

1
2 UEBw

imply that u = (A : B)(x + y) and v = (A : B)(z + w). In virtue of A : B = B : A and Lemma 2.7, we get
N(A) ⊆ N(A : B) andN(B) ⊆ N(A : B). Hence,

u = A : B(x + y) = A : B(z + w + nA + nB) = A : B(z + nA) + A : B(w + nB) = A : B(z + w) = v.

□

By Theorem 3.1, it is easy to get that A+B = U|A+B| = U|A+B|
1
2 (EA+EB) = (F∗A+F∗B)|A+B|

1
2 .Moreover,

R(A) ∩ R(B) ∩ R(C) ⊆ R
(
A : (B : C)

)
⊆ R(A) ∩ R(B) ∩ R(C)

and
R(A) ∩ R(B) ∩ R(C) ⊆ R

(
(A : B) : C

)
⊆ R(A) ∩ R(B) ∩ R(C)

if all operators are w.p.s. Similar to the proof of the parallel sum results in [18, Proposition 4.4], the w.p.s.
operators have the following similar property.
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Theorem 3.4. Let A, B, C ∈ B(H) be such that all weakly parallel sums A : B, B : C, (A : B) : C and A : (B : C)
exist. If the ranges of A + B, B + C, (A : B) + C and A + (B : C) are closed. Then (A : B) : C = A : (B : C).

Proof. Since A and B are w.p.s, one has R(A) ⊆ R(|A∗ + B∗|
1
2 ) = R(A + B). Since B and C are w.p.s, one has

R(C∗) ⊆ R(|B+C|
1
2 ) = R(B∗+C∗). Since C and A : B are w.p.s, one hasR(C) ⊆ R(|(A∗ : B∗)+C∗|

1
2 ) = R((A : B)+C).

Hence,

(A + B)(A + B)†A = A, C(B + C)†(B + C) = C and
[
(A : B) + C

][
(A : B) + C

]†
C = C.

For every x ∈ H , denote by

u = x −
(
A + (B : C)

)†
Ax,

v =
[
I − (B + C)†B

](
A + (B : C)

)†
Ax,

w =
[
I − (B + C)†C

](
A + (B : C)

)†
Ax.

Then, u+v+w = x+
[
I−(B+C)†(B+C)

](
A+(B : C)

)†
Ax.By Theorem 3.1, item (ii),

[
A : (B : C)

]
x = Au = Bv = Cw

and[
(A : B) : C

]
(u + v + w) =

[
(A : B) : C

]
x + (A : B)

[
(A : B) + C

]†
C
[
I − (B + C)†(B + C)

][
A + (B : C)

]†
Ax

=
[
(A : B) : C

]
x.

Moreover, [
(A : B) : C

]
(u + v + w) = C

[
(A : B) + C

]†
(A : B)(u + v) + (A : B)

[
(A : B) + C

]†
Cw

= C
[
(A : B) + C

]†[
B(A + B)†Au + A(A + B)†Au

]
+ (A : B)

[
(A : B) + C

]†
Cw

= C
[
(A : B) + C

]†
Cw + (A : B)

[
(A : B) + C

]†
Cw = Cw =

[
A : (B : C)

]
x.

Hence, (A : B) : C = A : (B : C). □

The following results extend a formula connecting the weakly parallel sum of operators which need not
to be positive, using the concept of certain Douglas reduced solutions.

Theorem 3.5. Let A, B ∈ B(H) be w.p.s, EB and FB be the reduced solutions of the equations in (2). For every
C ∈ B(H), if R(A + B) is closed, then

C∗AC + (I − C)∗B(I − C) − A : B =
[
C∗ − F∗B|A + B|

†

2 U∗
]
(A + B)

[
C − |A + B|

†

2 EB

]
.

