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A sufficient descent three-term conjugate gradient method and its
global convergence
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Abstract. In this paper, we presented a new three-term conjugate gradient method based on combining the
conjugate gradient method proposed by Cheng et al [15] with the idea of the modified FR method [22]. In
our method, search direction satisfies the sufficient descent condition independent of the line search. Under
some standard assumptions, we establish the global convergence property and the r-linear convergence
rate of the proposed method. Numerical results on the standard test problems, in some well-known library,
illustrate computational efficiency of the new method.

1. Introduction

We consider the following unconstrained optimization problem:

min f (x), x ∈ Rn, (1)

where f : Rn
−→ R is continuously differentiable and its gradient is denoted by 1(x) = ∇ f (x). Conjugate

gradient (CG) methods are efficient iterative methods, with some important properties such as low memory
requirement and strong global convergence, making them useful tools in solving large-scale unconstrained
optimization problems. A CG method generates a sequence of points xk ∈ R

n, obtained by

xk+1 = xk + αkdk, k ≥ 0, (2)

where xk is the current approximation to a solution, and dk ∈ R
n is a search direction defined by

dk =

{
−10, k = 0,
−1k + βkdk−1, k ≥ 1. (3)

The vector 1k denotes 1(xk), the βk (called here CG parameter) is a scalar, which distinguishes any two
different CG methods, and the step length αk > 0 is usually determined to satisfy the strong Wolfe line
search conditions

f (xk + αkdk) − f (xk) ≤ δαk1
T
k dk, (4)
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|1(xk + αkdk)Tdk| ≤ σ|1
T
k dk|, (5)

where 0 < δ < 1
2 , δ < σ < 1. The most well-known CG methods include Fletcher–Reeves (FR) method [1],

the Dai–Yuan (DY) method [2], the Hestenes–Stiefel (HS) method [3], Liu–Storey (LS) method [4] and the
Polak–Ribière–Polyak (PRP) method [5, 6]. From theoretical and numerical performance point of view, the
FR and DY methods have strong convergence properties, while the HS, LS and PRP methods have better
computational performances [18]. Moreover, HS method satisfies the conjugacy condition dT

k yk−1 = 0, for
all k ≥ 0, independent of the line search conditions and the objective function convexity. Dai and Liao
(DL) [19], with a modification of conjugacy condition, introduced a class of CG methods. Although the
DL method seldom generates uphill search direction in an actual computation, this search direction is not
necessarily a descent one in theory. This motivated many researchers to make various modifications on the
DL method, in order to achieve some descent properties, see [8, 9, 11, 13, 15].
In this paper, we propose a three-term version of the modified DL method proposed by Cheng et al.
[15]. As a significant property, our method ensures sufficient descent, independent of any line search. Its
global convergence and the r-linear convergence rate, are shown under standard assumptions. We have
examined our method on the test problems from CUTEst collection. Numerical results show efficiency and
robustness of our proposed method in practice. The rest of this paper is organized as follows. In Section 2,
we present details of the new CG method and its computational algorithm. In Section 3, we establish the
global convergence property of the proposed method for general functions. The r-linear convergence rate
of our method is discussed in Section 4. Numerical results, obtained from applying the new method on the
unconstrained optimization problems from CUTEst collection, are reported in Section 5.

2. Motivation and algorithm

Based on an extended conjugacy condition, Dai and Liao (DL) [19] presented a class of CG methods
with CG parameter given by

βDL
k =

1T
k yk−1

dT
k−1yk−1

− t
1T

k sk−1

dT
k−1yk−1

,

where t > 0, yk−1 = 1k − 1k−1, and sk−1 = xk − xk−1. They have proved the convergence of those methods
for convex functions; moreover, by using the truncation technique of [7, 10], they have also established the
convergence for more general functions. Although the DL method is computationally efficient, it may fail
to generate a descent direction (i.e. there may be some k for which 1T

k dk < 0 fails to hold ). In [8], Hager and
Zhang (HZ) proposed a subclass of DL methods known as CG DESCENT,

