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Abstract. Many researchers have developed interests in finding new choices for the Hager-Zhang nonneg-
ative parameter and developed schemes that generate descent search directions. In this paper, a conjugate
gradient (CG) method with the projection technique of Solodov and Svaiter [Kluwer Academic Publishers,
(1998), pp. 355-369] to solve constrained monotone nonlinear equations is presented. The proposed method
is based on presenting a new value of the Hager-Zhang parameter θ. This is achieved by combining the
CG method with the Newton method approach. Moreover, the Jacobian matrix is approximated via ac-
celeration parameter to solve large-scale problems. Under some mild conditions, the proposed method is
proven to be globally convergent, and numerical experiments conducted show the efficacy of the proposed
method. In addition, the proposed method is successfully applied to handle the ℓ1−norm regularization
problem in image recovery, which exhibits a better result than the existing method in the literature.

1. Introduction

Many researchers in the fields of sciences, engineering, and other relevant areas try to achieve results
with models in the form of the system of nonlinear equations

F(x) = 0, x ∈ Φ, (1)

where F : Rn
→ Rn is nonlinear map. In addition, the feasible set Φ ⊂ Rn is nonempty, closed and convex.

Throughout this paper, the space Rn denote the n−dimensional real space equipped with the Euclidean
norm ∥ · ∥, Fk = F(xk).

Furthermore, the problem of nonlinear equations (1) is analogous to the following problem of uncon-
strained optimization

min f (x), x ∈ Rn, (2)

2020 Mathematics Subject Classification. Primary 65K05; Secondary 90C30, 90C53
Keywords. Hager-Zhang parameters, CG method, Global Convergence, Image Restoration
Received: 04 July 2021; Revised: 06 March 2022; Accepted: 12 February 2024
Communicated by Predrag Stanimirović
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f : Rn
→ R is assumed to be twice continuously differentiable [7]. If a point x∗ ∈ Rn is the local minimizer of

the unconstrained optimization problem in (2) then problem in (1) holds, and it is the first order necessary
condition for the global optimization problem in (2) with function F as its gradient [38].

Definition 1.1. Let x, y ∈ Rn, a mapping F : Rn
→ Rn is said to be monotone if

⟨F(x) − F(y), x − y⟩ ≥ 0. (3)

Problem (1) is called monotone system of nonlinear equations if F satisfies (3).
The monotone mappings, which form a class of nonlinear equations were initially researched by Zaran-

tonello [42], Minty [45], and Kačurovskii [46], in Hilbert spaces. The studies of such mappings are prac-
tically applied in many scientific fields, like in the system of economic equilibrium [49], and chemical
equilibrium [50]. It also has practical application in ℓ1−norm regularization problem in signal and image
recovery [10, 51]. Some iterative approaches for solving these problems include derivative-free methods
[25–27, 41, 52, 54], double step length methods [8, 34, 44, 53], double direction methods [35, 55], Newton
methods and their improved version, i.e., the quasi-Newton methods [7, 43, 47, 48]. Typically, iterative
procedure of the methods mentioned above are established by

xk+1 = xk + αkdk, k = 0, 1, . . . , (4)

where xk+1 is the current iterate, xk is the previous iterate, αk > 0 is a step length that can be computed using
any suitable line search, and the search directions dk can be computed as

dk = −Fk + Rk. (5)

It is easy to observe that if Rk = 0, then (5) reduces to the steepest descent direction. However, the Newton
direction can be obtained if Rk = (I − (F′k)−1)Fk, where I is an identity matrix and F′k is the Jacobian matrix.
Consequently, we can find the quasi-Newton directions whenever Rk = (I−B−1

k )Fk, where Bk is n× n matrix
that approximates the Jacobian matrix. Furthermore, Bk needs to satisfy the secant equation

Bksk−1 = yk−1, (6)

where, yk−1 = Fk − Fk−1 and sk−1 = xk − xk−1.
Despite the attractive characteristics of the Newton and quasi-Newton’s methods, the derivative F′ or

its approximation is computed at each iteration. This renders the schemes not ideal for solving large-
scale problems because huge matrix storage is required at each iteration, which is costly in numerical
experiments. Matrix-free methods are proposed to overcome these shortfalls. Barzilai and Borwein [6]
proposed one of the successful matrix-free methods that generates a sequence of iterates as xk+1 = xk − τkFk
and τk is the step length, which can be written as xk+1 = xk − DkFk, where Dk = τkI which is supposed to
satisfy the secant equation (6). The step length τk can be obtained by minimizing the least square problems
min
τ
∥τsk−1 − yk−1∥

2 and min
τ
∥sk−1 − τyk−1∥

2. These yield

τBB1
k =

∥sk−1∥
2

yT
k−1sk−1

and τBB2
k =

sT
k−1yk−1

∥yk−1∥
2 , (7)

respectively. Consequently, the author in [36] used Barzilai-Borwein (BB) like method that generates the
search direction with diagonal matrix via (5) as

dk = −τ
BB1
k Fk,

with Rk = (I − τkI)Fk, where B−1
k ≈ τkI. This has given the method the advantage of solving large-scale

problems.
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Another variant of matrix-free approaches is the conjugate gradient (CG) method. One can easily
observe that if d0 = −F0, and Rk = βkdk−1, then (5) reduces to classical conjugate gradient direction given by

dk =

−Fk, if k = 0,
−Fk + βkdk−1, if k ≥ 1,

(8)

where Fk = ▽ f (xk) and βk is a scalar describing the characteristics of the CG methods. However, presenting
an efficient conjugate gradient parameter βk is the rationale behind any CG technique. That is why each
CG algorithm corresponds to the CG parameter choice. In CG methods, the search direction dk is needed
to satisfy the conjugacy condition given as

dT
k yk−1 = 0. (9)

Based on this requirement, by exploiting the quasi-Newton search direction and secant equations, Perry in
[30] extended condition in (9) as

dT
k yk−1 = −FT

k sk−1. (10)

In order to improve (10), Dai and Liao [24] proposed its variant with nonnegative parameter t given as

dT
k yk−1 = −tFT

k sk−1. (11)

By substituting (11) into (8), the Dai and Liao CG parameter is proposed as

βDL
k =

(yk−1 − tsk−1)TFk

dT
k−1yk−1

, t ≥ 0. (12)

Numerical results have shown that the DL method is efficient; however, it depends significantly on the
parameter t ≥ 0, which its optimal value has yet to be achieved [5]. Furthermore, despite the numerical
efficiency of the DL method, its search direction does not satisfy the sufficient descent condition

FT
k dk ≤ −c∥Fk∥

2, c > 0. (13)

Interestingly, the CG parameter in (12) reduces to some essential CG methods for specific values of the
parameter t. For example, for t = 0, (12) reduces to the method by Hestenes and Stiefiel [56], i.e,

βHS
k =

FT
k yk−1

dT
k−1yk−1

.

Also, the method designed by Hager and Zhang [32], which is defined as

βHZ
k =

FT
k yk−1

dT
k−1yk−1

− 2
∥yk−1∥

2FT
k dk−1

(dT
k−1yk−1)2

, (14)

represents a special case of βDL
k with the parameter t = 2 ∥yk−1∥

2

dT
k−1 yk−1

. It has been shown that the search direction

developed with (14) satisfies the sufficient descent condition with c = 7
8 . By exploiting Perry’s approach

[30], Liu and Shang [11] developed a CG method with descent search directions that yields prototypes for
which other versions of the Perry scheme such as Hestenes-Stiefel [56] method and Dai and Liao method
[24] have been developed. A new Perry CG method that generates descent search directions irrespective
of the line search has been developed by Liu, and Xu [12]. Andrei [20] proposed an adaptive class of
Perry-type CG algorithms by considering the self-scaling memoryless BFGS update with descent search
directions that have been obtained as a result of symmetrization of the CG direction in [30]. For further
research and study on other approximations of the DL parameter, the reader may refer to [15–19, 21–23].
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Inspired by the friendly properties of CG methods for unconstrained optimization problems, some
researchers incorporated the idea to solve the problem (1). Among them, Abubakar and Kumam [13]
proposed a Dai-Liao conjugate gradient method for nonlinear equations that satisfied the sufficient descent
property. However, Waziri et al. [2] incorporated the idea in [24] and presented a DL method via a modified
secant equation. The presented method converged globally using the non-monotone line search proposed
in [7]. As a result, Waziri et al. [4] enhanced the convergent property of the approach in [2], to solve
monotone nonlinear equations. The two search directions presented in [4] have been shown to be descent
using Eigenvalue analysis. Subsequently, Waziri et al. [1] proposed a family of Hager-Zhang CG methods
for monotone nonlinear equations, inspired by the unconstrained optimization problems in [33] and the
Solodov and Svaiter hyperplane technique [31]. By carrying out eigenvalue analysis, the authors showed
that the search directions generated by the schemes were indeed descent directions for a certain value of
the parameter θ. The Hager-Zhang CG parameter obtained is defined as

βHZ
k (θ) =

FT
k yk−1

sT
k−1yk−1

− θk
∥yk−1∥

2FT
k sk−1

(sT
k−1yk−1)2

, (15)

where, the Hager-Zhang nonnegative parameter θk is given as

θk = P −Q
(sT

k−1yk−1)2

∥sk−1∥
2∥yk−1∥

2 , P ≥
1
4
, Q ≤ 0.