Moreover, if (A + B)C = B or C∗(A + B) = B, then A : B = C∗AC + (I − C)∗B(I − C).
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Proof. Since EB and FB are the reduced solutions of the equations in (2), it has B = |A∗+B∗|
1
2 UEB = U|A+B|

1
2 EB

and B∗ = |A + B|
1
2 FB. If R(A + B) is closed,[

C∗ − F∗B|A + B|
†

2 U∗
]
(A + B)

[
C − |A + B|

†

2 EB

]
= C∗(A + B)C − C∗(A + B)|A + B|

†

2 EB − F∗B|A + B|
†

2 U∗(A + B)C + F∗B|A + B|
†

2 U∗(A + B)|A + B|
†

2 EB

= C∗(A + B)C − C∗U|A + B||A + B|
†

2 EB − F∗B|A + B|
†

2 U∗U|A + B|C + F∗B|A + B|
†

2 U∗U|A + B||A + B|
†

2 EB

= C∗(A + B)C − C∗U|A + B|
1
2 EB − F∗B|A + B|

1
2 C + F∗BEB = C∗(A + B)C − C∗B − BC + F∗BEB

= C∗AC + (I − C)∗B(I − C) − (B − F∗BEB) = C∗AC + (I − C)∗B(I − C) − A : B.

Moreover, if C∗(A + B) = B, then[
C∗ − F∗B|A + B|

†

2 U∗
]
(A + B) = C∗(A + B) − F∗B|A + B|

†

2 U∗U|A + B|

= C∗(A + B) − F∗B|A + B|
1
2 = C∗(A + B) − B = 0.

The result holds. Similarly, if (A + B)C = B, then

(A + B)
[
C − |A + B|

†

2 EB

]
= (A + B)C −U|A + B|

1
2 EB = (A + B)C − B = 0.

We obtain the result. □

For every A and B ∈ B+(H), by Lemma 2.1, R(A) ⊆ R(A
1
2 ) ⊆ R(A

1
2 )+R(B

1
2 ) = R((A+ B)

1
2 ) = R(| A+ B |

1
2 )

and R(B) ⊆ R(| A + B |
1
2 ), arbitrary positive operators are w.p.s. In this case, A + B has polar decomposition

A + B = U|A + B| = P
R(A+B)(A + B). The reduced solutions are reduced as EA = FA = (A + B)

†

2 A and

EB = FB = (A+B)
†

2 B.The weakly parallel sum can be denoted as A : B = A−E∗AEA = B−E∗BEB = E∗AEB = E∗BEA.
If R(A + B) is closed,

(A + B)† = (A + B)†(A + B)(A + B)† =
(
(A + B)†(A + B)

1
2

) (
(A + B)†(A + B)

1
2

)∗
≥ 0

and
∥A

1
2 (A + B)†A

1
2 ∥ = ∥(A + B)

†

2 A(A + B)
†

2 ∥ ≤ ∥(A + B)
†

2 (A + B)(A + B)
†

2 ∥ ≤ 1

we know that A
1
2 (A + B)†A

1
2 is a contractive positive operator and

A : B = A − E∗AEA = A
1
2

(
I − A

1
2 (A + B)†A

1
2

)
A

1
2 ≥ 0. (11)

Theorem 3.5 has many useful consequences. For example, if A and B are two positive operators, then
Theorem 3.5 reduces as the following corollary, which is given by F. Hansen in [15, Theorem 2.1].

Corollary 3.6. [15, Theorem 2.1] Let EA and EB be the reduced solutions of the equations in (2). For every A,
B ∈ B+(H) with R(A + B) closed and every C ∈ B(H), the weakly parallel sum satisfies

0 ≤ A : B ≤ C∗AC + (I − C)∗B(I − C)

and E∗AEB + E∗BEA ≤
A+B

2 ≤ E∗AEA + E∗BEB.