βHZ
k =

1T
k yk−1

dT
k−1yk−1

− θ
∥yk−1∥

21T
k dk−1

(dT
k−1yk−1)2

, θ >
1
4
, (6)

where ∥.∥ stands for Euclidean norm. They showed that the search direction in this method satisfies the
sufficient descent condition 1T

k dk ≤ ( 1
4θ − 1)∥1k∥

2. In addition, in order to guarantee the global convergence,
they have updated βHZ

k by

βHZ+
k = max{ηk, β

HZ
k }, with ηk = −

1
∥dk−1∥min{η, ∥1k−1∥}

, (7)

and η > 0.Numerical results obtained by CG DESCENT method outperforms many existing CG methods.
Yao et al. [11, 13] proposed two DL-type conjugate gradient methods where their search directions satisfy
the sufficient descent condition under the strong Wolfe line search for σ < 1

4 and σ < 1
3 . They obtained

those methods by replacing the first term in the expression of βDL
k , respectively, by βMHS

k (of the modified
HS method [12]) and βWYL

k (of the WYL method [14]). Recently, based on the same approach and by using
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a modified version of LS method (MLS) of [12], Cheng et al. [15] proposed the following CG parameter

βMLS−DL
k = βMLS

k − t
1T

k sk−1

dT
k−1yk−1

, (8)

where βMLS
k =

1T
k (1k−

∥1k∥
∥1k−1∥

1k−1)

−dT
k−11k−1

.

In [15], it is shown that the MLS-DL method satisfies the sufficient descent condition under the Wolfe line
search for σ < 1

2 , and it is also computationally superior to the CG DESCENT method [8]. In spite of the
mentioned promising features of MLS-DL method, the condition σ < 1

2 , may limit the performance of the
proposed method, see [25] for more details. In [22], Narushima et al. proposed a modified FR method, in
which the directions are defined by

dk = −1k + β
FR
k dk−1 − β

FR
k

1T
k dk−1

∥1k∥
2 1k. (9)

Moreover, it has been shown [22] that the search direction (9) satisfies the sufficient descent condition

1T
k dk = −∥1k∥

2. (10)

independently of choices of the CG parameter βk.
Here, to increase computational efficiency and robustness of the MLS-DL method, we employ the idea of
the modified FR method and propose the following search direction

dk = −1k + β
MLS−DL
k dk−1 − β

MLS−DL
k

1T
k dk−1

∥1k∥
2 1k. (11)

Now, we express the steps of the new proposed method in Algorithm 2.1.

Algorithm 2.1. New Three-Term Conjugate Gradient Method
Step 0 : Consider constants ε > 0, 0 < δ < 1

2 , δ < σ < 1, choose an initial point x0 ∈ Rn and set k = 0, t > 0,
d0 = −10.
Step 1 : Stop if ∥1k∥∞ < ε.
Step 2 : Determine the step length αk by the strong Wolfe line search (4) and (5).
Step 3 : Let xk+1 = xk + αkdk; Set k = k + 1.
Step 4 : Compute βMLS−DL

k by (8).
Step 5 : Compute dk by (11), go to Step 1.

3. Convergence Analysis

In this section, we establish global convergence property of Algorithm 2.1. To this end, the following
assumptions are considered on the objective function.

Assumption 4.1 The level set L = {x ∈ Rn
| f (x) ≤ f (x0)} is bounded, namely, there exists a constant

B > 0 such that

∥x∥ ≤ B, ∀x ∈ L. (12)

Assumption 4.2 In some neighborhoodN ofL, f is continuously differentiable and its gradient is Lipschitz
continuous, namely, there exists a positive constant L > 0 such that

∥1(x) − 1(y)∥ ≤ L∥x − y∥, ∀x, y ∈ N . (13)
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Remark 4.1 Assumption 4.1 implies that there exists a positive constant M such that

∥1(x)∥ ≤M, ∀x ∈ L. (14)

The following well-known lemma which was proved by Zoutendijk [21] will be needed for convergence
analysis.