Motivated by the projection method [31], many methods have been developed by some researchers to
solve constrained monotone nonlinear equations. For instance, Wang et al. [57] incorporated the approach
in [31] and solved the monotone nonlinear equations with convex constraint. The linear system of equations
is approximately solved after the initialization to obtain a point of trial and then used the projection method
to achieve the next iteration. The method in [57] is proven to be globally convergent with a linear rate of
convergence. Consequently, to increase the rate of convergence of the approach in [57], its modification
was developed by Wang and Wang [58] with a superlinear rate of convergence. Moreover, Abubakar
et al. [14] extended the work in [13] and solved the convex constrained monotone nonlinear equations
with application in compressing sensing. Awwal et al. [40] incorporated the idea in [30] and proposed
a Perry-type projection method that minimized ℓ1 regularized problem. Sabi’u et al. [28] improved on
the work in [1] by obtaining other choices for the Hager-Zhang parameter in [33], which are employed
to develop other versions of the scheme in [1]. Recently, Sabi’u et al. [29] extended the Hager-Zhang
scheme to solve a system of monotone nonlinear equations with convex constraint by presenting two other
choices for the Hager-Zhang parameter using singular value analysis. For further research and study on
the projection-based methods for solving monotone nonlinear equations, the interested reader may refer to
the following references [3, 36, 38–40].

Therefore, motivated by the Hager-Zhang methods in [1] and the projection technique in [31], the
purpose of this article is to develop a method with a new choice of Hager-Zhang nonnegative parameter
θk in (15) with descent direction that is globally convergent. The paper is organized as follows. In the
next section, we will present the proposed method’s algorithm. The convergence analysis of the proposed
algorithm is shown in section 3. Section 4 lists some numerical experiments and the applications of the
proposed approach to signal recovery. The article ends in section 5.

2. New choice of Hager-Zhang nonnegative parameter

Here, the projection operator is introduced to make some assumptions. Let Φ ⊆ Rn be a nonempty,
closed, and convex set. Then for any x ∈ Rn, its projection onto Φ is given by

PΦ[x] = arg min{∥x − y∥ : y ∈ Φ}. (16)

The mapping PΦ : Rn
→ Φ is known as a projection operator which has nonexpansive property namely, for

any x, y ∈ Rn it holds that

∥PΦ[x] − PΦ[y]∥ ≤ ∥x − y∥, (17)
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consequently, we have

∥PΦ[x] − y∥ ≤ ∥x − y∥, ∀y ∈ Φ. (18)

Now, consider the Hager-Zhang CG parameter defined in (15). For general function F, the CG parameter
βHZ

k (θ) at some iteration may be undefined when its denominator becomes zero. For this reason, we propose
the following modified Hager-Zhang CG parameter

βAHZP
k (θ) =

FT
k wk−1

sT
k−1ψk−1

− θk
∥wk−1∥

2FT
k sk−1

(sT
k−1ψk−1)2

. (19)

Here,

ψk−1 = wk−1 +

1 +max

0,−
sT

k−1wk−1

∥sk−1∥
2


 sk−1, wk−1 = Fk − Fk−1 + rsk−1, r > 0,

and sk−1 = zk − xk = αkdk. Our search direction is therefore defined as follows.

dk =

−Fk, if k = 0,
−ηkFk + βAHZP

k (θ)sk−1, if k ≥ 1,
(20)

where ηk is a positive parameter that can be determined in such a way that the search direction satisfies the
descent condition (13).

Remark 2.1. We give the following remark.

If max
{
0,−

sT
k−1wk−1

∥sk−1∥
2

}
, 0 in the definition of ψk−1, then

sT
k−1ψk−1 = sT

k−1

wk−1 + sk−1 −
sT

k−1wk−1

∥sk−1∥
2 sk−1


= sT

k−1wk−1 + ∥sk−1∥
2
−

sT
k−1wk−1

∥sk−1∥
2 ∥sk−1∥

2

= ∥sk−1∥
2 > 0. (21)

Otherwise,

sT
k−1ψk−1 = sT

k−1wk−1 + ∥sk−1∥
2

= sT
k−1(Fk − Fk−1 + rsk−1) + ∥sk−1∥

2

= sT
k−1(Fk − Fk−1) + r∥sk−1∥

2 + ∥sk−1∥
2

≥ (r + 1)∥sk−1∥
2 > 0. (22)

Since the function F is monotone, the last inequality follows. This shows that sT
k−1ψk−1 > 0 provided that the solution

is not reached. Therefore, βAHZP
k (θ) is well-defined.

On the other hand, if a point xk is sufficiently close to the solution say x∗, then Newton’s direction is
the one to follow. Therefore, from the CG direction in (20) and the Hager-Zhang CG parameter in (19), the
value of parameter θk can be computed as follows:

−(F′k)−1Fk = −Fk +
FT

k wk−1

sT
k−1ψk−1

sk−1 − θk
∥wk−1∥

2FT
k sk−1

(sT
k−1ψk−1)2

sk−1. (23)
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With a view to avoiding the computation of the Jacobian matrix F′k and its inverse, we are interested in
approximating the Jacobian matrix via

F′k ≈ γkI, (24)

where, γk is an acceleration parameter presented as

γk = τ
BB1
k (τBB2

k )−1 =
∥yk−1∥

2
∥sk−1∥

2

(yT
k−1sk−1)2

, (25)

where, τBB1
k and τBB2

k are in (7). However, (24) can be modified as

F′k ≈ γ̂kI, (26)

with γk in (25) modified as

γ̂k =
∥wk−1∥

2
∥sk−1∥

2

(ψT
k−1sk−1)2

. (27)

By substituting (26) and (27) in (23), and applying some algebraic calculation, the proposed value of the
parameter θk can be obtained as

θk =
FT

k sk−1 −
FT

k sk−1∥wk−1∥
2
∥sk−1∥

2

(ψT
k−1sk−1)2 +

FT
k wk−1∥wk−1∥

2
∥sk−1∥

4

(ψT
k−1sk−1)3

FT
k sk−1∥wk−1∥

4∥sk−1∥
4

(ψT
k−1sk−1)4

. (28)

To ensure that our proposed parameter θk is nonnegative, we incorporate the idea presented in [37].
Therefore the value of the proposed nonnegative parameter denoted as θ̂k can be presented as

θ̂k = max

θk, τ
∥wk−1∥

2

ψT
k−1sk−1

 . (29)

where, τ ≥ 1
4 .

Remark 2.2. Now, we give the following remark.
For k = 0, we have FT

0 d0 = −∥F0∥
2. This satisfies (13) with c = 1.

For k ≥ 0, we have

FT
k dk = FT

k

−ηkFk +
FT

k wk−1

sT
k−1ψk−1

sk−1 − θ̂k
∥wk−1∥

2FT
k sk−1

(sT
k−1ψk−1)2

sk−1


= −ηk∥Fk∥

2 +
(FT

k wk−1)(FT
k sk−1)

sT
k−1ψk−1

− θ̂k
∥wk−1∥

2(FT
k sk−1)2

(sT
k−1ψk−1)2

≤ −ηk∥Fk∥
2 +
∥Fk∥

2
∥wk−1∥∥sk−1∥

sT
k−1ψk−1

≤ −ηk∥Fk∥
2 +
∥Fk∥

2
∥wk−1∥∥sk−1∥

∥sk−1∥
2

≤ −ηk∥Fk∥
2 +
∥Fk∥

2
∥wk−1∥

∥sk−1∥

≤ −

(
ηk −

∥wk−1∥

∥sk−1∥

)
∥Fk∥

2. (30)
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For the search direction (20) to satisfy (13), we need

ηk ≥ c +
∥wk−1∥

∥sk−1∥
.