Proof. By Theorem 3.5,
[
C∗ − F∗B|A + B|

†

2 U∗
]∗
= C − |A + B|

†

2 EB for any A, B ∈ B+(H) and C ∈ B(H). So,

0 ≤

[
C − |A + B|

†

2 EB

]∗
(A + B)

[
C − |A + B|

†

2 EB

]
=
[
C∗ − F∗B|A + B|

†

2 U∗
]
(A + B)

[
C − |A + B|

†

2 EB

]
= C∗AC + (I − C)∗B(I − C) − A : B.
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Put C = 1
2 I and by Theorem 3.1, A : B = F∗AEB ≤

A+B
4 , A : B = F∗BEA ≤

A+B
4 and 2A : B = A+B−(F∗AEA+F∗BEB) ≤

A+B
2 . It follows that F∗AEB + F∗BEA ≤

A+B
2 ≤ F∗AEA + F∗BEB. Note that EA = FA and EB = FB. It follows that

E∗AEB + E∗BEA ≤
A + B

2
≤ E∗AEA + E∗BEB.

□

Theorem 3.5 and Corollary 3.6 have many useful inequalities consequences. Especially, the following
items (ii) and (iii) are also the special cases in [15, Theorem 3.1 (i)] when the orthogonal projection P = P

R(B)
and P = I − P

R(A), respectively.

Corollary 3.7. For every A, B ∈ B+(H) with R(A + B) closed, the following weakly parallel sum inequalities hold.

(i) A : B ≤ |λ|2A + |1 − λ|2B. (C = λI, λ ∈ C in Corollary 3.6)

(ii) A : B ≤ P
R(B)AP

R(B). (C = P
R(B) in Corollary 3.6)

(iii) A : B ≤ P
R(A)BP

R(A). (C = I − P
R(A) in Corollary 3.6)

(iv) A : B ≤ PN(B)APN(B) + P
R(A)BP

R(A). (C = P
R(B) − P

R(A) in Corollary 3.6)

(v) A : B ≤ P
R(B)AP

R(B) + PN(A)BPN(A). (C = P
N(A) + P

R(B) in Corollary 3.6)

(vi) A : B ≤ A+B
4 . (C = 1

2 I in Corollary 3.6)

(vii) A : B ≤ 1
4

[
P
R(B)AP

R(B) + P
R(A)BP

R(A)

]
. (C = 1

2 (P
R(B) + PN(A)) in Corollary 3.6)

(viii) A : B ≤ 1
4

[
P
R(B)AP

R(B) + (I + PN(A))B(I + PN(A))
]
. (C = 1

2 (P
R(B) − PN(A)) in Corollary 3.6)

Let weakly parallel sums A : B and C : D be well defined. As we know,

A : B = B − F∗BEB, B =| A∗ + B∗ |
1
2 UEB and B∗ =| A + B |

1
2 FB,

where U is the partial isometry of the polar decomposition of A+B. Let ED and FD be the reduced solutions
of operator equations D =| C∗+D∗ |

1
2 U0X and D∗ =| C+D |

1
2 X, respectively, where U0 is the partial isometry

of the polar decomposition C +D = U0|C +D| = |C∗ + B∗|U0. Then,

C : D = D − F∗DED, D =| C∗ +D∗ |
1
2 U0ED and D∗ =| C +D |

1
2 FD.

Using a similar approach, the next results extended [14, Theorem 6.1] on arbitrary Hilbert spaces setting
under the assumptions that the operators, which is not necessary to be positive, are w.p.s. If all the weakly
parallel sums A : B, C : D and (A + B) : (C +D) exist, we give the following result. The aim is to show that
the w.p.s operators have the property (A + C) : (B +D) = A : B + C : D if certain Douglas reduced solutions
satisfy |A + B|

†

2 EB = |C +D|
†

2 ED.

Theorem 3.8. Let A, B, C, D ∈ B(H) be such that R(A + B), R(C +D) and R(A + B + C +D) are closed. Then