Lemma 3.1. Suppose that the Assumptions 4.1 and 4.2 hold. Consider any CG method of the form (2) and (3), where
dk is a sufficient descent direction and the steplength αk satisfies the strong Wolfe line search conditions. Then

∞∑
k=0

(1T
k dk)2

∥dk∥
2 < ∞,

which, from (10), reduces to
∞∑

k=0

∥1k∥
4

∥dk∥
2 < ∞. (15)

Lemma 3.2. Suppose that the Assumptions 4.1 and 4.2 hold. Let xk be the sequence of points generated by Algorithm
2.1. Moreover, suppose that there exists a constant µ > 0 such that

∥1k∥ ≥ µ, ∀k ≥ 0. (16)

Then there exist positive constants C1 and C2 such that

|βMLS−DL
k | ≤ C1∥sk−1∥, |βMLS−DL

k |
|1T

k dk−1|

∥1k∥
2 ≤ C2∥sk−1∥. (17)

Proof. Using the strong Wolfe condition (5) together with (10), we obtain

dT
k−1yk−1 ≥ −(1 − σ)1T

k−1dk−1 = (1 − σ)∥1k−1∥
2. (18)

Using the same lines of proof of Lemma 3.4 in [15], we get

|βMLS−DL
k | ≤

2∥1k∥∥yk−1∥

∥1k−1∥
2 + t

∥1k∥∥sk−1∥

dT
k−1yk−1

. (19)

From (13), (14), (16), (18) and (19) we conclude

|βMLS−DL
k | ≤

2∥1k∥∥yk−1∥

∥1k−1∥
2 + t

∥1k∥∥sk−1∥

(1 − σ)∥1k−1∥
2

≤
2ML∥sk−1∥

µ2 + t
M∥sk−1∥

(1 − σ)µ2

≤

(
2ML
µ2 + t

M
(1 − σ)µ2

)
∥sk−1∥.

Setting C1 =
2ML
µ2 + t M

(1−σ)µ2 , it follows that

|βMLS−DL
k | ≤ C1∥sk−1∥. (20)

Combining this upper bound for |βMLS−DL
k |with (5), (10), (14) and (16), we have

|βMLS−DL
k |

|1T
k dk−1|

∥1k∥
2 ≤ C1∥sk−1∥

σ|1T
k−1dk−1|

∥1k∥
2 (21)

≤ C1∥sk−1∥
σ∥1k−1∥

2

∥1k∥
2 (22)

≤ C1∥sk−1∥
σM2

µ2 (23)

≤ C2∥sk−1∥. (24)
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where C2 = C1
σM2

µ2 . This completes the proof of the Lemma.

Lemma 3.3. Suppose that the Assumptions 4.1 and 4.2 hold. Let xk be the sequence of points generated by Algorithm
2.1. If there exists a constant µ > 0 such that ∥1k∥ > µ for all k > 0, then we have

∞∑
k=0

∥uk − uk−1∥
2 < ∞, (25)

where uk =
dk
∥dk∥
.

Proof. From ∥1k∥ > µ > 0 and descent direction property (10), it follows that dk , 0, and thus uk is well
defined. Moreover, from (15) and ∥1k∥ > µ > 0, we conclude that

∞∑
k=0

∥1k∥
4

∥dk∥
2 < ∞. (26)

Let us define

rk =
wk

∥dk∥
, δk = β

MLS
k
∥dk−1∥

∥dk∥
, (27)

where

wk = −

1 + βMLS−DL
k

1T
k dk−1

∥1k∥
2

 1k − t
1T

k sk−1

dT
k−1yk−1

dk−1. (28)

Then, it follows from (8), (11), (27) and (28) that:

uk =
dk

∥dk∥

=
−1k + βMLS−DL

k dk−1 − βMLS−DL
k

1T
k dk−1

∥1k∥
2 1k

∥dk∥

=
−1k − βMLS−DL

k
1T

k dk−1

∥1k∥
2 1k + (βMLS

k dk−1 − t
1T

k sk−1

dT
k−1 yk−1

dk−1)

∥dk∥

=
−

(
1 + βMLS−DL

k
1T

k dk−1

∥1k∥
2

)
1k − t

1T
k sk−1

dT
k−1 yk−1

dk−1

∥dk∥
+ βMLS

k
∥dk−1∥

∥dk−1∥

dk−1

∥dk∥

= rk + δkuk−1.