Without the loss of generality, we select

ηk = c +
∥wk−1∥

∥sk−1∥
. (31)

Algorithm 1: Accelerated Hager-Zhang projection Method(AHZP)

Input: Given x0 ∈ Φ, d0 = −F0, ρ ∈ (0, 1), σ > 0, ϵ = 10−6, 0 < ζ < 2, and ξ > 0, and set k = 0.
Step 1: Compute Fk.
Step 2: If ∥Fk∥ ≤ ϵ then stop, else go to Step 3.
Step 3: Let αk = ξρmk , with mk being the smallest nonnegative integer m such that

−F(xk + αkdk)Tdk ≥ σαk∥F(xk + αkdk)∥∥dk∥
2. (32)

Step 4: Set zk = xk + αkdk.
Step 5: If zk ∈ Φ and ∥F(zk)∥ ≤ ϵ, stop, otherwise go to Step 6.
Step 6: Compute the next iterate by

xk+1 = PΦ[xk − ζλkF(zk)], (33)

where, λk =
(xk − zk)TF(zk)
∥F(zk)∥2

.

Step 7: Compute the search direction

dk+1 = −ηk+1Fk+1 +

FT
k+1wk

sT
kψk

− θ̂k+1
∥wk∥

2FT
k+1sk

(sT
kψk)2

 sk.

where θ̂k+1 is defined in (29).
Step 8: Consider k = k + 1 and go to Step 2.

3. Convergence Analysis

In this section, the analysis of the global convergence of AHZP Algorithm is presented.

Assumption 3.1. We state the following assumption.

(A1) The mapping F is Lipschitz continuous; namely, there exists a positive constant L such that

∥F(x) − F(y)∥ ≤ L∥x − y∥, ∀x, y ∈ Rn. (34)

(A2) The mapping F is uniformly monotone, namely, there exists a positive constant c such that

(x − y)T(F(x) − F(y)) ≥ c∥x − y∥2, ∀x, y ∈ Rn. (35)

(A3) For any x ∈ Sx there exist a constant δ > 0 such that

δdist(x,Sx) ≤ ∥F(x)∥2, ∀x ∈ N(x∗,Sx), (36)

where, dist(x,Sx) denotes the distance from x to the solution set Sx,
N(x∗,Ω) := {x ∈ Rn

|∥x − x∗∥ ≤ δ}. This is the local bound condition.
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Remark 3.2. We give the following remark.
From assumption (A1) we have

∥wk−1∥ = ∥Fk − Fk−1 + rsk−1∥ ≤ ∥Fk − Fk−1∥ + r∥sk−1∥ ≤ (L + r)∥sk−1∥. (37)

Remark 3.3. To establish the global convergence property of AHZP Algorithm, the proposed θ̂k in (29) needs to be
bounded. Therefore, we set

θ̂k ← min{θ̂k,H}, (38)

where H is a suitable positive number.

Lemma 3.4. Suppose Assumptions (A1)-(A3) hold. Then there exists a step length αk satisfying (32) for all k ≥ 0.

Proof. We assume that there exists a constant k0 ≥ 0, such that given any nonnegative integer m, we have

−(F(xk0 + ξρ
mdk0 ))Tdk0 < σξρ

m
∥F(xk0 + ξρ

mdk0 )∥∥dk0∥
2. (39)

Since ρ ∈ (0, 1), by using assumption (A2), (32) and letting m→∞, we get

−F(xk0 )Tdk0 < 0. (40)

Also from (30) and (31), it follows that

−F(xk0 )Tdk0 ≥ 0, (41)

which clearly contradicts (40). Hence, the line search is well-defined.

Lemma 3.5. Suppose Assumptions (A1)-(A3) hold and let {xk} and {zk} be generated by AHZP Algorithm, then {xk}

and {zk} are bounded. In addition, we have

∥dk∥ ≤M, (42)
lim
k→∞
∥xk − zk∥ = 0, (43)

lim
k→∞
∥xk+1 − xk∥ = 0. (44)

Proof. To show the boundedness of the sequences {xk} and {zk}, let x̄ ∈ Sx be any solution of (1). Then by
monotonicity of F we can write

(xk − x̄)TF(zk) ≥ (xk − zk)TF(zk). (45)

Using the line search condition (32) and definition of zk, we have

(xk − zk)TF(zk) ≥ σα2
k∥F(zk)∥∥dk∥

2 > 0. (46)

Also, using (18) and fact that xk+1 = PΦ[xk − ζλkF(zk)], we have

∥xk+1 − x̄∥2 = ∥PΦ(xk − ζλkF(zk)) − x̄∥2

≤ ∥xk − ζλkF(zk) − x̄∥2

= ∥xk − x̄∥2 − 2ζλk(xk − x̄)TF(zk) + ζ2λ2
k∥F(zk)∥2

≤ ∥xk − x̄∥2 − 2ζλk(xk − zk)TF(zk) + ζ2λ2
k∥F(zk)∥2

= ∥xk − x̄∥2 − ζ(2 − ζ)
((xk − zk)TF(zk))2

∥F(zk)∥2
(47)

≤ ∥xk − x̄∥2 − σ̂∥xk − zk∥
4, (48)
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where σ̂ = ζ(2 − ζ)σ2 > 0.
Since 0 < ζ < 2, from (47) we obtain

∥xk+1 − x̄∥ ≤ ∥xk − x̄∥. (49)

This recursively implies that ∥xk− x̄∥ ≤ ∥x0− x̄∥, for all k. So, {∥xk− x̄∥} is clearly a decreasing sequence, which
implies that {xk} is bounded. Furthermore, utilizing assumption (A1), (A3) and (49) we have

∥F(xk)∥ = ∥F(xk) − F(x̄)∥ ≤ L∥xk − x̄∥ ≤ L∥x0 − x̄∥. (50)

Let m1 = L∥x0 − x̄∥, then we have

∥F(xk)∥ ≤ m1. (51)

From (20), (21), (30),(31), (37), and(38) we have

∥dk∥ = ∥ − ηkFk + β
AHZP
k (θ)sk−1∥

≤

∣∣∣∣∣c + ∥wk−1∥

∥sk−1∥

∣∣∣∣∣ ∥Fk∥ +

∣∣∣∣∣∣ FT
k wk−1

sT
k−1ψk−1

− θ̂k
∥wk−1∥

2FT
k sk−1

(sT
k−1ψk−1)2

∣∣∣∣∣∣ ∥sk−1∥

≤

[
c +
∥wk−1∥

∥sk−1∥

]
∥Fk∥ +

∣∣∣∣∣∣ FT
k wk−1

sT
k−1ψk−1

∣∣∣∣∣∣ ∥sk−1∥ +

∣∣∣∣∣∣θ̂k
∥wk−1∥

2FT
k sk−1

(sT
k−1ψk−1)2

∣∣∣∣∣∣ ∥sk−1∥

≤ c∥Fk∥ +
∥wk−1∥

∥sk−1∥
∥Fk∥ +

∥wk−1∥∥sk−1∥

sT
k−1ψk−1

∥Fk∥ + θ̂k
∥wk−1∥

2
∥sk−1∥

2

(sT
k−1ψk−1)2

∥Fk∥

≤ c∥Fk∥ +
(L + r)∥sk−1∥

∥sk−1∥
∥Fk∥ +

(L + r)∥sk−1∥
2

∥sk−1∥
2 ∥Fk∥ +H

(L + r)2
∥sk−1∥

4

∥sk−1∥
4 ∥Fk∥

= c∥Fk∥ + 2(L + r)∥Fk∥ +H(L + r)2
∥Fk∥

= [c + 2(L + r) +H(L + r)2]∥Fk∥

≤ [c + 2(L + r) +H(L + r)2]m1. (52)

Where Cauchy-Schwarz inequality is applied in the third inequality. The fourth inequality follow from
Remark (2.1), Remark (3.2), and Remark (3.3) respectively.
Taking M = [c + 2(L + r) +H(L + r)2]m1 we have (42).

Next, since the sequences {xk} and {dk} are bounded, then the definition zk in Step 3 of Algorithm 1, it
holds that {zk} is also bounded. Therefore, similar argument as in (50), there exists some constants, say
κ > 0, such that

∥F(zk)∥ ≤ κ. (53)

Now, from (47), we have

((xk − zk)TF(zk+1))2
≤
∥F(zk)∥2

ζ(2 − ζ)
(∥xk − x̄∥2 − ∥xk+1 − x̄∥2). (54)

From the line search (32), we have

α4
k∥dk∥

4
≤
α2

k

σ2 (F(zk)Tdk)2. (55)

Combining (47) and (55), it holds

α4
k∥dk∥

4
≤
∥F(zk)∥2

σ2ζ(2 − ζ)
(∥xk − x̄∥2 − ∥xk+1 − x̄∥2). (56)
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Since the sequence {∥xk − x̄∥} is convergent, using the fact σ > 0, 0 < ζ < 2 and {F(zk)} is bounded, taking
limit on both sides of (56) yields

lim
k→∞

α4
k∥dk∥

4
≤ 0,

and hence it holds that

lim
k→∞

αk∥dk∥ = 0. (57)

Combining (56) with the definition of zk implies (43) holds. On the other hand, from (18) and the definition
of λk we have

∥xk+1 − xk∥ = ∥PΦ(xk − ζλkF(zk)) − xk∥

≤ ∥xk − ζλkF(zk) − xk∥

= ζ∥λkF(zk)∥
≤ ζ∥xk − zk∥.