(A + C) : (B +D) − A : B − C : D

=
[
F∗B|A + B|

†

2 U∗ − F∗D|C +D|
†

2 U∗0

][
(A + B) : (C +D)

][
|A + B|

†

2 EB − |C +D|
†

2 ED

]
if all the w.p.s operations are well defined. Moreover, if |A+B|

†

2 EB = |C+D|
†

2 ED, then (A+C) : (B+D) = A : B+C : D.
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Proof. By Theorem 3.1,

(A + C) : (B +D) − A : B − C : D = (B +D) − (B +D)(A + B + C +D)†(B +D) − B + F∗BEB −D + F∗DED

= F∗BEB + F∗DED − (B +D)(A + B + C +D)†(B +D).
(12)

Since A and B are w.p.s, one has F∗B|A + B|
†

2 U∗(A + B) = F∗B|A + B|
†

2 U∗U|A + B| = F∗B|A + B|
1
2 = B and

(A + B)|A + B|
†

2 EB = U|A + B||A + B|
†

2 EB = U|A + B|
1
2 EB = |A∗ + B∗|

1
2 UEB = B. Similarly, since C and D are

w.p.s, one has F∗D|C + D|
†

2 U∗0(C + D) = D and (C + D)|C + D|
†

2 ED = D.Moreover, since A + B and C + D are
w.p.s, R(B∗) ⊆ R(A∗ + B∗) ⊆ R(A∗ + B∗ + C∗ + D∗) and R(D∗) ⊆ R(C∗ + D∗) ⊆ R(A∗ + B∗ + C∗ + D∗). Hence,
B(A + B + C +D)†(A + B + C +D) = B and D(A + B + C +D)†(A + B + C +D) = D. These follow that[

F∗B|A + B|
†

2 U∗ − F∗D|C +D|
†

2 U∗0

][
(A + B) : (C +D)

][
|A + B|

†

2 EB − |C +D|
†

2 ED

]
=
[
F∗B|A + B|

†

2 U∗(A + B)(A + B + C +D)†(C +D) − F∗D|C +D|
†

2 U∗0(C +D)(A + B + C +D)†(A + B)
]

×

[
|A + B|

†

2 EB − |C +D|
†

2 ED

]
=
[
B(A + B + C +D)†(C +D) −D(A + B + C +D)†(A + B)

][
|A + B|

†

2 EB − |C +D|
†

2 ED

]
= B(A + B + C +D)†(C +D)|A + B|

†

2 EB −D(A + B + C +D)†B

−B(A + B + C +D)†D +D(A + B + C +D)†(A + B)|C +D|
†

2 ED

= B(A + B + C +D)†
[
(A + B + C +D) − (A + B)

]
|A + B|

†

2 EB −D(A + B + C +D)†B

−B(A + B + C +D)†D +D(A + B + C +D)†
[
(A + B + C +D) − (C +D)

]
|C +D|

†

2 ED

= B|A + B|
†

2 EB − B(A + B + C +D)†B −D(A + B + C +D)†B

−B(A + B + C +D)†D +D|C +D|
†

2 ED −D(A + B + C +D)†D

= F∗BEB + F∗DED − (B +D)(A + B + C +D)†(B +D).

By (12), we obtain the first result. Moreover, if |A+ B|
†

2 EB = |C+D|
†

2 ED, it is obvious that (A+C) : (B+D) =
A : B + C : D. □

Similar to Corollary 3.6, if A, B, C, D ∈ B+(H), then (A+B) : (C+D) ≥ 0 and
[
F∗B|A+B|

†

2 U∗−F∗D|C+D|
†

2 U∗0

]∗
=

|A+B|
†

2 EB − |C+D|
†

2 ED.As an application of the preceding theorem, we get a corollary as follows. The well
known series-parallel inequality (A + C) : (B +D) ≥ A : B + C : D is first given in [1, Lemma 20] when A, B,
C and D are Hermitian semidejfinite.