By similar arguments of the proof of Lemma 3.1 in [8], we obtain

∥uk − uk−1∥ ≤ 2∥rk∥. (29)

Since ∥rk∥ =
∥wk∥

∥dk∥
, it is enough to obtain an upper bound for ∥wk∥. Utilizing (5), (12), (14), (17), (18) and (28)

gives

∥wk∥ ≤ ∥1k∥ + |β
MLS−DL
k |

|1T
k dk−1|

∥1k∥
2 ∥1k∥ + t

σ|1T
k−1dk−1|∥sk−1∥

(1 − σ)∥1k−1∥
2

≤ M + C2∥sk−1∥M + t
σ∥1k−1∥

2
∥sk−1∥

(1 − σ)µ2

≤ M(1 + 2C2B + tM
2σB

(1 − σ)µ2 ). (30)
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Thus, it follows from (26), (29) and (30) that
∞∑

k=0

∥uk − uk−1∥
2
≤ 4

∞∑
k=0

∥rk∥
2

≤ 4
∞∑

k=0

∥wk∥
2

∥dk∥
2

≤

4M2(1 + 2C2B + tM 2σB
(1−σ)µ2 )2

µ4

∞∑
k=0

1
∥dk∥

2

< ∞, (31)

which completes the proof.

Theorem 3.4. Suppose that Assumptions 4.1 and 4.2 hold. If the sequence {xk} is generated by Algorithm 2.1, then
either ∥1k∥ = 0 for some k, or

lim inf
k→∞

∥1k∥ = 0.

Proof. We proceed by contradiction. We assume that there exists a constant µ > 0 such that

∥1k∥ ≥ µ, ∀k ≥ 0.

By squaring both sides of (11), and using (12), (14) and (17) we obtain

∥dk∥
2
≤

∥1k∥ + |β
MLS−DL
k |

|1T
k dk−1|

∥1k∥
2 ∥1k∥ + |β

MLS−DL
k |∥dk−1∥

2

≤ (M +MC2∥sk−1∥ + C1∥sk−1∥∥dk−1∥)2

≤ 2(M + 2MC2B)2 + 2C2
1∥sk−1∥

2
∥dk−1∥

2.

Following the same line of proof of Theorem 3.2 in [8], it can be seen that ∥dk∥ ≤ γ holds for some positive
constant γ. This leads to

∞∑
k=0

∥1k∥
4

∥dk∥
2 ≥
µ4

γ2

∞∑
k=0

1 = ∞,

which contradicts (15). Therefore, the proof is complete.

4. Convergence Rate Analysis

In this section, we provide the r-linear convergence rate of Algorithm 2.1. We assume that the objective
function f is twice continuously differentiable and uniformly convex, namely, there are positive constants
m1 ≤ m2 such that

m1∥y∥2 ≤ yT
▽

2 f (x)y ≤ m2∥y∥2, ∀y ∈ Rn, x ∈ L.

This implies that the sequence {xk} converges to the unique minimizer x∗ of the problem (1). Moreover, it
implies that:

1
2

m1∥x − x∗∥2 ≤ ( f (x) − f (x∗)) ≤
1
2

m2∥x − x∗∥2, ∀x ∈ Rn, (32)

m1∥x − x∗∥ ≤ ∥1(x)∥ ≤ m2∥x − x∗∥, ∀x ∈ Rn. (33)
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Theorem 4.1. Suppose that the Assumptions 4.1 and 4.2 hold. Moreover, assume that the objective function f is
twice continuously differentiable and uniformly convex. If the sequence {xk} is generated by Algorithm 2.1, there
exists a constant D > 0 such that

αk ≥ D, ∀k > 0. (34)