(58)

This implies (44).

Theorem 3.6. Suppose Assumption (A1)-(A3) hold and {xk} be generated by AHZP Algorithm. Then

lim inf
k→∞

∥F(xk)∥ = 0. (59)

Proof. For the sake of contradiction, suppose that (59) is not true, then there exists δ0 > 0 such that

∥F(xk)∥ ≥ δ0 holds, ∀k > 0. (60)

Suppose that the search direction ∥dk∥ , 0 unless at the solution, then there exists some constants, say δ1

∥dk∥ ≥ δ1. (61)

If αk , ξ , then by the definition of αk, ρ−1αk does not satisfies (32) i.e.,

−F(xk + ρ
−1αkdk)Tdk < σρ

−1αk∥F(zk)∥∥dk∥
2.

Now, combining with (30) and (31) gives

c∥F(xk)∥2 ≤ −F(xk)Tdk

= (F(xk + ρ
−1αkdk) − F(xk))Tdk − F(xk + ρ

−1αkdk)Tdk

≤ Lρ−1αk∥dk∥
2 + σρ−1αk∥F(zk)∥∥dk∥

2

= αk∥dk∥(L + σκ)ρ−1
∥dk∥. (62)

Therefore, from (62), we have

αk∥dk∥ >
ρ

(L + σκ)
c∥Fk∥

2

∥dk∥
≥

ρ

(L + σκ)

cδ2
0

M
. (63)

The inequality (63) contradicts (57). Therefore (59) holds. Hence, the proof is completed.

The following theorem analyze the linearly convergence rate of the AHZP method.

Theorem 3.7. Suppose Assumption (A1)-(A3) hold and {xk} be generated by AHZP Algorithm. Then the sequence
dist{xk,Sx

} is Q-linearly converges to 0.
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Proof. Let uk = arg min{∥xk − u∥|u ∈ Sx
}. This means uk is the nearest solution from xk i.e., ∥xk − uk∥ =

dist(xk,Sx). By (30), (31) and Cauchy-Schwarz inequality, we have

c∥Fk∥
2
≤ −FT

k dk ≤ ∥Fk∥∥dk∥, ∀k ∈ N. (64)

Therefore, from the inequality of (48), for uk ∈ Sx we have

dist(xk+1,Sx)2
≤ ∥xk+1 − uk∥

2

≤ dist(xk,Sx)2
− σ̂∥αkdk∥

4

≤ dist(xk,Sx)2
− σ̂α4

kc4
∥Fk∥

4

≤ dist(xk,Sx)2
− σ̂η2c4α4

kdis(xk,Sx)2

= (1 − σ̂η2c4α4
k)dis(xk,Sx)2,

(65)

where the third inequality follows from (64) and the fourth inequality follows from (36). By taking η = 1
c2
√

σ̂
,

(1 − σ̂η2c4α4
k) ∈ (0, 1) holds. This implies that the sequence {dist(xk,Sx)} Q-linearly converges to 0.

4. Numerical Experiments

This section is divided into two parts. In the first part, some numerical results are provided to show
the effectiveness of the proposed method by comparing it with the following existing CG methods in the
literature.

• DLPM: Algorithm 1 proposed in [14] with

θk = p ∥yk−1∥
2

yT
k−1sk−1

− q
yT

k−1sk−1

∥sk−1∥
2 , p ≥ 1

4 , q ≤ 0.

• MHZ2: Algorithm 2 proposed in [29] with

θk =
∥sk−1∥

2
∥ŷk−1∥

2

(sT
k−1 ŷk−1)2

+

√
(sT

k−1 ŷk−1)2

∥sk−1∥
2∥ŷk−1∥

2 +
∥sk−1∥

4∥ŷk−1∥
4

(sT
k−1 ŷk−1)4

,

ŷk−1 = yk−1 + ρ
max{vk−1, 0}sk−1

∥sk−1∥
, ρ = 0.1,

vk−1 = 6(∥Fk−1∥ − ∥Fk∥) + 3(Fk−1 + Fk)Tsk−1.

4.1. Numerical Results
The codes used are written in Matlab 8.3.0 (R2014a) and run on a personal computer equipped with a

1.80 GHz CPU processor and 8 GB RAM. When implementing our algorithm (AHZP) in this experiments,
the following parameters are set; ξ = 1, σ = 10−4, ρ = 0.9, τ = 0.4, and ζ = 1.3. However, the parameters of
DLPM and MHZ2 algorithms, are taken as in [14] and [29] respectively. The iteration is set to stop for all
the three methods if the following conditions occur: (i) when ∥Fk∥ ≤ 10−7, (ii) when ∥F(zk)∥ ≤ 10−7, or (iii)
when the iterations exceed 1000 but no xk satisfying the stopping criterion is obtained. We have carried out
the numerical experiments of the three methods on the previous seven test problems with different initial
points with dimensions (n values) 1000, 10,000, and 100,000. The initial points used in the experiment are

as follows: x1 = (1, 1, ..., 1)T, x2 =
(

3
5 ,

3
5 , ...,

3
5

)T
, x3 =

(
1
2 ,

1
2 , ...,

1
2

)T
, x4 =

(
2
5 ,

2
5 , ...,

2
5

)T
, x5 =

(
1

10 ,
1

10 , ...,
1

10

)T
,

x6 =
(
1, 1

2 ,
1
3 , ...,

1
n

)T
, x7 =

(
1
4 ,
−1
4 , ...,

(−1)n

4

)T
, x8 =

(
−

1
2 ,−

1
2 , ...,−

1
2

)T
, x9 =

(
1
2 ,

1
22 , ...,

1
2n

)T
, and x10 = rand(0, 1)

which is randomly selected numbers between 0 and 1.
The following test problems were used in the experiments:

Problem 1 [29]
F1(x) = ex1 − 1,
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Fi(x) = exi + xi−1 − 1, i = 2, 3, . . . ,n − 1,
where Φ = Rn

+.

Problem 2 [14]
Fi(x) = 2xi − sin |xi|, i = 1, 2, . . . ,n,
where Φ = Rn

+.

Problem 3
Fi(x) = cos(xi) + xi − 1, i = 1, 2, . . . ,n,
where Φ = Rn

+.

Problem 4 [14]
Fi(x) = exi − 1, i = 1, 2, . . . ,n,
where Φ = Rn

+.

Problem 5 [40]
i
n Fi(x) = exi − 1, i = 1, 2, . . . ,n,

where Φ = {x ∈ Rn :
n∑

i=1

xi ≤ n, xi > −1, i = 1, 2, . . . ,n}.

Problem 6 [38]
Fi(x) = 2xi − sin |xi − 1|, i = 1, 2, . . . ,n,

where Φ = {x ∈ Rn :
n∑

i=1

xi ≤ n, xi > −1, i = 1, 2, . . . ,n}.

Problem 7 [40]
Fi(x) = ex2

i + 3
2 sin(2xi) − 1 i = 1, 2, . . . ,n,

where Φ = Rn
+.
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Table 1: Numerical results of AHZP, DLPM and MHZ2 methods for problem 1
DIMENSION IP AHZP DLPM MHZ2

Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥

1000 x1 2 3 0.021529 0 18 20 0.024722 4.69E-08 38 78 0.101556 5.89E-08
x2 2 3 0.002731 0 18 20 0.01409 3.65E-08 44 90 0.111216 7.19E-08
x3 2 3 0.006608 0 18 20 0.016233 3.56E-08 7 16 0.029903 2.32E-08
x4 2 3 0.006045 0 17 19 0.011218 9.27E-08 42 86 0.102123 8.81E-08
x5 2 3 0.004337 0 16 18 0.019832 9.07E-08 13 28 0.038283 4.00E-09
x6 10 11 0.018082 9.44E-08 21 23 0.020321 5.21E-08 19 40 0.061437 6.38E-09
x7 9 10 0.017397 8.86E-09 1 2 0.002652 0 8 18 0.013331 1.30E-08
x8 9 10 0.014801 5.45E-08 1 2 0.002754 0 8 18 0.020729 5.65E-08
x9 9 10 0.011645 8.60E-08 21 22 0.018334 9.24E-08 18 38 0.068956 1.31E-08

x10 9 10 0.014222 1.61E-08 18 20 0.015947 9.03E-08 23 47 0.075136 4.71E-09
10,000 x1 2 3 0.017454 0 18 20 0.121666 4.31E-08 11 24 0.213339 4.36E-09

x2 2 3 0.018829 0 19 21 0.107768 4.01E-08 9 20 0.159113 2.02E-09
x3 2 3 0.019676 0 19 21 0.104575 3.94E-08 9 20 0.187519 1.31E-09
x4 2 3 0.026379 0 19 21 0.100954 3.61E-08 11 24 0.191643 1.16E-08
x5 2 3 0.019183 0 18 20 0.095392 3.53E-08 28 58 0.641475 9.68E-08
x6 10 11 0.086672 5.17E-08 23 25 0.129757 3.98E-08 21 44 0.526154 5.21E-08
x7 2 3 0.016616 0 1 2 0.007503 0 6 14 0.053974 6.88E-08
x8 2 3 0.026333 0 1 2 0.014482 0 8 18 0.087394 8.85E-08
x9 9 10 0.064302 8.60E-08 21 22 0.110167 9.24E-08 18 38 0.401052 1.31E-08

x10 9 10 0.083431 4.92E-08 20 21 0.110579 9.63E-08 25 52 0.593106 6.38E-08
100,000 x1 2 3 0.195079 0 23 25 0.898602 4.57E-08 56 114 6.564013 9.81E-08

x2 2 3 0.488524 0 21 23 0.838763 4.44E-08 31 64 4.241261 9.05E-09
x3 2 3 0.159751 0 21 23 0.795528 3.95E-08 59 120 9.130102 8.01E-08
x4 2 3 0.194665 0 20 22 0.764689 9.58E-08 14 30 2.122003 1.37E-08
x5 2 3 0.153238 0 19 21 0.733677 3.93E-08 16 34 3.601104 2.13E-09
x6 10 11 0.956477 4.73E-08 24 26 1.004896 6.23E-08 12 26 1.890105 4.72E-08
x7 2 3 0.157743 0 1 2 0.050328 0 6 14 0.421217 2.55E-08
x8 2 3 0.114538 0 1 2 0.059275 0 7 16 0.485018 4.16E-08
x9 9 10 0.492416 8.60E-08 21 22 0.780008 9.24E-08 18 38 3.253116 1.31E-08

x10 10 11 0.618087 1.48E-08 21 23 0.815919 3.69E-08 31 63 5.474016 7.47E-09
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Table 2: Numerical results of AHZP, DLPM and MHZ2 methods for problem 2
DIMENSION IP AHZP DLPM MHZ2

Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥

1000 x1 2 3 0.003886 0 8 10 0.006623 8.29E-08 7 16 0.012408 3.38E-08
x2 2 3 0.003534 0 8 10 0.005375 6.42E-08 7 16 0.008799 1.56E-08
x3 2 3 0.005533 0 8 10 0.008875 5.62E-08 7 16 0.008466 1.74E-08
x4 2 3 0.004285 0 8 10 0.005965 4.69E-08 7 16 0.012986 1.68E-08
x5 2 3 0.006192 0 8 10 0.008789 1.26E-08 6 14 0.009646 8.43E-08
x6 17 19 0.021996 3.43E-08 13 14 0.010878 5.98E-08 8 18 0.012509 3.03E-08
x7 1 2 0.003083 0 1 2 0.004217 0 1 3 0.003718 0
x8 1 2 0.004019 0 1 2 0.004046 0 1 3 0.003747 0
x9 2 3 0.004093 0 9 11 0.008247 9.77E-08 7 16 0.009015 4.24E-08

x10 15 17 0.016228 4.32E-08 15 17 0.023813 4.84E-08 11 24 0.014605 2.12E-08
10,000 x1 2 3 0.016626 0 9 11 0.036462 2.62E-08 8 18 0.067841 0

x2 2 3 0.014115 0 9 11 0.03275 2.03E-08 7 16 0.064425 4.92E-08
x3 2 3 0.015007 0 9 11 0.047928 1.78E-08 7 16 0.058328 5.50E-08
x4 2 3 0.01523 0 9 11 0.036385 1.48E-08 7 16 0.058226 5.32E-08
x5 2 3 0.014412 0 8 10 0.034329 3.98E-08 7 16 0.057968 1.72E-08
x6 17 19 0.119694 3.42E-08 15 17 0.072436 3.56E-08 8 18 0.065255 2.95E-08
x7 1 2 0.009407 0 1 2 0.011902 0 1 3 0.016767 0
x8 1 2 0.007121 0 1 2 0.009699 0 1 3 0.016486 0
x9 2 3 0.015029 0 9 11 0.034332 9.77E-08 7 16 0.068562 4.24E-08

x10 17 19 0.112661 7.01E-08 16 17 0.072877 3.23E-08 11 24 0.106304 6.47E-08
100,000 x1 2 3 0.097043 0 11 13 0.356388 6.27E-08 8 18 0.459701 0

x2 2 3 0.103969 0 10 12 0.270832 5.04E-08 8 18 0.458115 0
x3 2 3 0.094429 0 9 11 0.252986 5.62E-08 8 18 0.455731 0
x4 2 3 0.102661 0 9 11 0.236187 4.69E-08 8 18 0.460901 0
x5 2 3 0.102626 0 9 11 0.241462 1.26E-08 7 16 0.447212 5.45E-08
x6 17 19 0.901923 3.42E-08 13 15 0.434628 8.61E-08 8 18 0.489511 2.95E-08
x7 1 2 0.060183 0 1 2 0.057159 0 1 3 0.122991 0
x8 1 2 0.056239 0 1 2 0.069409 0 1 3 0.126692 0
x9 2 3 0.094707 0 9 11 0.270585 9.77E-08 7 16 0.450833 4.24E-08

x10 19 21 0.975142 4.74E-08 16 17 0.446619 7.62E-08 12 26 0.694912 0
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Table 3: Numerical results of AHZP, DLPM and MHZ2 methods for problem 3
DIMENSION IP AHZP DLPM MHZ2

Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥

1000 x1 3 4 0.006845 0 7 9 0.010683 4.21E-08 4 10 0.007088 1.52E-12
x2 2 3 0.003896 0 6 8 0.010063 4.6E-08 4 10 0.008786 1.07E-10
x3 2 3 0.003372 0 1 2 0.004354 0 4 10 0.007072 1.29E-12
x4 1 2 0.002406 0 6 8 0.014063 4.88E-08 3 8 0.007188 1.97E-08
x5 1 2 0.002909 0 5 7 0.011653 4.86E-08 4 10 0.007445 0
x6 17 18 0.022451 6.73E-08 15 17 0.025455 8.31E-08 12 26 0.014566 6.29E-08
x7 1 2 0.004844 0 1 2 0.003449 0 1 3 0.003646 0
x8 1 2 0.002882 0 1 2 0.005137 0 1 3 0.004788 0
x9 15 16 0.020974 9.74E-08 34 35 0.057051 7.09E-08 21 43 0.020695 6.80E-08

x10 19 20 0.021913 7.22E-08 16 17 0.021173 7.41E-09 14 30 0.022804 7.29E-09
10,000 x1 3 4 0.025311 0 8 10 0.068817 3.73E-09 4 10 0.038389 4.80E-12

x2 2 3 0.014411 0 7 9 0.058538 4.07E-09 4 10 0.035195 3.37E-10
x3 2 3 0.016878 0 7 9 0.05786 4.16E-09 4 10 0.032745 4.09E-12
x4 1 2 0.005907 0 7 9 0.060805 4.32E-09 3 8 0.040586 6.22E-08
x5 1 2 0.007844 0 6 8 0.048647 4.31E-09 4 10 0.037576 0
x6 17 18 0.115479 6.73E-08 12 14 0.100358 3.71E-08 14 30 0.119411 7.57E-09
x7 1 2 0.006684 0 1 2 0.011162 0 1 3 0.008491 0
x8 1 2 0.006599 0 1 2 0.010896 0 1 3 0.008491 0
x9 15 16 0.100351 9.74E-08 35 36 0.315166 9.31E-09 21 43 0.008115 6.63E-08

x10 20 21 0.153714 8.26E-08 18 20 0.147069 5.32E-08 14 30 0.008149 2.07E-08
100,000 x1 3 4 0.156368 0 10 12 0.647913 1.33E-08 4 10 0.008491 1.52E-11

x2 2 3 0.098148 0 8 10 0.487149 1.34E-08 4 10 0.008491 1.07E-09
x3 2 3 0.090468 0 8 10 0.476052 1.38E-08 4 10 0.008499 1.29E-11
x4 1 2 0.038694 0 7 9 0.434821 1.37E-08 4 10 0.008492 0
x5 1 2 0.036204 0 6 8 0.361978 1.36E-08 – – – –
x6 17 18 0.896099 6.73E-08 12 14 0.715902 2.86E-08 14 30 0.008493 2.76E-08
x7 1 2 0.045366 0 1 2 0.067343 0 1 3 0.008491 0
x8 1 2 0.053842 0 1 2 0.081775 0 1 3 0.008439 0
x9 15 16 0.706414 9.74E-08 35 36 2.415865 9.31E-09 21 43 0.008449 6.63E-08

x10 21 22 1.113584 9.08E-08 17 18 0.888265 5.74E-09 14 30 0.008492 7.04E-08
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Table 4: Numerical results of AHZP, DLPM and MHZ2 methods for problem 4
DIMENSION IP AHZP DLPM MHZ2

Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥

1000 x1 1 2 0.002586 0 9 11 0.008055 1.55E-08 7 16 0.009909 1.68E-08
x2 2 3 0.003794 0 8 10 0.010698 1.65E-08 5 12 0.008569 5.75E-08
x3 2 3 0.004594 0 8 10 0.007551 1.65E-08 7 16 0.010662 1.19E-08
x4 2 3 0.005619 0 8 10 0.009486 1.65E-08 6 14 0.011261 1.37E-08
x5 2 3 0.003633 0 7 9 0.004957 9.56E-08 – – – –
x6 3 4 0.005493 0 13 15 0.012161 6.18E-08 13 28 0.019133 1.01E-08
x7 2 3 0.007998 0 1 2 0.004058 0 1 3 0.002263 0
x8 2 3 0.006265 0 1 2 0.003805 0 1 3 0.002271 0
x9 14 15 0.013931 4.25E-08 11 12 0.011529 4.69E-08 11 23 0.015554 1.32E-08

x10 19 20 0.019262 5.60E-08 14 16 0.012076 1.47E-08 22 46 0.059155 8.57E-08
10,000 x1 1 2 0.009678 0 9 11 0.049923 4.91E-08 7 16 0.062623 5.32E-08

x2 2 3 0.016263 0 8 10 0.029134 5.22E-08 6 14 0.042619 0
x3 2 3 0.012927 0 8 10 0.030904 5.2E-08 7 16 0.057385 3.78E-08
x4 2 3 0.011865 0 8 10 0.027744 5.22E-08 6 14 0.041896 0
x5 2 3 0.013777 0 8 10 0.027979 3.02E-08 7 16 0.053392 8.98E-09
x6 3 4 0.018759 0 14 16 0.059262 2.11E-08 15 32 0.136765 2.71E-08
x7 2 3 0.01321 0 1 2 0.005562 0 1 3 0.006551 0
x8 2 3 0.016312 0 1 2 0.006919 0 1 3 0.007165 0
x9 14 15 0.078734 4.25E-08 11 12 0.035089 4.69E-08 11 23 0.081224 1.32E-08

x10 20 21 0.111599 6.68E-08 16 17 0.063001 9.6E-08 36 73 0.454409 4.16E-08
100,000 x1 1 2 0.043127 0 12 14 0.310319 1.64E-08 8 18 0.413459 0

x2 2 3 0.081193 0 10 12 0.239006 1.64E-08 6 14 0.311962 0
x3 2 3 0.107093 0 10 12 0.228038 1.65E-08 8 18 0.387133 0
x4 2 3 0.087478 0 9 11 0.200339 1.65E-08 7 16 0.363858 8.87E-09
x5 2 3 0.082591 0 8 10 0.180292 9.56E-08 – – – –
x6 3 4 0.122075 0 13 15 0.375222 1.62E-08 15 32 0.913306 1.07E-08
x7 2 3 0.094085 0 1 2 0.027312 0 1 3 0.026445 0
x8 2 3 0.074505 0 1 2 0.036711 0 1 3 0.023519 0
x9 14 15 0.502872 4.25E-08 11 12 0.346618 4.69E-08 11 23 0.458557 1.32E-08

x10 21 22 0.834635 6.60E-08 21 22 0.539635 2.86E-08 34 69 4.317829 7.32E-09
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Table 5: Numerical results of AHZP, DLPM and MHZ2 methods for problem 5
DIMENSION IP AHZP DLPM MHZ2

Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥

1000 x1 21 23 0.027733 7.36E-08 20 22 0.018046 1.9E-08 72 146 0.287652 3.76E-08
x2 21 23 0.029225 8.73E-08 19 21 0.014911 6.5E-08 66 134 0.232369 1.33E-08
x3 20 22 0.030005 3.64E-08 22 24 0.025712 5.2E-08 58 118 0.238636 1.19E-08
x4 20 22 0.028747 6.40E-08 17 19 0.013772 2.86E-08 26 54 0.083404 5.38E-08
x5 19 21 0.029924 8.40E-08 19 21 0.018033 7.86E-08 22 46 0.033511 3.43E-11
x6 19 21 0.027277 6.23E-08 20 22 0.022314 5.24E-08 23 48 0.063364 6.77E-10
x7 20 22 0.025127 4.11E-08 21 23 0.018427 1.33E-08 23 48 0.029344 1.12E-08
x8 20 22 0.030343 3.51E-08 18 20 0.013309 7E-08 24 50 0.041549 1.54E-12
x9 19 21 0.024382 8.14E-08 23 25 0.02337 3.55E-08 24 50 0.032437 2.76E-08

x10 22 24 0.033354 9.37E-08 26 28 0.023005 5.67E-08 97 196 0.36152 7.74E-08
10,000 x1 23 25 0.170924 7.05E-08 19 21 0.117426 6.55E-08 116 234 4.616119 3.02E-14

x2 23 25 0.205809 6.66E-08 21 23 0.129085 9.13E-09 101 204 3.876723 2.81E-08
x3 23 25 0.176271 6.75E-08 23 25 0.113115 1.16E-08 77 156 2.932597 2.24E-08
x4 21 23 0.016398 9.88E-08 21 23 0.123108 8.05E-08 31 64 0.507235 2.16E-08
x5 20 22 0.159046 9.10E-08 18 20 0.100911 2.34E-08 34 70 0.584631 1.79E-08
x6 20 22 0.150213 9.97E-08 21 23 0.132707 9.05E-08 34 70 0.739965 2.47E-08
x7 21 23 0.156448 3.72E-08 21 23 0.119906 2.46E-08 37 76 0.760182 4.08E-08
x8 21 23 0.179718 7.22E-08 19 21 0.103678 3.3E-08 44 90 1.113109 6.57E-08
x9 20 22 0.156408 9.54E-08 23 25 0.124324 7.27E-08 42 86 1.006519 9.35E-08

x10 33 35 0.300055 3.98E-08 25 27 0.168255 6.9E-08 103 208 3.985787 4.52E-11
100,000 x1 29 31 1.871459 8.12E-08 30 32 1.322559 9.57E-09 136 274 44.98661 1.98E-11

x2 33 35 2.222619 8.99E-08 24 26 0.966724 4.65E-08 90 182 24.87766 1.04E-13
x3 22 24 1.259493 8.90E-08 27 29 1.290821 2.81E-09 156 314 49.74681 5.94E-11
x4 27 29 1.757906 5.22E-08 23 25 0.853701 3.56E-09 43 88 6.515603 8.74E-08
x5 21 23 1.529182 8.68E-08 24 26 0.878537 1.41E-08 141 284 43.60521 1.23E-12
x6 22 24 1.282186 3.67E-08 25 27 0.979922 8.2E-08 98 198 24.36554 8.36E-08
x7 23 25 1.533765 7.42E-08 22 24 0.874073 9.47E-08 110 222 30.01365 6.84E-08
x8 27 29 1.618124 5.25E-08 24 26 0.899008 6.51E-08 66 134 16.01713 5.67E-08
x9 22 24 1.599614 3.81E-08 21 23 0.766356 6.1E-08 108 218 31.08076 4.57E-08

x10 48 50 3.614278 4.80E-08 26 28 1.173124 4.63E-08 149 300 49.26632 8.94E-09
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Table 6: Numerical results of AHZP, DLPM and MHZ2 methods for problem 6
DIMENSION IP AHZP DLPM MHZ2

Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥

1000 x1 5 6 0.008197 1.99E-08 20 22 0.020082 6.72E-08 5 12 0.015091 1.44E-08
x2 4 6 0.009882 3.38E-08 19 21 0.016673 4.12E-08 4 10 0.012829 7.04E-08
x3 4 5 0.009503 2.85E-08 16 18 0.014398 6.94E-08 3 8 0.012309 5.60E-08
x4 4 6 0.010028 6.94E-08 18 20 0.017263 9.06E-08 4 10 0.011619 1.09E-08
x5 5 6 0.011102 8.70E-09 16 18 0.019424 6.68E-08 5 12 0.013669 1.40E-08
x6 9 11 0.018667 2.66E-08 24 26 0.021211 4.88E-08 14 30 0.037924 1.62E-08
x7 5 6 0.008951 6.53E-09 18 20 0.028041 5.96E-08 5 12 0.011778 1.71E-08
x8 4 6 0.010416 8.38E-08 14 16 0.014701 4.53E-08 4 10 0.018409 4.75E-08
x9 9 11 0.014754 3.89E-08 18 20 0.016558 4.08E-08 10 22 0.020116 8.53E-08

x10 10 12 0.016587 8.20E-08 20 22 0.016348 4.37E-08 13 28 0.038621 1.14E-08
10,000 x1 5 6 0.050829 6.29E-08 21 23 0.132844 8.36E-08 5 12 0.075892 4.55E-08

x2 5 6 0.054451 2.81E-09 20 22 0.101194 5.13E-08 5 12 0.075933 1.54E-08
x3 4 5 0.037826 9.01E-08 17 19 0.084469 8.63E-08 4 10 0.061303 8.85E-10
x4 5 6 0.049487 5.77E-09 20 22 0.101155 4.43E-08 4 10 0.057372 3.46E-08
x5 5 6 0.049131 2.75E-08 17 19 0.088458 8.31E-08 5 12 0.076715 4.43E-08
x6 10 11 0.084716 6.96E-08 20 22 0.101944 6.42E-08 16 34 0.215221 3.14E-08
x7 5 6 0.050138 2.06E-08 19 21 0.094151 7.41E-08 5 12 0.074563 5.42E-08
x8 5 6 0.046593 6.97E-09 15 17 0.078243 5.63E-08 5 12 0.072422 1.04E-08
x9 9 11 0.088093 6.40E-08 18 20 0.090554 7.96E-08 13 28 0.170664 3.47E-08

x10 11 13 0.115064 4.25E-08 21 23 0.107088 5.45E-08 13 28 0.207531 5.05E-08
100,000 x1 5 7 0.368131 4.50E-08 23 25 0.832082 7.69E-08 6 14 0.629553 7.19E-10

x2 5 6 0.306706 8.89E-09 21 23 0.762478 6.38E-08 5 12 0.577905 4.88E-08
x3 4 6 0.305309 6.44E-08 19 21 0.708245 4.22E-08 4 10 0.449126 2.80E-09
x4 5 6 0.321479 1.83E-08 21 23 0.771601 5.51E-08 5 12 0.561066 7.59E-09
x5 5 6 0.342185 8.70E-08 19 21 0.708118 4.07E-08 6 14 0.633854 7.01E-10
x6 10 12 0.772599 4.73E-08 21 23 0.774138 4.62E-08 25 52 2.971307 2.27E-08
x7 5 6 0.329965 6.53E-08 21 23 1.088519 5.12E-08 6 14 0.600771 8.57E-10
x8 5 6 0.315683 2.20E-08 21 23 0.953348 5.42E-08 5 12 0.538802 3.30E-08
x9 8 9 0.668158 4.41E-08 19 21 0.828752 9.17E-08 13 28 1.278113 1.96E-08

x10 12 13 0.941143 7.22E-08 22 24 0.935143 6.81E-08 14 30 1.602602 3.05E-08
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Table 7: Numerical results of AHZP, DLPM and MHZ2 methods for problem 7
DIMENSION IP AHZP DLPM MHZ2

Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥ Iter Funeval Time (s) ∥Fk∥

1000 x1 1 2 0.005026 0 9 11 0.007589 8E-08 1 3 0.003413 0
x2 1 2 0.006373 0 9 11 0.007307 1.14E-08 1 3 0.004025 0
x3 1 2 0.003898 0 8 10 0.009289 6.58E-08 1 3 0.004507 0
x4 2 3 0.001587 0 8 10 0.005504 3.57E-08 6 14 0.034503 4.32E-08
x5 12 14 0.026804 4.22E-08 7 9 0.008721 1.62E-08 6 14 0.030029 1.16E-08
x6 3 4 0.009235 0 12 14 0.013601 2.29E-08 15 32 0.076977 9.71E-08
x7 1 2 0.002775 0 1 2 0.005216 0 1 3 0.007172 0
x8 2 3 0.005357 0 1 2 0.005377 0 1 3 0.006341 0
x9 13 14 0.038009 7.55E-08 12 13 0.008639 3.43E-08 68 137 4.254011 0

x10 13 15 0.036556 9.78E-08 15 17 0.013004 2.99E-08 14 30 0.067168 2.23E-08
10,000 x1 1 2 0.013503 0 10 12 0.044684 2.53E-08 1 3 0.009628 0

x2 1 2 0.012553 0 9 11 0.041937 3.62E-08 1 3 0.008406 0
x3 1 2 0.008625 0 9 11 0.033604 2.08E-08 1 3 0.007386 0
x4 2 3 0.014651 0 9 11 0.039714 1.13E-08 7 16 0.199211 5.07E-09
x5 13 14 0.156798 7.26E-08 7 9 0.026131 5.12E-08 6 14 0.167163 3.66E-08
x6 3 4 0.047113 0 14 15 0.050996 2.79E-08 19 40 0.514222 5.87E-09
x7 1 2 0.011784 0 1 2 0.006773 0 1 3 0.026011 0
x8 2 3 0.016919 0 1 2 0.006426 0 1 3 0.025715 0
x9 13 14 0.155533 7.55E-08 12 13 0.042429 3.43E-08 52 105 33.66117 0

x10 14 16 0.170662 6.40E-08 16 18 0.068509 2.53E-08 – – – –
100,000 x1 1 2 0.087812 0 12 14 0.328656 3.55E-08 1 3 0.064636 0

x2 1 2 0.084601 0 10 12 0.289284 4.09E-08 1 3 0.049102 0
x3 1 2 0.051268 0 10 12 0.264591 2.54E-08 1 3 0.039347 0
x4 2 3 0.173898 0 10 12 0.267096 1.53E-08 7 16 1.393001 1.60E-08
x5 13 15 1.314268 9.11E-08 8 10 0.281714 1.62E-08 7 16 1.353115 4.30E-09
x6 3 4 0.272453 0 14 15 0.382704 2.68E-08 15 32 3.503018 3.80E-09
x7 1 2 0.078522 0 1 2 0.041848 0 1 3 0.191312 0
x8 2 3 0.106994 0 1 2 0.048667 0 1 3 0.180528 0
x9 13 14 1.066867 7.55E-08 12 13 0.305448 3.43E-08 52 105 278.5842 0

x10 15 17 1.597813 4.39E-08 21 23 0.679073 1.87E-08 21 43 4.950861 2.38E-08

Table 8: Summary of test results reported in Table 1-7
Methods Iter Percentage Funeval Percentage Time (s) Percentage
AHZP 109 51.91% 138 65.71% 115 54.76%
DLPM 29 13.81% 48 22.86% 66 31.43%
MHZ2 15 7.14% 3 1.43% 29 13.81%
Undecided 57 27.14% 21 10% 0 0%
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Figure 1: Performance profile for the number of iterations
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Figure 2: Performance profile for the functions evaluations
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Figure 3: Performance profile for the CPU time (in second)

The numerical results of the three (3) methods are reported in Tables 1-7. From the Tables,

- IP represents the starting points,

- Iter represents the total number of iterations,

- Time (s) represents the CPU time (in seconds),

- Funeval represents the function evaluations,

- ∥Fk∥ is the norm of the residual at the termination point.

Even though AHZP, DLPM, and MHZ2 methods have successfully solved the seven test problems reported
in the numerical experiment, the AHZP method converges faster to the solution of (1) than the other
methods because it has the least number of iterations. Moreover, the MHZ2 method failed during the
iteration process by clear indication from Tables 3 and 4. From Table 3, MHZ2 failed in 100,000 dimension
with initial point x5. Also, from 4, MHZ2 failed in 1000 and 100,000 dimensions with the same initial
guess x5. For the function evaluations presented in Tables 1-7, when compared to the DLPM and MHZ2
methods, it is obvious that the AHZP method has the fewest number of function evaluations, as expected.
Furthermore, the numerical results presented in Tables 1-7 demonstrate that the AHZP method solves all
test problems in less CPU time than the DLPM and MHZ2 methods. The proposed method outperforms
the DLPM and MHZ2 methods for nearly all problems because it has the fewest number of iterations and
processor time and the fewest number of function evaluations.