Corollary 3.9. [1, Lemma 20] Let A, B, C, D ∈ B+(H) be such that R(A + B), R(C + D) and R(A + B + C + D)
are closed. Then (A + C) : (B +D) ≥ A : B + C : D.

Corollary 3.9 has many useful consequences.

Corollary 3.10. If A, A′, B, B′, C and D are finite nonnegative matrix, then

(i) If A′ ≥ A, then A′ : B ≥ A : B. (A′ = A + C,D = 0 in Corollary 3.9)

(ii) If B′ ≥ B, then A : B′ ≥ A : B. (B′ = B +D,C = 0 in Corollary 3.9)
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(iii) If B ≥ A and C ≥ A then B : C ≥ 1
2 A. (by (i), (ii) and 1

2 A = A : A)

The weakly parallel sum is not distributive with the usual operator product. In [2, Theorem 5], Anderson
shows that, if A, B are positive semi-definite operators, and Z is an operator, then Z∗(A : B)Z ≤ (Z∗AZ) :
(Z∗BZ). As for bounded operators, we give the following result. This is a generalization of [2, Theorem 5].

Theorem 3.11. Let A, B, Z ∈ B(H) and Ẑ = Z∗PR(A∗+B∗) be such that A and B, ẐAZ and ẐBZ are w.p.s, respectively.
If R(A + B) and R(ẐAZ + ẐBZ) are closed, B∗(A∗ + B∗)†A = A∗(A∗ + B∗)†B and R(Ẑ) ⊆ R(ẐAZ + ẐBZ), then

(ẐAZ) : (ẐBZ) = Ẑ(A : B)Z + T∗AT + T∗BT

=
[
|A + B|

†

2 EBZ + T
]∗

A
[
|A + B|

†

2 EBZ + T
]
+
[
|A + B|

†

2 EAZ − T
]∗

B
[
|A + B|

†

2 EAZ − T
]
,

where T = Ẑ∗
[
(ẐAZ + ẐBZ)∗

]†
(ẐBZ)∗ − (A + B)†BZ.

Proof. Denote by X0 = |A + B|
†

2 EBZ and Y0 = |A + B|
†

2 EAZ. Since A and B are w.p.s, by (2), (4) and (10),

X0 + Y0 = Ẑ∗, AX0 = F∗AEBZ = (A : B)Z, BY0 = F∗BEAZ = (A : B)Z, X∗0AX0 + Y∗0BY0 = Ẑ(A : B)Z,

(A + B)X0 = U|A + B|
1
2 EBZ = BZ = BẐ∗, (A + B)Ẑ∗ = (A + B)Z, BX0 = F∗BEBZ = (B − A : B)Z.

(13)

Since B∗(A∗ + B∗)†A = A∗(A∗ + B∗)†B, one has

X∗0A = Y∗0B and X∗0(A + B) = Y∗0B + X∗0B = ẐB. (14)

Denote by S = ẐAZ + ẐBZ, X = Ẑ∗
(
S∗
)†

(ẐBZ)∗, Y = Ẑ∗
(
S∗
)†

(ẐAZ)∗ and T = X − X0. Note that R(Ẑ) = R(S).

Since ẐAZ and ẐBZ are w.p.s, one has R((ẐBZ)∗) ⊆ R(S∗). Then

Ẑ = SS†Ẑ, Ẑ∗ = Ẑ∗
(
S∗
)†

S∗ and ẐBZ = ẐBZS†S. (15)

By (13) and (15), Y0 − T = X0 + Y0 − X = Ẑ∗
(
S∗
)†

S∗ − Ẑ∗
(
S∗
)†

(ẐBZ)∗ = Y. Hence, X = X0 + T, Y = Y0 − T and

X + Y = Ẑ∗. By (13), (14) and (15),

T∗AT + T∗BT =
[
Ẑ∗
(
S∗
)†

(ẐBZ)∗ − X0

]∗
(A + B)