Proof. Since f is a twice continuously differentiable and uniformly convex function, there exist positive
constants ν and c such that

sT
k yk ≥ ν∥sk∥

2, −1T
k dk ≥ cαk∥dk∥

2, (see[16]). (35)

Following the same lines of proof of Lemma 3.4 in [15], it can be shown that

|βMLS
k | ≤

2∥1k∥∥yk−1∥

|dT
k−11k−1|

. (36)

From (13), (35) and (36) it follows that

|βMLS
k | ≤

2∥1k∥∥yk−1∥

cαk−1∥dk−1∥
2

≤
2∥1k∥L∥sk−1∥

cαk−1∥dk−1∥
2

≤
2L∥1k∥

c∥dk−1∥
. (37)

Thus, by inserting (35) and (37) into (11), we conclude that

∥dk∥ ≤ ∥1k∥ + |β
MLS−DL
k |

∥1k∥∥dk−1∥

∥1k∥
2 ∥1k∥ + |β

MLS−DL
k |∥dk−1∥

≤ ∥1k∥ + 2

 2L∥1k∥

c∥dk−1∥
+ t
∥1k∥∥sk−1∥

dT
k−1yk−1

 ∥dk−1∥

≤ ∥1k∥ + 2

2L∥1k∥

c
+ t
∥1k∥∥sk−1∥

sT
k−1yk−1

∥sk−1∥


≤ ∥1k∥ + 2

(
2L∥1k∥

c
+ t
∥1k∥∥sk−1∥

2

ν∥sk−1∥
2

)
≤

(
1 + 2

(2L
c
+ t

1
ν

))
∥1k∥

which implies

∥1k∥
2

∥dk∥
2 ≥

(
1 + 2

(2L
c
+ t

1
ν

))−2

= λ. (38)

On the other hand, from (5), (10), and (13), we obtain

(1 − σ)∥1k∥
2 = (σ − 1)1T

k dk ≤ (1k+1 − 1k)Tdk ≤ Lαk∥dk∥
2. (39)

Thus, from (38) and (39), we get

αk ≥
1 − σ

L
∥1k∥

2

∥dk∥
2 ≥ D,

where D = 1−σ
L λ. This completes the proof



M. Lotfi, S. M Hosseini / Filomat 38:12 (2024), 4101–4115 4108

The following theorem, which is similar to Theorem 2.6 in [16], establishes the r-linear convergence rate of
the proposed method.

Theorem 4.2. Suppose that the Assumptions 4.1 and 4.2 hold, and the objective function f is twice continuously
differentiable and uniformly convex. Then the sequence of points {xk} generated by Algorithm 2.1, is r-linear
convergent, i.e. there are constants a > 0 and r ∈]0, 1[ such that

∥xk − x∗∥ ≤ ark, for all k ≥ 0.

Proof. The statements of the proof of Theorem 2.6 in [16], it is simply shown that

f (xk+1) − f (x∗) ≤ (1 −
2δDm2

1

m2
)( f (xk) − f (x∗)).

This implies that

f (xk) − f (x∗) ≤ r2k( f (x0) − f (x∗)), (40)

where r =
√

(1 −
2δDm2

1
m2

). Then, from (32) and (40), we obtain

∥xk − x∗∥2 ≤
2

m1
( f (xk) − f (x∗)) ≤

2
m1

( f (x0) − f (x∗))r2k,

which implies ∥xk − x∗∥2 ≤ a2r2k for a =
√

2
m1

( f (x0) − f (x∗)).

5. Numerical Results

In this section, we present the computational results obtained from the implementation of the Algorithm
2.1, denoted by “TMLS-DL”. We compare the performance of TMLS-DL with several recent well-performing
methods :

• HZ + : denotes CG DESCENT [8] by using the values θ = 2 in (6), η = 0.01 in (7), resp.

• MLS : The CG method proposed by [12].

• MLS-DL : The CG method proposed by [15].

• NLS : Algorithm 1 proposed by [16].

• TTRMIL : The three-term CG method proposed by [23].

• NTPA : New three-term Perry Algorithm proposed by [24].