Table 8 summarizes the results from Tables 1-7 to show which approach is best in terms of the number
of iterations, function evaluations, and Processor time. From Table 8, the AHZP method wins with the
least iterations, about 51.91% of the problems (i.e., 109 out of 210). However, DLPM and MHZ2 methods
solve 13.81% (29 out of 210) and 7.14% (15 out of 210) of the problems, respectively. Meanwhile, the results
summary shows that at least two of the three methods have the same number of iterations on 57 out of 210
problems, i.e., 27.14% of the problems and reported as undecided in Table 8. The AHZP method solves
65.71% (138 out of 210) of the problems for the function evaluation. At the same time, the DLPM and MHZ2
methods solve 22.86% (48 out of 210) and 1.43% (3 out of 210) of the problems, respectively. However, 10%
(21 out of 210) reported being undecided. In terms of CPU time, DLPM and MHZ2 methods solve 31.43%
(66 out of 210) and 13.81% (29 out of 210) of the problems, respectively. The AHZP method, on the other
hand, solves 54.76% (115 out of 210) of the problems.
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Dolan and Moré [59] evaluation tool was used to present a graphical view of each of the three methods
used in the experiments to interpret the results presented in Tables 1-7. Figures 1−3 depict the performance
profiles of the AHZP, DLPM, and MHZ2 methods in terms of iteration numbers, number of function
evaluations, and CPU time. A fraction p(τ) of the problems considered for each of the three figures
are plotted. A method is within a factor τ of the best time. Each of the three figures has a top curve
corresponding to the AHZP scheme. We, therefore, conclude that our proposed algorithm is more effective
than the compared ones for solving large-scale nonlinear monotone equations with convex constraint, based
on the results from Tables 1-7 and Figures 1 − 3.

4.2. Applications in compressive sensing

This part applies the AHZP algorithm to solve image deblurring problems in compressive sensing. The
procedure for efficiently acquiring and reconstructing a signal. It compresses the signal received during
sensing. Compressive sensing is helpful in a variety of fields, including statistics and signals processing
[63, 64]. The convex unconstrained optimization problem below expresses the most common approach in
sparse recovery.

min
x

1
2
∥w̄ − Q̄x∥22 + ϕ∥x∥1, (66)

where x ∈ Rn, w̄ ∈ Rm, Q̄ ∈ Rm×n(m << n) denotes a linear operator, the parameter ϕ ≥ 0, and ∥x∥1 =
n∑

i=1

|xi|.

This is usually called ℓ1−regularized least square problem. Several methods for solving (66) iteratively can
be found in [60, 62, 63]. However, gradient-based methods are the most widely used [63], where problem
(66) is presented as follows:
Any vector x ∈ Rn is divided into positive and negative parts as:

x = p̄ − q̄, p̄ ≥ 0, q̄ ≥ 0, p̄, q̄ ∈ Rn. (67)

Let p̄i = (xi)+, and q̄i = (−xi)+ for i = 1, 2, ...,n, where (.)+ is the positive operator, which is defined as (x)+ =
max{0, x}. Applying the definition of the ℓ1−norm, we have ∥x∥1 = eT

n p̄ + eT
n q̄, with en = (1, 1, 1, ..., 1)T

∈ Rn.
So, problem (66) can be reformulated as the following

min
p̄,q̄

1
2
∥w̄ − Q̄(p̄ − q̄)∥22 + ϕeT

n p̄ + ϕeT
n q̄, p̄, q̄ ≥ 0. (68)

Problem (68) can be expressed as a bound constrained quadratic program, as demonstrated in [63] as follows

min
z

1
2

zTH̄z + cTz, s.t z ≥ 0, (69)

z =
[

p̄
q̄

]
, c = ϕe2n +

[
−h̄
h̄

]
, h̄ = Q̄Tw̄, H̄ =

[
Q̄TQ̄ −Q̄TQ̄
−Q̄TQ̄ Q̄TQ̄

]
, where H̄ is positive semi-definite matrix.

Therefore, (69) is a convex quadratic programming problem, which is translated into the following problem
of linear variable inequality (LVI) [65]. Find the value of z ∈ Rn, such that

(z′ − z)T(H̄z + c) ≥ 0 ∀z′ ≥ 0. (70)

Furthermore, problem in(69) is equivalent to the following linear complementary problem [65]. Find z ∈ Rn,

z ≥ 0, H̄z + c ≥ 0, and zT(H̄z + c) = 0. (71)
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where, z ∈ Rn is the solution of (71) if and only if it satisfies the following nonlinear equations

F(z) = min{z, H̄z + c} = 0, (72)

where, F is a vector-valued function that is Lipschitz continuous, and monotone, as proved in citePang,
SGCS, and the ” min ” interpreted as a component-wise minimum. Therefore, problem (66) can be translated
into (1). Therefore, the AHZP algorithm can be applied to solve it.

Numerical tests were performed to demonstrate the effectiveness of the AHZP method in restoring
certain blurred images by comparing it with the SGCS method [65]. When implementing AHZP algorithm
in this experiments, and the following parameters are set ξ = 1, σ = 10−4, ρ = 0.5, τ = 0.4, and ζ = 1.3. The
parameters of the SGCS Algorithm are taken as in [65]. The iteration is set to stop for both methods if the
following conditions occur:

| f (xk) − f (xk−1)|
| f (xk−1)|

< 10−5,

with a merit function f (x) define as f (x) = 1
2∥w̄ − Q̄x∥22 + ϕ∥x∥1. In addition, during the image de-blurring

experiment, the codes were ran with x0 = Q̄Tw̄, as initial point. Signal-to-Noise Ratio (SNR) defined by

SNR = 20 × log10

(
∥x̂∥
∥x − x̂∥

)
,

where, x̂ and x are the original image and the restored image, respectively. Furthermore, Structural
Similarity (SSIM) index is used in this paper in order to measure the quality of the restored images [66]. The
MATLAB implementation of the SSIM index can be obtained at http://www.cns.nyu.edu/˜lcv/ssim/.

Table 9: Numerical results for AHZP and SGCS in image restoration
AHZP SGCS

IMAGE SIZE ITER TIME (s) SNR SSIM ITER TIME (s) SNR SSIM
Figure 4 (Halilu) 256 × 256 31 4.44 30.31 0.92 200 20.78 30.43 0.92
Figure 5 (Tajmahal) 256 × 256 30 4.48 23.26 0.85 399 42.58 23.41 0.87
Figure 6 (LPU Mall) 256 × 256 40 5.91 20.03 0.81 701 72.86 20.02 0.82
Figure 7 (Duck) 256 × 256 32 4.88 20.84 0.89 345 35.53 20.77 0.90

http://www.cns.nyu.edu/~lcv/ssim/
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Original Blurred

AHZP SGSC

Figure 4: The original image (first row first column ), the blurred image (first row second column), the
restored image by AHZP (second row first column) and SGCS (second row second column).
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Original Blurred

AHZP SGSC

Figure 5: The original image (first row first column ), the blurred image (first row second column), the
restored image by AHZP (second row first column) and SGCS (second row second column).
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Original Blurred

AHZP SGSC

Figure 6: The original image (first row first column ), the blurred image (first row second column), the
restored image by AHZP (second row first column) and SGCS (second row second column).
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Original Blurred

AHZP  SGSC

Figure 7: The original image (first row first column ), the blurred image (first row second column), the
restored image by AHZP (second row first column) and SGCS (second row second column).

Figures (4 − 7) are generated to show the restoration results of different images obtained by AHZP and
SGCS methods. Both methods are successful in restoring all four images, but the data in Table 9 clearly
show that the proposed method has a higher efficacy. Although the SGCS method has higher SNR values
than the AHZP method in Figures 4 and 5, the AHZP method has higher SNR values than the SGCS method
in Figures 6 and 7. Figure 4 shows that both methods have the same SSIM values. However, the SSIM
values of the SGCS method in Figures (5 − 7) are higher than those of the AHZP method. These results
demonstrate that the proposed method is effective at restoring blurred images.

5. Conclusion

Accelerated Hager-Zhang Projection Method for Convex Constrained Monotone Nonlinear Equations
with application in image deblurring problems is presented in this paper. We achieved this by proposing
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a new Hager-Zhang nonnegative parameter choice. Numerical comparisons were performed using large-
scale test problems, and the AHZP method outperformed the DLPM [14] and MHZ2 [29] methods as shown
in Tables 1-7 and Figures 1 − 3. Furthermore, the AHZP method is successfully applied to deal with the
experiments on the ℓ1−norm regularization problem in image restoration and compared its performance
with the SGCS method [65]. The experiments were carried out on various samples of images (Figures
4− 7), and the results are recorded in Table 9, which clearly show that the AHZP approach is very efficient.
Future work includes modifying the proposed method to solve the inertial-based derivative-free approach
for monotone nonlinear equations with Motion control application.
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