[
Ẑ∗
(
S∗
)†

(ẐBZ)∗ − X0

]
= (ẐBZ)S†Ẑ(A + B)Ẑ∗

(
S∗
)†

(ẐBZ)∗ − (ẐBZ)S†Ẑ(A + B)X0 − X∗0(A + B)Ẑ∗
(
S∗
)†

(ẐBZ)∗ + X∗0(A + B)X0

= (ẐBZ)
(
S∗
)†

(ẐBZ)∗ − (ẐBZ)S†ẐBZ − (ẐBZ)
(
S∗
)†

(ẐBZ)∗ + ẐBX0

= −(ẐBZ)S†ẐBZ + Ẑ(B − A : B)Z.

(16)

By (13), (14) and (16), it follows that

X∗AX + Y∗BY = (X0 + T)∗A(X0 + T) + (Y0 − T)∗B(Y0 − T)

= X∗0AX0 + Y∗0BY0 + T∗AT + T∗BT + T∗AX0 − T∗BY0 + X∗0AT − Y∗0BT

= Ẑ(A : B)Z + T∗AT + T∗BT = Ẑ(A : B)Z + Ẑ(B − A : B)Z − (ẐBZ)S†ẐBZ

= ẐBZ − (ẐBZ)S†(ẐBZ) = (ẐAZ) : (ẐBZ).
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This completes the proof. □

Note that

T∗AT + T∗BT = −(ẐBZ)S†ẐBZ + Ẑ(B − A : B)Z = ẐB
[
(A + B)† − Z

(
Ẑ(A + B)Z

)†
Ẑ
]
BZ.

Theorem 3.11 includes the following special case.

Corollary 3.12. Let A, B, Z ∈ B(H) and Ẑ = Z∗PR(A∗+B∗) be such that R(A+ B) and R(ẐAZ+ ẐBZ) are closed and
A and B, ẐAZ and ẐBZ are w.p.s, respectively. If B∗(A∗ + B∗)†A = A∗(A∗ + B∗)†B, R(Ẑ) ⊆ R(ẐAZ + ẐBZ) and

(A + B)† = Z
(
Ẑ(A + B)Z

)†
Ẑ, then Ẑ(A : B)Z = (ẐAZ) : (ẐBZ).

If A, B ∈ B+(H) and Z ∈ B(H), then ẐA = Z∗A and ẐB = Z∗B. Hence, we have the following corollary.

Corollary 3.13. Let A, B ∈ B+(H) and Z ∈ B(H) such that R(A + B) and R(Z∗AZ + Z∗BZ) are closed.

(i) (Z∗AZ) : (Z∗BZ) ≥ Z∗(A : B)Z ≥ 0.

(ii)
(Z∗AZ) : (Z∗BZ) = Z∗(A : B)Z + T∗AT + T∗BT

=
[
|A + B|

†

2 EBZ + T
]∗

A
[
|A + B|

†

2 EBZ + T
]
+
[
|A + B|

†

2 EAZ − T
]∗

B
[
|A + B|

†

2 EAZ − T
]
,

where T = PR(A∗+B∗)Z
[
Z∗AZ + Z∗BZ

]†
(Z∗BZ) − (A + B)†BZ.

(iii) If (A + B)† = Z
(
Z∗(A + B)Z

)†
Z∗, then (Z∗AZ) : (Z∗BZ) = Z∗(A : B)Z.

Similar to the proof of Theorem 3.11, one has the following inner product properties.

Theorem 3.14. Let A and B ∈ B(H) be such that R(A + B) is closed and ũ = PR(A∗+B∗)u for every u ∈ H . Then for
x, y, z ∈ H such that x + y = z,

⟨Ax, x̃⟩ + ⟨By, ỹ⟩ = ⟨(A : B)z, z̃⟩ + ⟨t,A∗x0 − B∗y0⟩ + ⟨(A + B)t, t⟩,

where x0 = |A + B|
†

2 EBz̃, y0 = |A + B|
†

2 EAz̃ and t = x̃ − x0.Moreover, if A and B are self-adjoint,

⟨Ax, x⟩ + ⟨By, y⟩ = ⟨(A : B)z, z⟩ + ⟨(A + B)t, t⟩.