The codes of all the algorithms (methods) investigated in this study were written in MATLAB, and run on
a PC (CPU 2.5 GHZ, RAM 3.8 GB) with Linux operating system. The test problems were taken from the
CUTEst library [20]. The dimension of the problems ranges from 50 to 10,000. Table 1 shows names of those
problems and their dimensions. In all the algorithms, we used the strong Wolfe line search conditions and
computed the initial guess of the step length by scheme proposed in [21]. In all algorithms, we have used
the following values for the parameters:

ε = 10−6, δ = 0.01, σ = 0.1,

α0,0 = 1, αk,0 = αk−1
1T

k−1dk−1

1T
k dk

.
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Table 1 The test problems and their dimensions.

No Name Dim No Name Dim No Name Dim
1 ARGLINA 200 2 ARGLINA 100 3 BDEXP 1000
4 BDEXP 5000 5 BIGSB1 100 6 BIGSB1 1000
7 COSINE 100 8 COSINE 1000 9 CURLY10 10000
10 CURLY20 10000 11 CURLY30 10000 12 DEGTRID 110
13 DIXMAANA 3000 14 DIXMAANA 9000 15 DIXMAANB 3000
16 DIXMAANB 9000 17 DIXMAANC 3000 18 DIXMAANC 9000
19 DIXMAAND 3000 20 DIXMAAND 9000 21 DIXMAANE 3000
22 DIXMAANE 9000 23 DIXMAANF 3000 24 DIXMAANF 9000
25 DIXMAANG 3000 26 DIXMAANG 9000 27 DIXMAANH 3000
28 DIXMAANH 9000 29 DIXMAANI 3000 30 DIXMAANI 9000
31 DIXMAANJ 3000 32 DIXMAANJ 9000 33 DIXMAANK 3000
34 DIXMAANK 9000 35 DIXMAANL 1500 36 DIXMAANL 9000
37 DIXMAANM 3000 38 DIXMAANM 9000 39 DIXMAANN 3000
40 DIXMAANN 9000 41 DIXMAANO 3000 42 DIXMAANO 9000
43 DIXMAANP 3000 44 DIXMAANP 9000 45 DQDRTIC 1000
46 DQDRTIC 5000 47 DQRTIC 1000 48 DQRTIC 5000
49 DIXON3DQ 100 50 DIXON3DQ 1000 51 DECONVU 61
52 EG2 1000 53 FLETCBV 1000 54 FLETCHCR 100
55 FLETCHCR 100 56 FMINSRF2 5625 57 FMINSRF2 10000
58 FMINSURF 5625 59 FMINSURF 10000 60 LIARWHD 5000
61 LIARWHD 10000 62 LMINSURF 5625 63 LMINSURF 10000
64 MANCINO 50 65 MANCINO 100 66 MOREBV 1000
67 MOREBV 5000 68 MSQRTALS 529 69 MSQRTALS 1024
70 MSQRTBLS 529 71 MSQRTBLS 1024 72 NLMSURF 5625
73 NLMSURF 10000 74 NONDIA 1000 75 NONDIA 5000
76 NONDQUAR 500 77 NONDQUAR 1000 78 NONSCOMP 5000
79 POWELLSG 5000 80 POWELLSG 10000 81 SPARSQUR 5000
82 SPARSQUR 10000 83 SPMSRTLS 1000 84 SPMSRTLS 4999
85 TOINTGSS 5000 86 TOINTGSS 10000 87 TRIDIA 5000
88 TRIDIA 10000 89 WOOD 4000 90 WOOD 10000

Moreover, the algorithms were stopped when the number of iteration exceeded 10000 or ∥1k∥∞ ≤ ε.
We adopted the performance profile of Dolan and Moré [17] (in lo12 scale) to compare numerical results
of the reported algorithms. The performance comparison of the above-mentioned methods has been
conducted. Figs. 1-4, illustrate the performance comparison of TMLS-DL, MLS, MLS-DL and HZ+ in terms
of number of iterations ni, number of function evaluations n f , number of gradient evaluations n1, and CPU
time t in second, respectively. Figs. 5-8, do the same for three-term methods NLS, TTRMIL, NTPA, and
TMLS-DL. In Tables 2-3, we present the percentage of the test problems that are solved by each algorithm
with the lowest value of ni, n f , n1 and t. The Tables 2-3 and Figs. 1-8 support the conclusion that the method
TMLS-DL performs better than the other considered methods, with respect to the number of iterations, the
number of function evaluations, and the number of gradient evaluations.

6. Conclusions

In this paper, we presented a new three-term CG method derived through combining the CG method of
Cheng et al [15] and the idea of the modified FR method [22]. As a remarkable feature, the search directions
of the proposed method satisfy the sufficient descent condition, independently of line searches. Under
the strong Wolfe line search with σ ∈]0, 1[, theoretical results show that the new method inherits global
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Table 2 Percentage of the test problems that each method solves
with the lowest value of ni, n f , n1 and t

HZ + (%) MLS(%) MLS −DL(%) TMLS −DL(%)
ni 21 27 29 69
n f 24 18 18 72
n1 26 17 18 72
t 14 20 18 44

Table 3 Percentage of the test problems that each method solves
with the lowest value of ni, n f , n1 and t

NLS(%) TTRMIL(%) NTPA(%) TMLS −DL(%)
ni 38 23 9 70
n f 36 22 8 70
n1 38 20 8 70
t 20 10 6 60

convergence property. Moreover, when the objective function is uniformly convex, we established the
r-linear convergence rate of our proposed method. Numerical comparisons on the test problems from the
CUTEst library have been reported which indicate the efficiency and robustness of our proposed method
in practice. As a future work, it would be interesting to improve our proposed method for nonsmooth
unconstrained problems.

Figure 1: Performance profile of methods in terms of number of iterations.
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Figure 2: Performance profile of methods in terms of number of function evaluations.

Figure 3: Performance profile of methods in terms of number of gradient evaluations.
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Figure 4: Performance profile of methods in terms of CPU time.

Figure 5: Performance profile of methods in terms of number of iterations.
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Figure 6: Performance profile of methods in terms of number of function evaluations.

Figure 7: Performance profile of methods in terms of number of gradient evaluations.
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Figure 8: Performance profile of methods in terms of CPU time.
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[17] E.D. Dolan, J.J. Moré, Benchmarking optimization software with performance profiles. Math. Progr. 91 (2) (2002), 201–213.
[18] N. Andrei, Numerical comparison of conjugate gradient algorithms for unconstrained optimization. Stud. Inform. Control. 16

(2007), 333-352.
[19] Y.H. Dai, L.Z. Liao, New conjugacy conditions and related nonlinear conjugate gradient methods. Appl. Math. Optim. 43 (2001),

87-101.
[20] N.I.M. Gould, D. Orban, ph. Toint, CUTEst : a constrained and unconstrained testing environment with safe threads for

mathematical optimization. Comput. Optim. Appl. 60 (3) (2015), 545-557.
[21] G. Zoutendijk, Nonlinear programming, computational methods, in: Integer and nonlinear programming, J. Abadie (ed.),

North-Holland, Amsterdam, 1970, pp. 37–86.



M. Lotfi, S. M Hosseini / Filomat 38:12 (2024), 4101–4115 4115

[22] Y. Narushima, H. Yabe, J.A. Ford, A three-term conjugate gradient method with sufficient descent property for unconstrained
optimization, SIAM J. Optim. 21 (2011), 212- 230 .

[23] J.K. Liu, Y.M. Feng, L.M. Zou, Some three-term conjugate gradient methods with the inexact line search condition. Calcolo 55
(2018), 1-16.

[24] S. Yao, L. Ning, An adaptive three-term conjugate gradient method based on self-scaling memoryless BFGS matrix. J. Comput.
Appl. Math. 332 (2018), 72-85.

[25] Y. Zheng, B. Zheng, Two New Dai-Liao-Type Conjugate Gradient Methods for Un- constrained Optimization Problems, J. Optim.
Theory Appl. (2017) DOI:10.1007/s10957- 017-1140-1.