If A and B are positive (see [1, Lemma 18] for parallel sum case),

⟨Ax, x⟩ + ⟨By, y⟩ ≥ ⟨(A : B)z, z⟩, ∀x + y = z.

Proof. Note that x̃ = PR(A∗+B∗)x, ỹ = PR(A∗+B∗)y and x̃+ ỹ = z̃.Denote by x0 = |A+B|
†

2 EBz̃ and y0 = |A+B|
†

2 EAz̃.
Since A and B are w.p.s, by (5), (6) and (10),

x0 + y0 = z̃, Ax0 = F∗AEBz̃ = (A : B)̃z = (A : B)z, By0 = F∗BEAz̃ = (A : B)z,

(A + B)x0 = U|A + B|
1
2 EBz̃ = B̃z = Bz, (A + B)y0 = Az, Ax̃ = Ax, Bỹ = By,

Bx0 = F∗BEBz̃ = (B − A : B)̃z = (B − A : B)z, Ay0 = (A − A : B)z.

Put t = x̃ − x0. Then x̃ = x0 + t, ỹ = y0 − t,

⟨Ax, x̃⟩ = ⟨Ax̃, x̃⟩ = ⟨Ax0 + At, x0 + t⟩ = ⟨(A : B)z, x0⟩ + ⟨(A : B)z, t⟩ + ⟨At, x0⟩ + ⟨At, t⟩
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and

⟨By, ỹ⟩ = ⟨Bỹ, ỹ⟩ = ⟨By0 − Bt, y0 − t⟩ = ⟨(A : B)z, y0⟩ − ⟨(A : B)z, t⟩ − ⟨Bt, y0⟩ + ⟨Bt, t⟩.

Hence, ⟨Ax, x̃⟩+⟨By, ỹ⟩ = ⟨(A : B)z, z̃⟩+⟨t,A∗x0−B∗y0⟩+⟨(A+B)t, t⟩.Moreover, if A and B are self-adjoint, then
A∗x0 = B∗y0 and ⟨Ax, x⟩+ ⟨By, y⟩ = ⟨(A : B)z, z⟩+ ⟨(A+B)t, t⟩. It is obvious that ⟨Ax, x⟩+ ⟨By, y⟩ ≥ ⟨(A : B)z, z⟩
if A and B are positive. □

4. Concluding remarks

If A and B are Hermitian positive semi-definite matrices, the parallel sum A : B is defined by A : B =
A(A + B)†B. Anderson and Duffin defined the parallel sum operation on Hermitian positive semi-definite
matrices and investigated its most important properties [1]. The extensions of the theory to the positive
operators in Hilbert space have been given by Anderson and Schreiber [4] and Fillmore and Williams [13].
Recently, Xu et al. [14, 18, 19] obtained the perturbation estimation of the parallel sum and extended some
properties of parallel sums to adjoint operators on Hilbert C∗ modules.

This paper considers a natural generalizations of parallel sum for bounded operators on infinite-
dimensional spaces. Under the suitable range inclusion relations

R(A) ⊆ R(| A∗ + B∗ |
1
2 ), R(B) ⊆ R(| A∗ + B∗ |

1
2 ), R(A∗) ⊆ R(| A + B |

1
2 ), R(B∗) ⊆ R(| A + B |

1
2 ).

Definition 2.6 of weakly parallel sum A : B = A − F∗AEA may be applied to any pair of linear operators. In
particular, all the positive operators are w.p.s by Definition 2.5. The present article is devoted to the further
development of the properties of weakly parallel sum for arbitrary bounded operators in a Hilbert space.
By the spectral decomposition theorem and the closed graph theorem, the generalized inverse A† is always
defined (need not to be bounded) and A†B is bounded if R(B) ⊆ R(A). Many rather natural extensions have
been developed in this paper. When these results are restricted ro the positive operators, these results can
be reduced as certain properties of the parallel sum.
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The authors thank Prof. Dragana S. Cvetković-Ilić and the referee for their very useful and detailed
comments which greatly improve the presentation.

References

[1] W.N. Anderson, R.J. Duffin, Series and Parallel Addition of Matrices, J. Math. Anal. Appl. 26 (1969), 576-594.
[2] W.N. Anderson, Shorted operators, SIAM J. Appl. Math. 20 (1971), 520-525.
[3] W.N. Anderson, G.E. Trapp, Shorted operators II, SIAM J. Appl. Math. 28 (1975), 60-71.
[4] W.N. Anderson, M. Schreiber, On the infimum of two projections, Acta Sci. Math. (Szeged) 33 (1972), 165-168.
[5] J. Antezana, G. Corach, D. Stojanoff, Bilateral shorted operators and parallel sums, Linear Algebra Appl. 414 (2006), 570-588.
[6] T. Ando, Lebesgue-type decomposition of positive operators, Acta Sci. Math. 38 (1976), 253-260.
[7] M.L. Arias, G. Corach, M.C. Gonzalez, Saddle point problems, Bott-Duffin inverses, abstract splines and oblique projections,

Linear Algebra Appl. 457 (2014), 61-75.
[8] M.L. Arias, G. Corach, A. Maestripieri, Range additivity, shorted operator and the Sherman-Morrison-Woodbury formula, Linear

Algebra Appl. 467 (2015), 86-99.
[9] P. Berkics, On parallel sum of matrices, Linear Multilinear Algebra 65 (2017), 2114-2123.

[10] J. Conway, A Course in Functional Analysis, Spring-Verlag, New Youk, 1990.
[11] M.S. Djikić, Extensions of the Fill-Fishkind formula and the infimum-parallel sum relation, Linear Multilinear Algebra 64 (2016),

2335-2349.
[12] R.G. Douglas, On majorization, factorization, and range inclusion of operators on Hilbert spaces, Proc. Amer. Math. Soc. 17

(1966), 413-416.
[13] L.R. Fillmore, J.P. Williams, On operator ranges, Adv. Math. 7 (1971), 254-281.
[14] C.H. Fu, M.S. Moslehian, Q.X. Xu, A. Zamani, Generalized parallel sum of adjointable operators on Hilbert C*-modules, Linear

Multilinear Algebra 4 (2020), 1-19.
[15] F. Hansen, A note on the parallel sum, Linear Algebra Appl. 636 (2022), 69-76.



X. Deng et al. / Filomat 38:12 (2024), 4087–4099 4099

[16] J. Ji, Explicit expressions of the generalized inverses and condensed Cramer rules, Linear Algebra Appl. 404 (2005), 183-192.
[17] M. Khadivi, Range inclusion and the UUP property, J. Math. Anal. Appl. 160 (1991), 176-189.
[18] W. Luo, C.N. Song, Q.X. Xu, The parallel sum for adjointable operators on Hilbert C∗ modules, Acta Mathmatica Sinica, Chinese

Semes 62 (2019), 541-552.
[19] W. Luo, C.N. Song, Q.X. Xu, Perturbation estimation for the parallel sum of Hermitian positive semi-definite matrices, Linear

Multilinear Algebra 67 (2019), 1971-1984.
[20] S.K. Mitra, M.L. Puri, On parallel sum and difference of matrices, J. Math. Anal. Appl. 44 ( 1973), 92-97.
[21] A.E. Taylar, D.C. Lay, Introduction to Functional Analysis, second ed., John wiley & Sons, New York, Chichester, Brisbane,

Toronto, 1980.


